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Abstract—The efficiency of cache-placement algorithms in
edge-caching networks depends on the accuracy of the content
request’s statistical model and the estimation method based on
the postulated model. This paper studies these two important
issues. First, we introduce a new model for content requests
in stationary environments. The common approach to model
the requests is through the Poisson stochastic process. However,
the Poisson stochastic process is not a very flexible model since
it cannot capture the correlations between contents. To resolve
this limitation, we instead introduce the Poisson Factor Analysis
(PFA) model for this purpose. In PFA, the correlations are
modeled through additional random variables embedded in a
low dimensional latent space. The correlations provide rich
information about the underlying statistical properties of content
requests which can be used for advanced cache-placement algo-
rithms. Secondly, to learn the model, we use Bayesian Learning,
an efficient framework which does not overfit. This is crucial in
edge-caching systems since only partial view of the entire request
set is available at the local cache and the learning method should
be able to estimate the content popularities without overfitting.
In the simulation results, we compare the performance of our
approach with the existing popularity estimation method.

Index Terms—Cache-placement, Stationary environment, Pois-
son Factor Analysis, Bayesian Learning

I. INTRODUCTION

The growth in mobile data traffic over past years is forecast
to continue excessively, reaching 47 percent from 2016 to
2021 [1]. This is mainly due to the increase in both the
number of devices and the demands for high-rate multime-
dia applications. The traditional network architectures cannot
accommodate such rapid data traffic growth which indicates
the need to develop new architectures. One of the most
promising approaches to solve the problem is edge-caching
which brings popular contents close to the end users [2], [3].
Since an important portion of data traffic in due to only a
small number of popular contents [2], caching these contents
can significantly reduce the traffic load on the backhaul links
and improve the users’ quality of service (QoS). Edge-caching
is also a promising technology to densify data traffic in Ultra-
Dense Networks (UDNs) [4].

In the last few years, extensive research has been conducted
on edge-caching networks with its majority focusing on study-
ing performance gain of content placement and transmission
strategies. An optimization problem for content placement
over multiple caches to reduce latency has been proposed
in [2]. In [5], physical layer features are considered in the con-
tent placement problem to minimize network cost subject to

user’s QoS requirements. Energy efficiency and time delivery
of edge-caching network have been analyzed and optimized
in [6]. Different coding strategies, intra and inter sessions,
have been proposed to improve caching performance [2], [7],
[8].

The main assumption of the aforementioned papers is
that the content popularity is known. However, in practice,
the popularity is unknown and has to be estimated. Several
works have investigated this issue. In [9], [10], the authors
designed a multi-armed-bandit (MAB) algorithm to estimate
the popularities. In [11], the content requests are modeled
by Poisson distributions and the popularities are estimated by
the Maximum Likelihood (ML) approach. They also studied
the required training time for obtaining a good estimate of the
popularities.

A fundamental challenge in content popularity estimation in
edge-caching networks is that a comparatively small number
of users request contents [12]. For example, as it is reported
in the paper, a base station cache typically may receive
0.1 requests/content/day. This together with the small size
of cells makes the task of content popularity estimation
challenging. Therefore, the issue is how to efficiently estimate
the content popularities from a very small number of request
samples (incomplete observation) to achieve a satisfactory
cache hit ratio. To deal with this problem, transfer-learning
(TL) algorithms are proposed in [11], [13] where social
network knowledge has been used as side-information to
enhance the popularity estimation accuracy.

However, there is one important issue that to the best of
our knowledge has been ignored in edge-caching literature.
All previous works assumed contents are uncorrelated. This
assumption is too unrealistic and in fact contents can be highly
correlated. Some of them may contain the same features, for
example in movie files, they may have the same genre. As
a result of this correlation, their requests follow a similar
pattern in temporal domain. Modeling the correlation among
contents can improve the accuracy of popularity estimation
and provide rich information about the underlying requests’
pattern which can also be exploited in the cache-placement
optimization problem.

