Controller Design for Quadrotor UAVs using Reinforcement Learning

Haitham Bou-Ammar, Holger Voos, Wolfgang Ertel

University of Applied Sciences Ravensburg-Weingarten, Mobile Robotics Lab,
88241 Weingarten, Germany, Email: {bouammah, voos, ertel} @hs-weingarten.de

Abstract— Quadrotor UAVs are one of the most preferred
type of small unmanned aerial vehicles because of the very sim-
ple mechanical construction and propulsion principle. However,
the nonlinear dynamic behavior requires a rather advanced
stabilizing control of these vehicles. One possible approach
that relaxes the difficult task of nonlinear control design is the
application of a learning algorithm that allows the training of
suitable control actions. Here we apply reinforcement learning
as one form of unsupervised learning. In this paper, we first
propose a nonlinear autopilot for quadrotor UAVs based on
feedback linearization. This controller is then compared to an
autopilot which has been learned by reinforcement learning
using fitted value iteration with regard to design effort and
performance. First simulation and experimental results under-
line the outcome of this comparison.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) already have a wide
area of possible applications. While large outdoor UAVs are
already in use for military or commercial purposes, indoor
flight of small UAVs is still a challenging area of application
from a scientific perspective. Indoor flight requires a suit-
able type of vehicle as well as suitable control, navigation
and collision avoidance algorithms. Concerning the vehicle
type, helicopter-like vehicles are among the most promising
candidates with respect to size, weight, maneuverability and
the ability for slow and even hovering flight. One special
helicopter-like vehicle with the additional advantage of a
simple construction and rotor mechanics is the quadrotor.
The quadrotor is a system with four propellers in a cross
configuration, see Fig. 1 for a sketch of a quadrotor UAV.
While the front and the rear motor rotate clockwise, the
left and the right motor rotate counter-clockwise which
nearly cancels gyroscopic effects and aerodynamic torques
in trimmed flight. One additional advantage of the quadrotor
compared to a conventional helicopter is the simplified rotor
mechanics. By varying the speed of the single motors, the
lift force can be changed and vertical and/or lateral motion
can be generated. However, in spite of the four actuators, the
quadrotor is a dynamically unstable nonlinear system that has
to be stabilized by a suitable control system.

In this paper, we address the problem of a precise and
fast stabilization of the quadrotor UAV since the fulfillment
of this task is a precondition for further implementation of
other functionalities. Concerning controller design for small
quadrotor UAVs, some solutions are already proposed in the
literature, see e.g. [1], [2], [3], [4] and [5] to mention only
a few. Many of the proposed control systems are based on a
linearized model and conventional PID- or state space control

while other approaches apply sliding-mode [1], H,, or SDRE
(state dependent Riccati equations) control [4], [S]. Recently,
a new nonlinear control algorithm has been proposed by
one of the authors which is based upon a decomposition of
the overall controller into a nested structure of velocity and
attitude control, see [6]. The controller has the advantage of
an easy implementation and proven stability while taking the
nonlinearities of the dynamics directly into account.

However, these proposed algorithms are either based on
simplification and linearization leading to limited general-
ization with regard to the full state space or the algorithms
are rather complex and require deep knowledge in nonlinear
control and accurate modelling. An interesting alternative
method to control a system is to learn the suitable control
action, either using supervised or unsupervised learning.
Since supervised learning comprises the training of already
existing control actions (e.g. generated by a human operator),
unsupervised learning seems to be more promising to solve
more complex control problems as they arise in robotics or
UAV control. In this contribution we are applying reinforce-
ment learning (see e.g. [7]) where a simple reward function
judges any generated control action. Reinforcement learning
for quadrotor UAVs has already been investigated in [8],
however we are investigating value iteration in this work for
faster convergence of the learning process and also apply a
full nonlinear model for the learning process.

The nonlinear controller as derived in [6] is first shortly
introduced, followed by a short introduction in the reinforce-
ment learning algorithm applied in this work. Finally, some
first experimental as well as simulation results are presented
in order to compare the two approaches.

