
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Subtractor-Based CNN Inference Accelerator

Victor Gao1, Issam Hammad2, Member, IEEE, Kamal El-Sankary1, Senior Member, IEEE, and Jason Gu1,
Senior Member, IEEE

1The Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada
2The Department of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, NS, Canada

Abstract— This paper presents a novel method to boost the
performance of CNN inference accelerators by utilizing
subtractors. The proposed CNN preprocessing accelerator relies
on sorting, grouping, and rounding the weights to create
combinations that allow for the replacement of one multiplication
operation and addition operation by a single subtraction operation
when applying convolution during inference. Given the high cost
of multiplication in terms of power and area, replacing it with
subtraction allows for a performance boost by reducing power and
area. The proposed method allows for controlling the trade-off
between performance gains and accuracy loss through increasing
or decreasing the usage of subtractors. With a rounding size of
0.05 and by utilizing LeNet-5 with the MNIST dataset, the
proposed design can achieve 32.03% power savings and a 24.59%
reduction in area at the cost of only 0.1% in terms of accuracy loss.

Keywords— AI Accelerator, Convolutional Neural Networks
(CNN), Deep Learning, Weight Approximation, Weight Sorting,

I. INTRODUCTION

Deep learning using convolutional neural networks (CNNs)
is now widely employed in various computer vision
applications. CNNs have achieved classification accuracy levels
that surpass those of humans [1-3]. These networks find
applications in diverse industries and disciplines, including real-
time image classification [4], human action recognition [5],
brain tumor detection [6], and the detection of structural damage
in nuclear reactors [7]. However, achieving more accurate
predictions often requires larger CNN networks, which demand
higher computational power. Therefore, introducing
computational methods that can reduce CNN complexity and,
consequently, overall power consumption is essential, especially
for embedded systems that rely on batteries. This is particularly
crucial for optimizing the performance of convolutional layers
[8]. Such energy reduction is necessary for AI accelerators used
in mobile devices, AV/AR devices, drones, and other embedded
systems. Previously, several methods have been proposed to
reduce CNN computation complexity. These methods include
parameter pruning [9-12], weights sparsity utilization [13],
approximate computing, which involves approximate
multipliers [14-19], and various weight quantization methods
[20-22]. These approaches manipulate network parameters to
reduce power, area, and delay, providing energy-efficient
solutions for CNN computations.

This paper proposes an energy-efficient design for CNN
inference by introducing a method that can replace part of the
required multiplications and additions with subtractions during
the inference stage. Given the high cost of multiplication in
terms of energy and the much lower costs of subtraction, this
substitution allows for a substantial reduction in the required
power and area of the system. Figure 1 presents the inference
computational time percentage for each layer in AlexNet [23].
As shown in the figure, the convolutional layers use around 90%
of the total processing time in both a CPU and GPU [8] setting.
Therefore, any performance enhancements to the convolutional
layers will have a major impact on the system as a whole. The
proposed design method focuses on pre-trained networks for
utilization during inference. The method starts with a trained
model, then the weights are extracted to find combinations that
enable subtraction. During inference, the modified convolution
unit is utilized to handle the modified weights. The paper
summarizes potential performance enhancements that can be
achieved for various rounding sizes. The paper is organized as
follows: Section 2 presents the research background and the
motivation, Section 3 describes the implementation details,
Section 4 presents the simulation results, and Section 5 presents
the research conclusion.

Fig. 1 AlexNet inference computational time percentage for each layer

Fig. 2 LetNet-5 architecture

II. BACKGROUND AND MOTIVATION

To demonstrate the performance enhancements of the
proposed method, the popular LeNet-5 CNN network was
utilized [19]. The architecture of LeNet-5 is shown in Fig.2. As
can be seen from the figure, in layer 1, the input data is
represented by a single channel 32 x 32 pixels image for a
handwritten number, and the output is a Softmax function with
ten nodes representing the digits from zero to nine. To explore
the utilization of the subtractors option, an analysis of the
distribution of the weight was performed. Fig. 3 illustrates the
weights of the third convolutional layer in LeNet-5, while Fig. 4
shows the histogram for the distribution of the weights. As can
be seen from the figure, the distribution allows for finding
opposite (negative and positive) pairs weights that can be
combined; the proposed method exploits this property by
utilizing subtractions to replace additions and multiplications, as
will be presented in the next section.