In this paper, we study the content popularity estimation
problem in edge-caching wireless networks. The main contri-
butions of the paper include:
• We provide a probabilistic model, the PFA, for stationary

content requests which captures rich correlations between



contents. Our proposed model is general and can be
applied for any popularity law. In addition, PFA is
an efficient method for dimensionality reduction which
allows us to model the requests of a large number of
correlated contents.

• We learn the parameters of the PFA in a Bayesian
manner. Due to few request samples in the local caches,
Bayesian learning provides a powerful framework to
avoid overfitting.

The rest of the paper is organized as follows: the system
model and problem statement are described in Section II. In
Section III, the PFA model for content requests is presented.
In Section IV, we apply Bayesian learning for popularity
inference. Finally, Section V shows the simulation results and
Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network consisting of a base station
(BS) serving U mobile users. The BS is equipped with a finite
cache memory of size C, and is connected to the content
server containing M files in total. At each time slot1, each
user independently requests a content (or contents)2 from
the set F = {f1, ..., fM}. To alleviate the traffic burden on
backhaul links, the most popular contents are cached during
off-peak periods (e.g. nights). The requested content will be
served directly depending on the availability of the content
in the local cache. Moreover, we assume that these requests
are generated from a stationary distribution whose statistical
properties do not change over time (we can assume it is
stationary over short time intervals, e.g. a few days).

We define df [Tn] = [df1 [Tn] , ..., dfM [Tn]] to be the
request vector where dfm [Tn] is the total number of requests
for file m during time slot n with duration Tn. For simplicity,
we assume that Tn = Tn′ . Therefore, we can drop T and
show the request vector by df,n = [df1,n, ..., dfM ,n]. Also, we
assume for n 6= n′ the requests are statistically independent
random variables. In the literature, the most common approach
to model requests is based on the Poison stochastic process
and the ML approach to estimate the means (popularities)
[11] as:

rm =

N∑
n=1

dfm,n

N
, ∀m = 1, ...,M (1)

where N in the total number of observations during the
training period. This approach has two important defects.
Firstly, it cannot model the correlations between contents.
Secondly, ML suffers from severe overfitting especially when
the training set has a few samples. In the next sections, we
present our approach to deal with these issues.

III. PROBABILISTIC MODEL FOR CONTENT REQUESTS

In order to capture the correlation between contents, a
multivariate distribution whose support is the natural number

1The time slots can be hours, days, etc.
2There is no limitation on the number of requests by a user at a time slot

set is needed. The Poisson-Normal (PN) distribution is a
mixture distribution that was proposed in [14] for count
data to capture their correlations. In the PN distribution, it is
assumed that the natural parameter of Poisson data is a random
variable following a normal distribution. In this context, the
request generation process based on the PN model is given
by:

yn ∼ N (m,Ω) , ∀n = 1, ..., N

dfmn ∼ Poi (ynm) , ∀n = 1, ..., N,∀m = 1, ...,M (2)

where N (m,Ω) indicates an M -dimensional multivariate
Normal (MVN) distribution with mean m and covariance
matrix Ω and Poi (ynm) represents a Poisson distribution with
natural parameter ynm. Note that the rate (mean) of Poisson
is obtained by exponentiating its natural parameter. In model
(2), the correlation among contents is captured by a Normal
random variable yn which is also known as latent variable.

However, modeling requests by the PN distribution in high
dimensions (when the number of contents is too large) can be
quite challenging. This issue can be remedied by the expo-
nential family factor analysis framework [15]. The assumption
made is that the natural parameters of the exponential family
distribution of the data can be described by linear combination
of a lower dimensional, i.e. K, latent random variables. By
adapting exponential family factor analysis to Poisson data,
we obtain the PFA as a special case, where the request vector
at time slot n is modeled as:

dfm,n ∼ Poi
(
wT
mxn

)
,∀m = 1, ...,M (3)

where wm ∈ RM×1 is a fixed parameter and it is called
a factor loading vector and xn ∈ RK×1 is a latent random
variable and it is assumed to follow an MVN distribution:

xn ∼ N (µ,Σ) . (4)