2. DYNAMIC MODEL OF THE QUADROTOR

The general dynamic model of a quadrotor UAV has been
presented in a number of papers, see e.g. [1], [3], [4], [5]
or [6], and therefore will not be discussed here in all details
again. We consider an inertial frame and a body fixed frame
whose origin is in the center of mass of the quadrotor, see
Fig. 1. The attitude of the quadrotor is given by the roll,
pitch and yaw angle, forming the vector Q7 = (¢,0,1)),
while the position of the vehicle in the inertial frame is given
by the position vector 77 = (x,y,2). The dynamic model
of the quadrotor can be derived by applying the laws of
conservation of momentum and angular momentum, taking
the applied forces and torques into account (see [6]). The
thrust force generated by rotor 4,7 = 1,2,3,4 is F; = b- w,f
whith the thrust factor b and the rotor speed w;, and the law

¥ :position angle
. . / vector

inertial
frame

€5

Fig. 1. Configuration, inertial and body fixed frame of the quadrotor.

of conservation of momentum yields

0

4
f=g-| 0 | -R®Q)-b/m) wi-[0 (1)
1 i=1 1

Herein, R(2) is a suitable rotation matrix. With the inertia
matrix I (a pure diagonal matrix with the inertias I, I,, and
1, on the main diagonal), the rotor inertia Jg, the vector M
of the torque applied to the vehicle’s body and the vector
M of the gyroscopic torques of the rotors, the law of
conservation of angular momentum yields:

IQ:7<Q><IQ>7MG+M)
The vector M is defined as (see Fig. 1)
Lb(w3 — wf)

Lb(w? — w?) 3)

d(wi +wi — w3 — i)

M:

with the drag factor d and the length L of the lever. The
gyroscopic torques caused by rotations of the vehicle with
rotating rotors are

0
MG:IR(QX 0
1

) (w1 —wa+ws—ws) (@)

The four rotational velocities w; of the rotors are the real
input variables of the vehicle, but for a simplification of the
model, the following substitute input variables are defined:

ur = b(wi +wi + Wi + wi)

up = b(wj —wj)

ug = b(wi — i)

ug = d(w? 4+ Wi — ws — wi) (5)

Defining u” = (u1,u2, uz,uy) and (w1 — wo + ws — wy) =
g(u) and introducing the vector of state variables zT =
(Z,9,2,6,0,1,6,0,1), evaluation of (1) until (5) yields the

following state variable model:

—(cos x4 sin x5 cos xg + sin x4 sinxg) - uy /m
—(cos x4 sin xy sin xg — sin x4 cos xg) - uy/m
g — (cosxgcosxs) - up/m

X7

T = g

Z9

ZEg.%‘gIl — %xgg(u) + %UQ

x7xels + %5679(“) +7us

|
rrxgls + 7-us

(6)
Herein, we use the abbreviations Iy = (I, — I.)/I,, I, =
(I,—1;)/I, and I3 = (I — I,;)/I,. It becomes obvious that
the state variable model can be decomposed into one subset
of differential equations (DEQs) that describe the dynamics
of the attitude using the last six equations of (6), and one
subset that describes the translation of the UAV using the
first three equations of (6).

3. NONLINEAR CONTROLLER DESIGN

The task of the vehicle controller is the stabilization of
a desired velocity vector which is calculated by the higher-
level mission controller. The decomposed structure of the
state variable model (6) already suggests a nested structure
for vehicle control. In order to achieve and maintain a desired
velocity vector, first the necessary attitude of the UAV has
to be stabilized. Therefore, we propose a decomposition of
the vehicle control system in an outer-loop velocity control
and an inner-loop attitude control system. In this structure,
the inner attitude control loop has to be much faster than
the outer loop and stabilizes the desired angles Q7 =
(bds 04, Va) = (T4,4, 5,4, T6,4) that are commanded by the
outer loop. First we consider the inner attitude control loop,
then we derive the outer-loop controller to stabilize a desired
velocity vector.

A. Attitude Control System

For the design of the attitude control system we consider
the last six DEQs of (6) as the relevant submodel. Herein,
the last three DEQs describing x7, xg, r9 are nonlinear and
depend on the input variables us, us, uq, while x4, x5, g are
obtained from the former state variables by pure integration
leading to three simple linear DEQs in (6). The control strat-
egy now is as follows: we first apply a nonlinear feedback
linearization to the last three DEQs in order to transfer them
into linear and decoupled DEQs. Together with the set of the
remaining linear DEQs we finally obtain three independent
linear systems which can be stabilized via linear feedback.

