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Abstract— This paper presents a novel method to boost the 
performance of CNN inference accelerators by utilizing 
subtractors. The proposed CNN preprocessing accelerator relies 
on sorting, grouping, and rounding the weights to create 
combinations that allow for the replacement of one multiplication 
operation and addition operation by a single subtraction operation 
when applying convolution during inference. Given the high cost 
of multiplication in terms of power and area, replacing it with 
subtraction allows for a performance boost by reducing power and 
area. The proposed method allows for controlling the trade-off 
between performance gains and accuracy loss through increasing 
or decreasing the usage of subtractors. With a rounding size of 
0.05 and by utilizing LeNet-5 with the MNIST dataset, the 
proposed design can achieve 32.03% power savings and a 24.59% 
reduction in area at the cost of only 0.1% in terms of accuracy loss. 
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I. INTRODUCTION 

Deep learning using convolutional neural networks (CNNs) 
is now widely employed in various computer vision 
applications. CNNs have achieved classification accuracy levels 
that surpass those of humans [1-3]. These networks find 
applications in diverse industries and disciplines, including real-
time image classification [4], human action recognition [5], 
brain tumor detection [6], and the detection of structural damage 
in nuclear reactors [7]. However, achieving more accurate 
predictions often requires larger CNN networks, which demand 
higher computational power. Therefore, introducing 
computational methods that can reduce CNN complexity and, 
consequently, overall power consumption is essential, especially 
for embedded systems that rely on batteries. This is particularly 
crucial for optimizing the performance of convolutional layers 
[8]. Such energy reduction is necessary for AI accelerators used 
in mobile devices, AV/AR devices, drones, and other embedded 
systems. Previously, several methods have been proposed to 
reduce CNN computation complexity. These methods include 
parameter pruning [9-12], weights sparsity utilization [13], 
approximate computing, which involves approximate 
multipliers [14-19], and various weight quantization methods 
[20-22]. These approaches manipulate network parameters to 
reduce power, area, and delay, providing energy-efficient 
solutions for CNN computations. 

  

This paper proposes an energy-efficient design for CNN 
inference by introducing a method that can replace part of the 
required multiplications and additions with subtractions during 
the inference stage. Given the high cost of multiplication in 
terms of energy and the much lower costs of subtraction, this 
substitution allows for a substantial reduction in the required 
power and area of the system. Figure 1 presents the inference 
computational time percentage for each layer in AlexNet [23]. 
As shown in the figure, the convolutional layers use around 90% 
of the total processing time in both a CPU and GPU [8] setting. 
Therefore, any performance enhancements to the convolutional 
layers will have a major impact on the system as a whole. The 
proposed design method focuses on pre-trained networks for 
utilization during inference. The method starts with a trained 
model, then the weights are extracted to find combinations that 
enable subtraction. During inference, the modified convolution 
unit is utilized to handle the modified weights. The paper 
summarizes potential performance enhancements that can be 
achieved for various rounding sizes. The paper is organized as 
follows: Section 2 presents the research background and the 
motivation, Section 3 describes the implementation details, 
Section 4 presents the simulation results, and Section 5 presents 
the research conclusion. 

 

Fig. 1 AlexNet inference computational time percentage for each layer 



 

Fig. 2 LetNet-5 architecture 

II. BACKGROUND AND MOTIVATION 

To demonstrate the performance enhancements of the 
proposed method, the popular LeNet-5 CNN network was 
utilized [19]. The architecture of LeNet-5 is shown in Fig.2. As 
can be seen from the figure, in layer 1, the input data is 
represented by a single channel 32 x 32 pixels image for a 
handwritten number, and the output is a Softmax function with 
ten nodes representing the digits from zero to nine. To explore 
the utilization of the subtractors option, an analysis of the 
distribution of the weight was performed. Fig. 3 illustrates the 
weights of the third convolutional layer in LeNet-5, while Fig. 4 
shows the histogram for the distribution of the weights. As can 
be seen from the figure, the distribution allows for finding 
opposite  (negative and positive) pairs weights that can be 
combined; the proposed method exploits this property by 
utilizing subtractions to replace additions and multiplications, as 
will be presented in the next section. 

III. IMPLEMENTATIONS 

This section provides an overview of the proposed method, 
which is summarized in Figure 5. The proposed implementation 
relies on utilizing two blocks: a weight preprocessor and a 
modified convolution unit. The weights preprocessing occurs 
once before deploying the weights for inference. The 
preprocessor prepares the weights for use by the modified 
convolution unit during the inference stage. The first 
preprocessing step involves sorting and splitting the weights into 
two lists: one for positive weights and one for negative weights. 
In the second step, the preprocessor identifies all possible 
combinations based on the selected rounding step and creates a 
list of combined weights. Finally, the preprocessor combines all 
three lists and replaces the original weights in the CNN model 
with the modified weights for inference. During the inference 
stage, the modified convolution unit handles the combined and 
uncombined weights separately. The combined weights rely on 
the subtraction operation to replace one addition and 
multiplication, while the uncombined weights will use regular 
addition and multiplication. More details about the 
preprocessing step are presented in subsection A, while 
subsection B presents more details about the modified 
convolution unit. 

