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Abstract—Improving the security of mobile phones is one of the
crucial points required to assure the personal information and the
operations that can be performed from them. This article presents
an authentication procedure consisting of verifying the identity
of people by making a signature in the air while holding the
mobile phone. Different temporal distance algorithms have been
proposed and evaluated through a database of 50 people making
their signatures in the air and 6 people trying to forge each of
them by studying their records. Approaches based on DTW have
obtained better EER results than those based on LCS (2.80%
against 3.34%). Besides, different signal normalization methods
have been evaluated not finding any with better EER results that
when no normalization has carried out.

Index Terms—In-air signature, time series distances, Longest
Common Subsequence, Dynamic Time Warping, mobile biomet-
rics, gestures.

I. INTRODUCTION

At present, mobile phones are very powerful devices where
people may perform a lot of operations that may require the
verification of their identity, such as e-commerce applications.
In addition to this, mobile phones store a lot of personal
information that should not be revealed to anyone except the
owner of the phone. Therefore, mobile phones are nowadays
very useful devices, but they require security in order to
keep safe the information and the operations performed with
them. In this context, biometrics could help complementing or
substituting PIN-code security.

There are many works including biometric authentication
techniques in mobile devices to enhance their security [1].
Many different biometric characteristics are used in this aim.
In [2] and [3] people are authenticated by the recognition
of their face through the camera of a mobile phone. In [4]
and [5] authentication is provided by means of iris and in [6]
the characteristic biometric features are voice and fingerprint.
In addition to this, in [7] users are recognized by keystroke
analysis.

This article is based on authenticating people by making
their signature in the air while holding their mobile phone in
their hand. This biometric technique has similarities with hand-
written signature as well as gesture recognition approaches.

Users enroll in their mobile phone by making three times
their signature in the air. Then some operations are performed
in order to obtain some values that are included in the

user template. The verification of the identity of the user
will be achieved when he/she repeats his/her in-air signature
accurately.

The only requirement of mobile phones to be valid to
be used in this authentication technique is that they must
embed an accelerometer. In this manner, when users make
their signature in the air, the accelerometers would obtain the
acceleration values of the movement at a sampling rate of 50
Hz. The analysis of these temporal signals is carried out using
algorithms that calculate temporal distances. Actually, in this
article, different approaches of Longest Common Subsequence
and Dynamic Time Warping algorithms are proposed and
evaluated.

According to this, Section II introduces some of the related
work this article is based on. Then, Section III explains the
temporal distance analysis approach used to compare different
acceleration signals and also the overall authentication system.
In addition to this, the different normalization techniques
evaluated in this article are also described in this Section.
Next, the experimental procedure of this article is detailed
in Section IV containing the characteristics of the database
and the metrics used to evaluate all the approaches of the
article. The results of these experiments are shown in Section
V. Finally, the conclusions and future work are presented in
Section VI.

II. RELATED WORK

In this article, two temporal series distances (Longest Com-
mon Subsequence, LCS and Dynamic Time Warping, DTW)
are studied to analyze the acceleration signals when making
an in-air signature holding a mobile device. Both signals are
based on dynamic programming [8], as a method to solve the
optimal alignment between two signals.

Dynamic Time Warping [9] DTW finds the optimal align-
ment by minimizing the Euclidean distance between two
signals. Many works utilizing DTW algorithms to solve pattern
recognition problems have been carried out [10].

This algorithm has many different approaches, such as
Derivative DTW [11] or Fast DTW [12].

Furthermore, Dynamic Time Warping has been also previ-
ously used in biometrics, specially in handwritten signature



verification [13], [14] as well as in gesture recognition [15],
[16].

On the other hand, Longest Common Subsequence algo-
rithm looks for the optimal alignment by maximizing the
length of the common subsequence of two signals [17], [18].
There are also quite different approaches of applying LCS
algorithms, such a constrained LCS [19] or Fast LCS [20].

As well as DTW, LCS has been also applied in the biometric
[21] and gesture recognition fields [22], [23].

Besides, the authors have previously developed some works
analyzing in-air signatures by means of a generalized LCS
algorithm [24] with different modifications [25] and different
punctuation scores [26].