If we first neglect the gyroscopic terms (since the rotor
inertias are comparatively small) we obtain the simplified
DEQs for x7,xs,x9 as

Z7 zswoly + Lus
3 r7x9ls + us (7)
1'9 LL‘7$8]3 + 7. U4

I
©
I

Now we apply a feedback linearization in order to obtain a
linear system:

U2 - f2($7,$8,$9)+u3
uz = fa3(x7,78,79) + u3
ug = fa(x7,78,79) + Ul (®)
with the new input variables u3, u3, uy. It can be shown that
I
fa(z7,28,29) = f(Kzﬂfﬂcsl’gh)
I
fa(z7,28,29) = fy (K3xs — 27791>2)
fa(zr,v8,29) = I, (Kawg — 272813) 9)
with the so far undetermined constant parameters

K, K3, K4 transfer (7) into a set of linear and decoupled
DEQs. It has been proven in [6] using a suitable Lyapunov
function that this feedback is stable for Ko, K3, K4 < 0
even if the gyroscopic terms from (6) are considered again.
Since &4 = x7, T5 = xg, T = x9 we finally obtain linear
decoupled DEQs for x4, x5, x4, respectively, see e.g. x4:

Ty = Kody + L/I$’u,§ (10)

If x44 is the desired angle, application of a linear controller
uy = wa « (x44 — x4) with constant parameter wo leads to a
closed-loop system of second order
F(s) = X4(s) _ Wa

Xaa(s) I./L-s2— Kyl /L s+ ws
The same considerations hold for the other angles with linear
controllers uj = w3 - (54 — x5) and uf = wy - (Teq —
xg), respectively. The dynamics of these closed-loop systems
now can be easily adjusted by a choice of a suitable set of
parameters (Ko, ws), (K3, ws), (K4, ws), respectively, with
the only limitation that K, K3, K4 < 0, see [6].

(an

B. Velocity Control System

We now assume that the previously defined inner attitude
control loops are adjusted in a way that their dynamic behav-
ior is very fast compared to the outer velocity control loops.
Therefore we approximate the inner closed control loops as
static blocks with transfer function F;(s) = X;(s)/X;a(s) ~
1,7 = 4,5,6. Inserting this in (6), the velocities of the
quadrotor UAV then can be approximated by

1 = —(C0STyqSinTsyCos Ty + Sinxyqsinzgy) - uy/m
Zog = —(COSxyqSinT5ysInTeq — SINXTgq COS Tq) - U1 /M
£3 = g — COST4qCOST5q - UL/ M (12)

where all x44,254,26q and u; can be considered as input
variables. Equation (12) can be interpreted in a way that all
differential equations are of the form

I"l ﬂ1
i’? - f(x4d7x5d7x6d7ul) - ﬂg (13)

with the new input variables uy, tio, 3 that depend on the
other four input variables in a nonlinear form described

by the vector function f. However, regarding these new
input variables, the control task comprises the control of
three independent first-order systems which is solved by pure
proportional controllers, respectively:

ky - (Ild - 931)
Uy = ko ($2d - $2)
ks - (34 — x3)

uz = (14)

Herein the controller parameters ki, ko and ks could be
chosen in a way that the outer loop is sufficiently fast but not
too fast with respect to the inner loop attitude control. In a
next step, these transformed input variables 1, %2, 43 must
be used to obtain the real input variables x4, 54, T¢q and
u1 by using (13). First it becomes obvious that any desired
velocity vector can be achieved without any yaw rotation and
therefore we can set zgq = Vg = 0. Under this assumption
it is shown in [6] that (13) can be solved analytically by
calculating the inverse function of f:

Tad X Uy
z5q | =Ff Uy (15)
Uy U3

C. Overall Vehicle Control System

The overall control system consist of the derived inner
attitude and the outer velocity control loop. The command to
the vehicle control system is a desired velocity vector given
by vzq = Z1d,Vyd = T2d,Vzq = T3q. Then, (14) is used
to calculate the respective values of the variables 1, tg, U3
which are transferred by static inversion (15) into the values
of the desired angles x44 and 54 as well as the input variable
u1. As discussed, the third desired angle is set to xgq =
0. The desired angles are used to calculate u3,u3,u; and
evaluation of (8) with the measured values of the angular
rates x7,xs, 9 and the nonlinear feedback yields the input
variables w9, us, ug. Finally, (5) allows the calculation of the
required angular rates of the rotors, namely w;,ws,ws and
wy. The main advantage of the overall control system is the
fact that the feedback linearization and the controllers are
comparatively easy to be implemented, while taking the full
nonlinear behavior of the vehicle into account. That leads
to a fast computation even on standard embedded micro-
controller systems. Further details and simulation results are
also given in [6], while experimental results will be presented
here.