Note that PFA can be considered as a means of reducing
the dimensionality of the PN distribution. For simplicity, we
can also assume that latent variables xn are uncorrelated.
Therefore, Σ is a diagonal matrix with elements σ2

k. Modeling
the latent variables like this allows us to capture both positive
and negative correlations. The mean and the correlation can
be easily derived as:

rm = E {dfm} = e[Wµ]m+ 1
2 [WΣWT ]

mm

Cov
(
dfm , dfm′

)
= rmrm′

[
e[WΣWT ]

mm′ − 1
]

(5)

where W =
[
wT

1 , ...,w
T
M

]
and it is called the factor load-

ing matrix. Eq. (3) and (4) build a probabilistic model for
request generation. Now, we aim to learn this model which is
described in the next section.

IV. BAYESIAN LEARNING

A common method to estimate the parameters of a prob-
abilistic model is based on ML. However, as we mentioned,
ML overfits and has a poor performance. In this section, we
use Bayesian techniques to estimate the parameters of PFA.



The inference of all unknown variables of the PFA model is
given by the Bayes rule as:

p
(
W,µ,Σ, {xn}Nn=1 |D

)
=

p
(
D|W, {xn}Nn=1

)
p
(
{xn}Nn=1 |µ,Σ

)
p (W) p (µ) p (Σ)∫

p
(
D|W, {xn}Nn=1

)
p
(
{xn}Nn=1|µ,Σ

)
p (W) p (µ) p (Σ) dµdΣdxn

(6)

where D = {df,n}Nn=1 contains the request observations
during N training time slots. p (W), p (µ) and p (Σ) are
prior distributions that summarize the initial knowledge about
the parameters, p

(
D|W, {xn}Nn=1

)
and p

(
{xn}Nn=1 |µ,Σ

)
consist the likelihood function and p

(
W,µ,Σ, {xn}Nn=1 |D

)
is the posterior distribution which shows the updated belief
about all unknown variables in the model after receiving the
observation set. The denominator is a normalization constant.

Common choices for priors of µ and W are:

µ ∼ N (µ0,Σ0)

wm ∼ N (0,Λ) ,∀m = 1, ...M (7)

where Λ is a diagonal matrix with elements λk. We use
Half-Cauchy for the prior of variances σ2

k. As it is discussed
in [16], Half-Cauchy distribution performs well in a training
set with small number of samples as a non-informative prior.
Therefore, we assume that:

σ2
k ∼ C+ (0, A) ,∀k = 1, ...,K (8)

where A is the scale parameter of Half-Cauchy distribution.
The form of the prior of the factor load matrix is very
important and needs special attention. One important issue
is the choice of a suitable K which affects the flexibility of
the model and the computational complexity of the inference
part. As discussed in [17], to specify a proper dimension
for the latent space without discrete choice model e.g. cross
validation, another layer of prior should be used for the
variance of each column of the factor loading matrix. The
magnitude of these variances reveal important characteristics
about the columns. A small value of λk shows that the
corresponding column is irrelevant and vice versa. Therefore,
the value of λk performs as a sparsity promoting term that
acts independently on each column. Hence, similar with (8),
we use Half-Cauchy distribution with scale parameter B as a
prior for the variance of each column,

λk ∼ C+ (0, B),∀k = 1, ...,K (9)

Half-Cauchy distribution has also good properties near zero
which make it suitable as a sparsity encouraging distribution.
This issue is investigated in [18].

Fig.1 shows the graphical representation of the Bayesian
model. The shaded node represents the observed requests and
the plates represent multiple samples of random variables.
Additionally, the unshaded circle nodes indicate unknown
quantities and the squares show the deterministic parameters
of the model.