III. DESCRIPTION OF THE IN AIR SIGNATURE
AUTHENTICATION SYSTEM

This section presents the following subsections:

o Normalization techniques, where the different normaliza-
tion approaches studied in this article are explained in
order to evaluate to what extent is useful to normalize
the acceleration signals before analyzing them.

o Temporal distance analysis approach, where it is de-
scribed how two acceleration signals are compared and
how the score that quantifies the differences of the signals
is obtained. All the algorithms assessed in the article are
described.

o Comparison of repetitions of in-air signatures, where how
to compare two signature samples is detailed. In the
previous subsection, the analysis was carried out only
through two signals. However, as each signature is made
up of three signals (one from each axis), how to fuse the
scores of all of them is presented in this Section.

o Complete verification system, where how the overall
system works is described.

A. Normalization techniques

The accelerometers utilized in this article provided the
acceleration value at a sampling rate of 50 Hz and within a
range of [-2.5g, 2.5g]. According to this, this article evaluates
whether the performance of different algorithms improves or
worsens when the acceleration signals have been previously
normalized.

Four different normalization techniques are assessed:

e No normalization. The signals obtained for the ac-
celerometer are no modified at all.

e Maximum normalization. Each acceleration signal is di-
vided by 2.5 in order to normalize all the signals in the
range [-1,1].

o Maximum on-signal normalization. Each acceleration sig-
nal is divided by its maximum absolute value.

o Maximum-average normalization. Each acceleration sig-
nal is first subtracted by the average of the signal,
and afterwards, divided by its maximum absolute value.
According to this, the signals are centered around O and
belong to the range [-1,-1]

Results for each normalization procedure and each temporal
distance are presented in Section V.

B. Temporal distance analysis approach

A pair of acceleration signals are compared utilizing the
algorithms described below. The aim of these algorithms is
provide a metric in order to quantify how different are the
signals. From this metric, it can be deducted whether the
signals come from two repetitions of a gesture made by the
same user, since it is assumed and proved later only authentic
users are able to repeat accurately their signatures in the air.

Different algorithms to calculate distances of temporal sig-
nals are presented and evaluated. These algorithms are divided
in two approaches:

¢ In the first two algorithms, the metric is calculated from

the values of a score matrix filled by a equation. The first
one tries to maximize the similarity of the signals (LCS)
whereas the second minimizes their differences (DTW).

e The second two algorithms (ELCS and EDTW) utilized

the previous algorithms to align the signals, and then the
metric value is calculated from the Euclidean distance of
the already aligned signals.

1) Longest Common Subsequence: The Longest Common
Subsequence (LCS) algorithm looks for the longest subse-
quence in common of the two sequences that are compared.
This algorithm finds the optimal alignment of two sequences
with less edition distance, which corresponds to the longest
common subsequence of both signals. The length of the LCS
is the metric provided by the algorithm. The longest the LCS
the more similar the sequences in comparison.

Different approaches based on Longest Common Subse-
quence algorithm have been developed to make this algorithm
appropriate for acceleration signals, in which each value of
the signal may have infinite values, as the accelerations when
making a movement in the air are continuous signals. (In fact,
because of sampling, the possible values of accelerations are
not infinite but very large).

According to this, it is not trivial to define when two
acceleration signal points have the same value. Different
distances have been tried in order to describe points belonging
to the LCS of two acceleration signals:

o Absolute value: Two points of the signals are considered

the same when |a; — b;| < €.

o Euclidean value: Two points of the signals belong to a

common subsequence if (a; — b;)? < e.

In addition to this, a different approach has been developed,
including the distance to describe when two points belongs to
a common subsequence inside the LCS algorithm.

Therefore, the Longest Common Subsequence of signals
v(i) and w(j) are obtained following Eq.1:

Sij-1+h
Si—1,j—1+A (H
Si—i,j + h
In this Equation, A is a function that calculates how
different are the points v; and w; following Eq.2:

Si,5 = mMax



(v — w;)?
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In Eq.1 and 2, there are two constants whose values have
already been optimized in other works [26].