III. IMPLEMENTATIONS

This section provides an overview of the proposed method,
which is summarized in Figure 5. The proposed implementation
relies on utilizing two blocks: a weight preprocessor and a
modified convolution unit. The weights preprocessing occurs
once before deploying the weights for inference. The
preprocessor prepares the weights for use by the modified
convolution unit during the inference stage. The first
preprocessing step involves sorting and splitting the weights into
two lists: one for positive weights and one for negative weights.
In the second step, the preprocessor identifies all possible
combinations based on the selected rounding step and creates a
list of combined weights. Finally, the preprocessor combines all
three lists and replaces the original weights in the CNN model
with the modified weights for inference. During the inference
stage, the modified convolution unit handles the combined and
uncombined weights separately. The combined weights rely on
the subtraction operation to replace one addition and
multiplication, while the uncombined weights will use regular
addition and multiplication. More details about the
preprocessing step are presented in subsection A, while
subsection B presents more details about the modified
convolution unit.

A. Preprocessing of the Weights by Sorting and
Approximation
Preprocessing of the weights starts by sorting them, then

finding combinations to merge, as shown in Figure 6. Initially,
the weights are sorted in ascending order and split into two lists:
one for positive weights and one for negative weights. The

simulation of this process was performed using Numpy [24].
The preprocessor in NumPy saves the original positions of the
weights during the sorting process, using a flag to indicate the
status of each weight as processed, combined, or not combined.
After sorting, the weights are combined based on a specified
rounding size, resulting in a new list that contains all the
combined weights from the positive and negative weight lists.
All three lists are then merged and spliced to have all the
combined weights at the top, while the rest of the uncombined
weights are at the bottom, as depicted in Figure 6.

Fig. 3 Weight distribution in the third convolutional layer

Fig. 4 Histogram of weight distribution

Fig. 5 Structure of the proposed accelerator

This work is funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC)

Fig. 6 Details of the weight sorting and grouping

B. Combing the weights for convolution
The process of combing the weights which was presented in

section 3 allows for the utilization of one subtraction as a
replacement for one multiplication and one addition operation
as illustrated in (1).

× + × = × () = (1)

The sorted weights will rely on the extracted position value,
which is generated during preprocessing part during the
inference stage. As for the uncombined weights, they will
simply use the regular CNN inference multiplications and
additions.

IV. RESULTS

The proposed method's performance enhancements were
evaluated in terms of power and area using a frequency of 1GHz
and the Design Compiler from Synopsys with TSMC 65nm
technology. All tested mathematical operations, including
multiplication, subtraction, and addition, adhered to the IEEE
758 design standard. The software implementation of the CNN
network was tested using LeNet-5 with MNIST data, employing
Numpy and Pytorch [25]. Table 1 illustrates the number of
additions, subtractions, and multiplications for different
rounding sizes. The table demonstrates that increasing the
rounding size results in a higher number of subtractions while
reducing both additions and multiplications. A larger step size
leads to a reduction in the total number of operations. Figure 7
illustrates a bar chart for the distribution of mathematical
operations for various rounding sizes..

Fig. 7 Mathematical operations distribution for different rounding
sizes

0

200000

400000

600000

800000

0

0
.0

0
0
1

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2

0
.0

2
5

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

Number of mathematical operations for
different rounding sizes

No. Adder No. Subtractor No. Multiplier

TABLE I. NUMBER OF ADDITION, SUBTRACTION, AND

MULTIPLICATION WITH DIFFERENT ROUNDING SIZES FOR LENET-5

Rounding
Size

Additions Subtractions Multiplications Total

0 405600 0 405600 811200

0.0001 399372 6228 399372 804972

0.005 313545 92055 313545 719145

0.01 288887 116713 288887 694487

0.015 276692 128908 276692 682292

0.02 265480 140120 265480 671080

0.025 259789 145811 259789 665389

0.05 242153 163447 242153 647753

0.1 233698 171902 233698 639298

0.15 228752 176848 228752 634352

0.2 225988 179612 225988 631588

0.25 223630 181970 223630 629230

0.3 222742 182858 222742 628342

Fig. 8 Accuracy-performance trade-off per rounding size

Figure 8 shows the relationship between rounding size,

power, area, and accuracy. The percentage on the left represents

the percentage of power and area savings, while the percentage

on the right represents the CNN classification accuracy, which

drops with a higher rounding size. As shown in Figure 8, the

accuracy drops dramatically after a step size of 0.05. Thus,

there is a trade-off between power, area saving, and accuracy.

With a step size of 0.05, the power can be reduced by 32.03%,

and the area can be reduced by 24.59%, resulting in an accuracy

loss of only 0.1%.