1,...,n N

Fig. 1: Graphical representation of our Bayesian model

A. Inference

The complete Bayesian inference problem is given by

p
(
W, {xn}Nn=1 , µ,Σ,Λ|D

)
=

1

Z

N∏
n=1

p (dfn|W,xn)p (xn|µ,Σ) p (µ)

×
K∏
k=1

p
(
σ2
k

)
×

M∏
m=1

p (wm|Λ)×
K∏
k=1

p (λk) (10)

where Z is a normalization constant. Unfortunately, the
normalization constant is intractable to compute and there
is no closed-form expression for the posterior distribution.
So, instead, we use a Monte Carlo Markov Chain (MCMC)
method to approximate the posterior distribution. Specifically,
we use the Hamiltonian Monte Carlo (HMC) method which
has been one of the most successful MCMC methods to
sample from an unnormalized distribution. Now, we give a
brief description of the HMC. The complete description can
be found in [19].

HMC is based on the simulation of Hamiltonian dynamics
as a method to probe the sample space of a distribution.
It combines gradient information of the desired distribution
p (θ), with θ ∈ RD×1 and auxiliary variables, p ∈ RD×1,
with density p (p) = N (0,G). The negative joint log-
likelihood is given by:

H (θ,p) = ψ (θ) +
1

2
log (2π)

D
G +

1

2
pTGp (11)

where ψ (θ) is the negative log of the unnormalized p (θ). G
is a mass matrix and usually it is assumed to be identity. The
physical analogy of (11) is the Hamiltonian dynamics which
describe the sum of the potential energy (the first term) and
the kinetic energy (the last two terms).

Hamiltonian dynamics are simulated by discretizing their
continuous analogue equations using the leapfrog method.
This discretization has two parameters, number of leapfrog



steps L and step-size ε. The full description of a movement
in HMC which is from a current state (sample) to a new state
is depicted in Alg.1. HMC is only applicable for differentiable
and unconstrained variables. However, in (10) there are some
variables, Σ,Λ that must be positive. To handle this issue,
we exploit the exponential-transformation where instead of
σ2
k, we use τk = log(σ2

k) with τk serving as an unconstrained
auxiliary variable. The same approach is used for λk where
ρk = log(λk) is considered. Note that to use these transfor-
mations, we also need to compute the determinant Jacobian
as a result of the change of random variables.

As a result of some simple mathematical operations, the
negative log of the unnormalized posterior distribution is given
by:

− log p
(
W, {xn}Nn=1 , µ,Σ,Λ|D

)
=

6∑
i=1

Ui (12)

where:

U1 =

M∑
m=1

N∑
n=1

−dnm
(
wT
mxn

)
+ ew

T
mxn

U2 =
N

2

K∑
k=1

τk +

N∑
n=1

K∑
k=1

(xnk − µk) e−τk
2

U3 = − log p (µ) =
(µ− µ0)Σ−10 (µ− µ0)

2

U4 =

K∑
k=1

−τk + log

(
1 +

e2τk

A2

)

U5 =
M

2

K∑
k=1

ρk +

M∑
m=1

K∑
k=1

(wmk)
2
e−ρk

2

U6 =
∑
k

−ρk + log

(
1 +

e2ρk

B2

)
The inputs of HMC are the current sample
θ = [w1, ....,wM ,x1, ...,xN ,µ, τ1, ..., τK , ρ1, ..., ρK ] ∈
R(MK+NK+3K)×1, the number of leap frog L, the step size
ε and the gradient of (12) which can be easily computed.
The output is a sample from the unnormalized posterior
distribution.

To get independent MCMC samples, the first portion of
the generated samples is usually thrown away because they
are correlated. This can also be checked by their autocorre-
lation. After collecting enough of them, we can compute the
marginal distributions of all quantities and also any function
of them. For example, the mean of content popularities can
be calculated as:

E {rm} =
1

S′

S′∑
s=1

e
[Wsµs]m+ 1

2 [WsΣsWs
T ]

m,m , ∀m = 1, ...,M

(13)
where S′ is the effective number of MCMC samples.