The approach based on A distance provides better perfor-
mance results than the others, so it is the one whose results
are presented. In this algorithm, the value s(L;, L;) is the
equivalent to the Longest Common Subsequence metric when
sequences with finite possible values are compared. (L; and
L; are the length of the signals which are compared).

The higher the value s(L;, L;), the more similar the signals
and vice versa.

2) Dynamic Time Warping (DTW): Dynamic Time Warping
is also an algorithm that provides a metric of the differences
of two temporal signals. In this case, DTW tries to obtain
the alignment of the signals with minimal difference between
them.

The Dynamic Time Warping of signals v(i) and w(j)
consists on calculating the score matrix S following Eq.3:

A=—

Sij—1+d
Si—1,j-1+d 3)
Si*i,j + d

84,4 = min

In this equation, d is the Euclidean distance of the points
of the signals corresponding to the value of the score matrix
84,5. It is obtained following Eq.4:

d = (7)1‘ — wj)Q (4)

The value s(L;, L;) of the score matrix S is the metric of
the algorithm. In this case, and opposite to LCS, the lower
s(L;, Lj) the more similar two signals are.

In addition to this, the resulting value of the algorithm has
been divided by the average of the length of the signals.

3) Euclidean Longest Common Subsequence (ELCS): The
LCS algorithm can be also be utilized to align the signals in
comparison. From the score matrix .S, the optimal alignment
of both signals can be effortless deducted.

When filling matrix S, a second matrix 7" should be filled at
the same time, storing whether the maximum value of Eq.1 has
been obtained from the first expression (horizontal movement),
the second (diagonal) or the third (vertical).

The optimal path is obtained following the movements in
T to join T(L;,L;) and T'(1,1). A vertical movement in
the matrix means repeating the corresponding value of v(i)
(deletion in v) whereas an horizontal implies repeating the
value of w(y).

Once the alignment is made, Euclidean distance of the
aligned signals is calculated as follows in Eq.5:

L/
E=> (v, — w;)? (5)
k=1

In Eq.5, v" and w’ stand for the aligned signals, and L’ for
the average of the lengths of the signals after the alignment.

Notice that when aligning, the length of the signals is modified
because of the repetitions of the values. Indeed, the more
similar the signals the longest the common subsequence, so in
very similar signals very few corrections are needed and the
length of the aligned signals would keep close to the initial
signals. This behaviour is the opposite when signals are quite
different: a very large number of correction should be made to
align the signals and the length of the signals would increase
as well.

The resulting value of this approach is divided by the aver-
age of the length of the initial signals, as better performance
results are obtained.

As a result of this algorithm, a comparison value is obtained.
The lower it is, the more similar the signals are and vice versa.

4) Euclidean Dynamic Time Warping (EDTW): The DTW
algorithm can also be used to align the signals in an equivalent
manner than in ELCS. In this case, the optimal path obtained is
the one where the Euclidean distance of the signals is minimal.

In spite of utilizing the final value of the path, this approach
proposes to make the alignment and after that calculate the
Euclidean distance following previous Eq.5.

The resulting value is also divided by the average of the
length of the initial signals. The lower this value is, the more
similar the signals are and vice versa.

C. Comparison of repetitions of in-air signatures

In the previous subsection, four different algorithms have
been introduced to obtain a score to quantify how different
two temporal signals are. As in-air signatures are made up of
three different signals (one for each axis), different approaches
might be proposed to fuse these signals or the scores obtained
on a separate analysis of all of them.

In this work we propose to compare separately the signals
of each axis, and then, calculate the average of the scores
obtained on each comparison. Consequently, the procedure
will come up with a unique score value that quantifies how
similar two in-air signatures are.

D. Complete verification system

Users enrolling in the system repeat three times their
signature in the air. Afterwards, each pair of in-air signatures
is analyzed, obtaining three score values. The average of the
comparison values of each pair of the three performances of
gestures at enrollment is symbolize as . This value is stored
with the signals of the three repetitions of the in air signature
as the template of the user.

Users already enrolled desiring to access the system should
carry out once their in air signature. Then, this sample is
compared with the three signatures performed at enrolling
phase, obtaining three comparison values.