V. CONCLUSIONS

This paper presented a novel method to reduce the power
and area of CNN inference accelerators by replacing one
multiplication and one addition operation with one subtraction
operation. The proposed method allows for a significant
performance improvement in terms of power and area saving
with minimal accuracy loss. The paper presented the trade-off
that can be achieved between performance enhancement and
accuracy loss based on the selected rounding size. As shown in
the paper, with a rounding size of 0.05, a power reduction of
32.03% and an area reduction of 24.59% can be achieved with
only a 0.1% accuracy loss. The design allows for adjusting the
trade-off between gained performance enhancements and the
cost in accuracy loss.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification
with deep convolutional Neural Networks," Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[2] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring
mid-level image representations using convolutional neural networks,"
2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.
1717–1724, 2014.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
"Imagenet Large Scale Visual Recognition Challenge," International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[4] K. Kapse, "An overview of current deep learned rendering technologies,"
2021 7th International Conference on Advanced Computing and
Communication Systems (ICACCS), 2021.

[5] Hammad, Issam, and Kamal El-Sankary. "Using machine learning for
person identification through physical activities." 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2020.

[6] N. M. Dipu, S. A. Shohan, and K. M. Salam, "Deep learning based brain
tumor detection and classification," 2021 International Conference on
Intelligent Technologies (CONIT), 2021.

[7] Hammad, Issam, et al. "Using deep learning to automate the detection of
flaws in nuclear fuel channel UT scans." IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control 69.1 (2021): 323-329.

[8] J. Yangping, "Learning Semantic Image Representations at a Large
Scale", EECS Department University of California, Berkeley,
UCB/EECS-2014-93, 16 May 2014.

[9] T. Wu, X. Li, D. Zhou, N. Li, and J. Shi, "Differential evolution based
layer-wise weight pruning for compressing deep neural networks,"
Sensors, vol. 21, no. 3, p. 880, 2021.

[10] B. O. Ayinde, T. Inanc, and J. M. Zurada, "Redundant feature pruning for
accelerated inference in deep neural networks," Neural Networks, vol.
118, pp. 148–158, 2019.

[11] Ma, X., Yuan, G., Lin, S., Li, Z., Sun, H., & Wang, Y. (2019). ResNet
can be pruned 60×: Introducing network purification and unused path
removal (P-RM) after weight pruning. 2019 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH).

[12] I.-C. Lin, C.-H. Tang, C.-T. Ni, X. Hu, Y.-T. Shen, P.-Y. Chen, and
Y. Xie, "A novel, efficient implementation of a local binary
convolutional neural network," IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, no. 4, pp. 1413–1417, Apr. 2021.

[13] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li, and
H. Yang, "Sticker: An energy-efficient multi-sparsity compatible
accelerator for convolutional neural networks in 65-NM CMOS," IEEE
Journal of Solid-State Circuits, vol. 55, no. 2, pp. 465–477, Nov. 2019.

[14] I. Hammad and K. El-Sankary, "Impact of approximate multipliers on
VGG Deep Learning Network," IEEE Access, vol. 6, pp. 60438–60444,
Oct. 2018.

[15] I. Hammad, L. Li, K. El-Sankary, and W. M. Snelgrove, "CNN inference
using a preprocessing Precision Controller and approximate multipliers
with various precisions," IEEE Access, vol. 9, pp. 7220–7232, 2021.

[16] Ling, Li, et al., "Dual segmentation approximate multiplier," Electronics
Letters, vol. 57, no. 19, pp. 718–720, 2021.

[17] I. Hammad, K. El-Sankary, and J. Gu, "Deep learning training with
simulated approximate multipliers," 2019 IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2019.

[18] Hammad, Issam, Kamal El-Sankary, and Jason Gu. "A comparative study
on machine learning algorithms for the control of a wall following robot."
2019 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 2019.

[19] Wang, Shihao, et al. "Towards current-mode analog implementation of
deep neural network functions." 2022 20th IEEE Interregional NEWCAS
Conference (NEWCAS). IEEE, 2022.

[20] Hammad, Issam. "Deep Neural Network (DNN) Design: The Utilization
of Approximate Computing and Practical Considerations for Accuracy
Evaluation." (2021).

[21] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Jun. 2018.

[22] Hammad, Issam, and Kamal El-Sankary. "Practical considerations for
accuracy evaluation in sensor-based machine learning and deep learning."
Sensors 19.16 (2019): 3491.

[23] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in
neural information processing systems 25 (2012).

[24] Harris, Charles R., et al. "Array programming with NumPy." Nature
585.7825 (2020): 357-362.

[25] Paszke, Adam, et al. "Pytorch: An imperative style, high-performance
deep learning library." Advances in neural information processing
systems 32 (2019).

94.00%

95.00%

96.00%

97.00%

98.00%

0.00%

10.00%

20.00%

30.00%

40.00%

0
0.

00
01

0.
00

5
0.

01
0.

01
5

0.
02

0.
02

5
0.

05 0.
1

0.
15 0.

2
0.

25 0.
3

Ac
cu

ra
cy

Re
so

ur
ce

s s
av

in
g

pe
rc

en
t

Accuracy-performance trade-off per rounding
size

Area Reduction Power Reduction Accuracy