A. Preprocessing of the Weights by Sorting and 
Approximation  
Preprocessing of the weights starts by sorting them, then 

finding combinations to merge, as shown in Figure 6. Initially, 
the weights are sorted in ascending order and split into two lists: 
one for positive weights and one for negative weights. The 

simulation of this process was performed using Numpy [24]. 
The preprocessor in NumPy saves the original positions of the 
weights during the sorting process, using a flag to indicate the 
status of each weight as processed, combined, or not combined. 
After sorting, the weights are combined based on a specified 
rounding size, resulting in a new list that contains all the 
combined weights from the positive and negative weight lists. 
All three lists are then merged and spliced to have all the 
combined weights at the top, while the rest of the uncombined 
weights are at the bottom, as depicted in Figure 6. 

 

 

Fig. 3 Weight distribution in the third convolutional layer 

 

Fig. 4 Histogram of weight distribution 

 

Fig. 5 Structure of the proposed accelerator 
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Fig. 6 Details of the weight sorting and grouping 

B. Combing the weights for convolution 
The process of combing the weights which was presented in 

section 3 allows for the utilization of one subtraction as a 
replacement for one multiplication and one addition operation 
as illustrated in (1). 

× + ×  = × ( )       =        (1) 

The sorted weights will rely on the extracted position value, 
which is generated during preprocessing part during the 
inference stage. As for the uncombined weights, they will 
simply use the regular CNN inference multiplications and 
additions. 

 

IV. RESULTS 

The proposed method's performance enhancements were 
evaluated in terms of power and area using a frequency of 1GHz 
and the Design Compiler from Synopsys with TSMC 65nm 
technology. All tested mathematical operations, including 
multiplication, subtraction, and addition, adhered to the IEEE 
758 design standard. The software implementation of the CNN 
network was tested using LeNet-5 with MNIST data, employing 
Numpy and Pytorch [25]. Table 1 illustrates the number of 
additions, subtractions, and multiplications for different 
rounding sizes. The table demonstrates that increasing the 
rounding size results in a higher number of subtractions while 
reducing both additions and multiplications. A larger step size 
leads to a reduction in the total number of operations. Figure 7 
illustrates a bar chart for the distribution of mathematical 
operations for various rounding sizes.. 

 

 

 

Fig. 7 Mathematical operations distribution for different rounding 
sizes 
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TABLE  I.  NUMBER OF ADDITION, SUBTRACTION, AND 

MULTIPLICATION WITH DIFFERENT ROUNDING SIZES FOR LENET-5 

Rounding 
Size 

Additions Subtractions Multiplications Total 

0 405600 0 405600 811200 

0.0001 399372 6228 399372 804972 

0.005 313545 92055 313545 719145 

0.01 288887 116713 288887 694487 

0.015 276692 128908 276692 682292 

0.02 265480 140120 265480 671080 

0.025 259789 145811 259789 665389 

0.05 242153 163447 242153 647753 

0.1 233698 171902 233698 639298 

0.15 228752 176848 228752 634352 

0.2 225988 179612 225988 631588 

0.25 223630 181970 223630 629230 

0.3 222742 182858 222742 628342 



 

Fig. 8 Accuracy-performance trade-off per rounding size 

Figure 8 shows the relationship between rounding size, 

power, area, and accuracy. The percentage on the left represents 

the percentage of power and area savings, while the percentage 

on the right represents the CNN classification accuracy, which 

drops with a higher rounding size. As shown in Figure 8, the 

accuracy drops dramatically after a step size of 0.05. Thus, 

there is a trade-off between power, area saving, and accuracy. 

With a step size of 0.05, the power can be reduced by 32.03%, 

and the area can be reduced by 24.59%, resulting in an accuracy 

loss of only 0.1%. 

V. CONCLUSIONS 

This paper presented a novel method to reduce the power 
and area of CNN inference accelerators by replacing one 
multiplication and one addition operation with one subtraction 
operation. The proposed method allows for a significant 
performance improvement in terms of power and area saving 
with minimal accuracy loss. The paper presented the trade-off 
that can be achieved between performance enhancement and 
accuracy loss based on the selected rounding size. As shown in 
the paper, with a rounding size of 0.05, a power reduction of 
32.03% and an area reduction of 24.59% can be achieved with 
only a 0.1% accuracy loss. The design allows for adjusting the 
trade-off between gained performance enhancements and the 
cost in accuracy loss. 
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