Algorithm 1: The HMC sampling algorithm [19]
Input: θ1, ε, L,∇θψ (θ,) ,G
Output: θ
/* draw a sample from p (θ) */

1 p1 ∼ N (0,G);
2 Compute H (θ1,p1);
3 for l← 1 to L do
4 p← pl − ε∇ψ (θl);
5 θl+1 = θl + εG−1p;
6 pl+1 = p− ε∇ψ (θl+1);
7 end
8 compute dH = H (θL+1,pL+1)−H (θ1,p1);
9 if rand () < e−dH then

10 θ = θL+1; /* accept */
11 else
12 θ = θ1; /* reject */
13 end

V. SIMULATION RESULTS

In this section, we present our simulation results to show
the performance of the proposed probabilistic content request
model. To compare our results, we used the ML independent
Poisson approach [11] as a benchmark. Furthermore, we used
the MovieLens 10M DataSet [20] which contains 10 million
ratings for 10,000 movies by 72,000 users. We assumed that
each rating corresponds to one request and also we scrambled
the whole data set to satisfy our requirement for stationarity.
Each vector request sample corresponds to the number of
requests observed in one hour. Additionally, we set ε = .001
and L = 100 for the HMC technique and the MCMC was
run for 15000 samples where the last 5000 samples were
considered as the effective samples. For the dimensions of the
latent space, we set K = 3 which was found to be sufficient
for the simulation parameters.

First, we compare the PFA based model with the ML
independent Poisson approach in terms of model accuracy
where the log predictive density or the log-likelihood is used
as a metric [21] which shows how well a probabilistic model
fits to the data. The size of the training set, N , is 10 request
vector samples and the movie contents were randomly selected
from the data set. Fig.2 represents the log-likelihood values
of the Bayesian PFA and the ML independent Poisson models
versus the number of movie contents. As we can see, there is
a huge gap between the two models especially as the number
of contents increases. This shows that the ML independent
Poisson is a poor model for modeling the content requests.

In the next part, we compare the performance of the
proposed PFA model with respect to the ML independent
Poisson case in terms of Cache Hit Ratio (CHR). Here, we
randomly chose M = 25 movie contents with vector request
sample size of 100 from the data set. From these samples, we
choose 10 for the training set and the rest for testing. Because
the dataset does not provide information about the size of the
movies, we randomly and uniformly assign a size for each



movie from the interval (0, 100). As a cache placement rule,
we use the traditional CHR maximization policy:

max
x

xTE {r}

s.t : xT s ≤ C
x ∈ {0, 1}M×1 (14)

where x is a binary vector that determines which contents
should be cached and s is a vector which contains the size
of the contents. As commonly utilized in the literature, the
objective function is the expected value of the CHR and
the constraint denotes the cache memory size limit. This
optimization problem is combinatorial and computationally
intense to solve. However, we can efficiently solve it by
relaxing the constraint x ∈ {0, 1}M×1 with x ∈ [0, 1]

M×1

which turns the problem into a linear programming and as
a result easy to solve. Then, we cache the contents based
on the rounded optimized cache policy vector x. The CHR is
computed based on the observed requests of the test set. Fig.3
shows the CHR versus different cache size values C. As it
can be seen, the proposed model performs better than the ML
independent Poisson one for the entire of cache capacity. This
is also a strong indicator that the ML independent Poisson
model severely overfits.

VI. CONCLUSIONS

In this paper, we investigated an alternative model for
modeling the content requests and estimating their popularity.
We proposed a flexible PFA based model that can capture
the correlation between contents. Then, we utilized Bayesian
learning to obtain the parameters of the PFA model and as
a result the content popularities. Bayesian learning does not
overfit and can be considered as an efficient learning method
in edge-caching system where overfitting is a big challenge
due to small size of request samples. In the simulation results,
we showed that the Bayesian PFA structure significantly
outperforms the ML independent Poisson one in terms of
CHR. Moreover, we assessed the accuracy of the PFA and the
ML independent Poisson models in terms of how well they
fit to the data set. For this purpose, we used the log predictive
density or log-likelihood as a metric and it was observed that
the Bayesian PFA model fits significantly better to the data
than the ML independent Poisson one.
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