4. REINFORCEMENT LEARNING OF CONTROL ACTIONS
A. Reinforcement Learning

An alternative approach in controlling unmanned aerial
vehicles is to design a learning controller. For this work
the reinforcement learning technique [7] is adapted. Re-
inforcement learning is a form of unsupervised learning
aiming to map states into actions, so to attain the optimal
policy to maximize an overall value function. In the latter
framework a reward function is provided in order to deliver
either negative or positive values depending on the system’s
state, in a goal to maximize the overall discounted payoff

over the subsequent states that the system might encounter.
Concerning reinforcement learning, much work also has
been done on continuous state space systems using various
approaches and algorithms, see e.g. [7] for an introduction,
and reinforcement learning has also been applied to control
a quadrotor UAYV, see [8]. However, in contrast to [8] where
policy iteration has been used, this work focuses on the
fitted value iteration (FVI) method to approximate the value
function of the quadrotor system so to design the required
controller.

In order to further formalize the reinforcement learning
problem, the Markov decision processes (MDPs) are em-
ployed. MDPs could be defined as a combination of:

o S: the set of states encountered by the system.

o A: the set of actions that could be generated (i.e.
the actions that the four rotors could generate in the
example).

e IRR: the reward function which maps the state-action-pair
to the set of real numbers (R : S x A — R) or (as
in our approach) the state to the set of real numbers
(R:S —R).

o ~: the discount factor where v € [0,1].

e Py,: the transition probability being at a state s € .S
and taking an action a € A to transient to a new state
s €8S,

The dynamics of MDPs proceed as follows: Starting from
an initial state sg € S, and getting to choose an action ag €
A, the MDP will tend to transient to a new state s; drawn
according to the probabilty distribution s; ~ P; ,,. Being
at the state sy another action a; is picked which will lead to
the transition to the subsequent state sy ~ Ps, 4,. The latter
process is repeated until almost all the states of the MDP are
explored. The above mentioned idea could be visualized as:

ao ai az
Sg —> 81 —> S9 —> S3...

After visiting the sequence of states sg,sp,... with the
actions ag, ay, .. ., the total payoff is given by:
R(s0) +vR(s1) + 7 R(s2) + ... (16)

The overall goal of the reinforcement learning algorithm is
to choose the correct sequence of actions over time, so to
maximize the expected value of (16):

E(R(so) +vR(s1) +v*R(s2) +...)

A policy 7 : S — A is defined as any function that maps the
states to the actions. Moreover, a value function is defined
as (17) starting at a state sg and executing some policy 7:

V7(s) = B[R(so) + YR(s1) + 7’ R(s2) + ... |s = s0, 7]
(18)
Given a fixed policy 7 and a discrete state MDP, (18) could
be written as:

V™(s) = R(s) +7 D Pun(s)(s)V"(5)
s'es

a7

19)

As mentioned earlier the main objective of the algorithm is
to maximize the value function (19) over all possible policies

which defines the optimal value function and optimal policy,
respectively:
V*(s) = IIl(a§(V7(s)
% _ P ’ % ’
T (s) arg max Z sa(8)V (s)
s eS

(20)
21

Working with continuous state MDPs (as it would be the
case in our application example) gives rise to the value
function approximation problem. The first intuitive solution
is to discretize the state space of the system so to obtain a
discrete space MDP. The latter solution possess two main
problems that could be summarized as:

o Curse of dimensionality, summarized by the fact that
discretizing n continuous states by k steps will produce
n* discrete states, which leads to high computational
time for the learning procedure in the sequel of fitting
a controller.

« Naive representation of the value function whereby it
will be assumed that it attains only certain constant
values, which does not reflect the reality of the variation
of that function.

One solution for continuous state space MDPs is the fitted
value iteration algorithm which will therefore be explained
in more detail in the following section.

B. Fitted Value Iteration (FVI)

In our application example the system is assumed to
have continuous states while the action space A is small
and discrete, as is the case in many real life applications.
The main idea lies behind approximating the optimal value
function, since in the latter case (19) is no longer valid.
Rather the expected value of the total payoff is represented
by an integral as follows:

V(s) = R(s) + 'ymgx/PSa(s/)V(s/)ds/

’
S

V(s) = R(s) + ymax E

(22)

LV @3

The main idea of the algorithm is to carry over a finite
number of states s',s?,...,s™ an approximation of (23).
Specifically, a supervised learning algorithm will be used
where by the value function will be assumed as some

nonlinear function of the states:

V(s) = 0Td(s) 24

For every state in the finite samples the algorithm will tend
to compute a function 3° which will be an approximation
of (23) and then will try to minimize the sum of the least
square errors between the y®’s and V (s) in (24).

C. FVI Applied to the Quadrotor

Reinforcement learning with fitted value iteration is now
applied to the model (6) of the quadrotor. First, the reward
function is chosen as:

R(Sa Sref) = _Cl(¢_¢Tef)2_02(9_9'ref)2_c3(w_wref)2
(25)

where R : R3”¢ — R is the reward function, ¢; > 0,cy >

0,c3 > 0 are constants giving the ability to focus especially

on the control of one of the Euler angles rather than the other,

and ST, = [ref, Orers Yre] is the reference state defining

the hovering position. Next a parametric approximation of

the value function is chosen incorporating quadratic and
coupling terms:

¢2

92

V(S):(al ao a3z a4 as) wQ

oY

0y

These variables were selected due to their importance as
obtained from the theoretical considerations. After randomly
sampling 1000 states of the system using the nonlinear model
(6) of the quadrotor, the main objective of the algorithm is
to adapt the constants (aj,as,...,as) so to have the best
approximation of the value function. In order to obtain the
latter constants the normal equations were solved using the
(QR) factorization technique in computing the pseudo inverse
of the design matrix A which had been chosen to satisfy the
above mentioned constraints.

(26)

S0P B6P E? wE) @)

A=
s(m)2 O(m)® p(m)? G(m)b(m) B(m)i(m)
(27)

where ¢ and m represent the number of the training example
that varies from 1 to the number of samples. Then the
values of the constants could be obtained using the OR
factorization. For further clarification we represent a pseudo
code of the algorithm: The controller that is finally obtained

Algorithm 1 FVI on the quadrotor
Generate Sy random initial states
Initialize a1 ... as to zeros
repeat
for i = 1 to length(Sy) do
for each a € A do
g(a)=R(sD)+yV(s)
end for
y®W=max, ¢(a)
end for
Generate the Matrix A using (27)
Update the a’s by minimizing the least square error
between y(’s and (26).
until a’s don’t change within a small tolerance

by reinforcement learning has the same structure as the
previously presented controller. This is due to the fact that a
feedback of the three Euler angles and the angular velocities
as states are needed and the agent tries to minimize the error
between these variables and their reference values. On the

contrary, in the learning approach the controller tries the
actions and learns to map them to the vital states so to
maximize a value function, rather than having the pre choice
of the controller which tries to perform the required task.

5. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the derived control systems, an ex-
perimental prototype of the quadrotor has been designed
and the dynamic model (6) of this quadrotor has been
derived by identification of the system parameters like in-
ertias, dimensions etc., see also [6] for a more detailed
description. This dynamic model then has been implemented
in MATLAB/SIMULINK for the simulative evaluation and
comparison of the two proposed control system, i.e. the
nonlinear controller based on feedback linearization (called
NFL-controller) and the controller obtained by reinforcement
learning (called RL-controller).

In a first simulation of the results obtained with the NFL-
controller, we assume an initial deviation of the angles
QT = (¢ = 30°,60 = —20°,9p = 10°) where the control
goal is to stabilize a hovering position, i.e. v4 = 0. The
obtained control result is shown in Fig. 2 as a time plot of all
angles of the quadrotor. There is a very short transition phase
with small under- and overshoots and the hovering state is
reached after ¢t ~ 0.6 sec. Some more simulation results of
the NFL-controller are also presented in [6], therefore we
present here some results obtained from first experimental
test flights with the quadrotor prototype. In the experiment
the control goal again was the stabilization of a hovering
state starting from any initial position and compensating
for any external disturbances. The obtained experimental
result is shown in Fig. 3 as a time plot of all angles
of the quadrotor. After a very short transition phase the
hovering state is reached and maintained. The small constant
deviation of the yaw angle results from a slight misalignment
of the inertial measurement unit. It becomes obvious from
Fig. 3 that external disturbances at 35 seconds of the roll
angle, at 45 seconds of the pitch angle and at 50 seconds
at the yaw angle are completely compensated. The results
prove that the NFL-controller leads to a very satisfactory
control result even in the experimental prototype, while the
implementation is easy and the computational effort can

— ¢
-0
-y
)
5
o2l
03l
04 A A L L
0 02 04 06 08 1 12 14 16 18 2
time (s)
Fig. 2. Simulation results of the NFL-controller.

30 40 a0 B0 70
Test Tirne (s)

Fig. 3.

Experimental results of the NFL-controller.

be handled by a microcontroller. The RL-controller is only
tested in simulations so far, however implementation in the
experimental platform is currently done. For a comparison,
a similar situation as previously explained was assumed: the
quadrotor starts at some initial deviations of the angles while
the control goal is to achieve and maintain a hovering state.
The results obtained with the RL-controller are depicted in
Fig. 4, giving the results of the angles as well the angular
velocities during compensation. It becomes obvious that
also the learned control algorithm is able to stabilize the
hovering state, compared to the results of the NFL-controller,
it requires a slightly higher settling time (about 1 sec), but the
overshoots during compensation are lower. However, there
are also small control action in the hovering state. This under
performance of the RL-controller could be related to the
parametric approximation of the value function that had been
chosen, whereby processing a non-parametric approach to
approximate the value function would perform better espe-
cially with highly nonlinear and real states MDPs. However,
the biggest advantage of the RL-controller is the fact that no
deeper knowledge in nonlinear control engineering would be
required. As a further improvement it is planned to learn also
the dynamic model of the quadrotor from experiments which
would also relax the modelling task dramatically.

6. CONCLUSION AND FUTURE WORKS

This paper presents a comparison between two control
approaches for a quadrotor UAV. First, a nonlinear controller
based on feedback linearization and a cascaded structure has
been proposed. Second, a control algorithm has been learned
using reinforcement learning and fitted value iteration using
the nonlinear dynamic model of the quadrotor. Both control
engineering approaches result in a satisfying control result.
The performance of the nonlinear controller is better but
requires more detailed knowledge in control engineering.
One of the advantages of a learning algorithm is the fact that
no prior mathematical knowledge of the model is required to
design a controller. This reflects that a model of the quadrotor
could be approximated using different techniques by just
relating the input and output data through a non parametric
approach. This idea will be tested in the near future. Further

06

—¢
=== |

04

0z

rad

0z
04
06

08 i B L i I
]

Time]s]

T

it
-t
dyfdt

rat/sec
o

a 1 2 a 4 & b 7 8 9 10
Time[s]

Fig. 4. Control results of the RL-controller.

improvements on the fitted value iteration algorithm could
be added such as using a non parametric approximation
technique like a wavelet network, see e.g. [9], which seems
to be promising. In the ongoing work further experiments
will be conducted with different parametric value functions,
and the implementation of such wavelet networks will be
further studied and tested to orient it towards the quadrotor

problem. REFERENCES

[1] S. Bouabdallah, R. Siegwart. Backstepping and Sliding-mode Tech-
niques Applied to an Indoor Micro Quadrotor. In Proc. of the IEEE
International Conference on Robotics and Automation, 2005, pp. 2247
2252.

[2] A. Tayebi, S. McGilvray. Attitude Stabilization of a VTOL Quadrotor
Aircraft. In IEEE Trans. on Control Systems Technology, 2006, Vol.
14, 2006, pp. 562 - 571.

[3] P. Castillo, A. Dzul, R. Lozano. Real-time stabilization and tracking
of a four-rotor mini rotorcraft. IEEE Trans. on Control Systems
Technology, Vol.12, No. 4, July 2004, pp. 510 - 516.

[4] H. Voos. Nonlinear State-Dependent Riccati Equation Control of
a Quadrotor UAV. In Proc. of the IEEE Conference on Control
Applications, Munich, 2006.

[5]1 H. Voos. Nonlinear and Neural Network-based Control of a Small
Four-Rotor Aerial Robot. In Proc. of the IEEE/ASME Int. Conference
on Advanced Intelligent Mechatronics, Zurich, CH, 2007.

[6] H. Voos. Nonlinear Control of a Quadrotor Micro-UAV using
Feedback-Linearization. In Proc. of the IEEE International Conference
on Mechatronics (ICM 2009), Mdlaga, Spain, 14-17 April, 2009.

[7]1 Sutten, R. S. and Barto, A. G. Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, 1998.

[8] S.L. Waslander et. al. Multi-agent quadrotor testbed control design:
integral sliding mode vs. reinforcement learning. In Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems(IROS
2005), 2005, pp. 3712-3717.

[9] Z.Zhang. Learning Algorithm of Wavelet Network Based on Sampling
Theory. In Neurocomputing /1 (2007), Elsevier, pp. 244-269.

[10] R. Munos, Szepesvari, C. Finite-Time Bounds for Fitted Value
Iteration. Journal of Machine Learning Research 1 (2008), pp. 815-
857.