U value is calculated as the average of these scores. The
score value W stands for the difference between the signature
made at accessing phase in respect to the samples at enrolling
phase. The lower it is, the most similar the performance of the
signature is in relation to the template.



If Equation 6 is accomplished (for DTW, ELCS and EDTW
approaches), the user would access the system. Otherwise,
he/she would be rejected. Obviously, the higher the threshold
0 is, the more falsification attempts would forge the system
but the less original users would be rejected, and vice versa.

Y _y ©)
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However, in LCS approach, since a high ¥ means a very
similar signature, the sign of the inequation to grant or deny
access is different, following Eq. 7:
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1

1V. EXPERIMENTAL PROCEDURE
A. Database

The experimental work of this article has been developed
from a private database of in-air signatures made up of the
samples of 50 people who have performed their signature
in the air while holding a mobile device in their hand. This
mobile device included a 3-D accelerometer programmed to
obtained the acceleration values on each axis at a sampling
rate of 50 Hz.

Each user made their signature seven times in front of a
video camera. From the study of these recordings, six different
people tried to imitate each of the authentic in-air signatures.
Each forger made 5 attempts on each real in-air signature.

Summarizing, the database consists of 250 authentic sam-
ples (50 users, 7 times) and 2100 real falsification attempts
(50 users, 5 times, 6 impostors).

B. Performance metric

The performance of the algorithms previously introduced
is evaluated twofold, presenting the Equal Error Rate and
the Receiver Operating Characteristic (ROC) of each of the
algorithms proposed, when considering all the samples in the
database already described.

The Equal Error Rate [27] is obtained as follows:

o Template Creation: The template of each user is made up
of three of their authentic in-air signature samples. Then,
W 1s calculated.

o Analysis of authentic samples: The remaining four real
samples of each user are used to evaluate whether the
system grants or denies access to the authentic users. For
each authentic sample, ¥/u is obtained when comparing
the accessing gesture with the three gestures of the user
template.

o Analysis of falsified samples: All the falsifying attempts
trying to access the system will be used to evaluate
whether the system is able or not to reject impostors.
For each falsification trial, ¥/u is also obtained.

« Obtention of False Acceptance Rate (FFAR(¢)) and False
Rejection Rate (FRR(0)): FAR(0) and FRR(0) are
obtained in terms of # as the % of original samples that
are over 0 in case of False Rejection Rates and the %

TABLE I
EER RESULTS WHEN NO NORMALIZATION IS MADE.

Algorithm | EER (%)
LCS 7.11
DTW 3.23
ELCS 3.34
EDTW 2.80

of falsified samples that are under 6 in case of False
Acceptance Rates. FAR(f) and FRR(6) are obtained
for values of 6 from 0 to maz(¥/u) in 10000 steps.

« Obtention of Equal Error Rate (EER): EER is defined as
the intersection value of the False Acceptance Rate and
the False Rejection Rate.

Additionally, the performance of the biometric systems may
be also represented by a Receiver Operating Characteristic
figure (ROC) [28], where axis X represents False Matching
Rate (FMR) and axis Y True Matching Rate (TMR). When
Failure-to-acquire (FTA) rate is O (as in the experiments
presented in this article, since the samples evaluated come
from a closed database), it is verified that FMR=FAR and
FNMR=FRR. Besides, FNMR is defined as FNMR=1-TMR.
Consequently, when FTA=0, it is equivalent to represent a
ROC figure within FMR vs. TMR and FAR vs. (1-FRR).
Moreover, Equal Error Rate can be also deducted from the
intersection of the ROC curve with the line where FAR=1-
FRR. Actually, this point corresponds to 1 — EER. Therefore,
a ROC figure represents the errors of the system when FRR
or FAR are fixed.

V. RESULTS

The results of the analysis of the samples in the database
utilizing the algorithms previously described are presented in
this Section. These results are separated by the technique used
to normalize the signals detailed in Section III-A.

Each normalization technique results will include the Equal
Error Rate obtained as well as the ROC curve when analyzing
the signals with the LCS, DTW, ELCS and EDTW algorithms.

1) “No normalization”: When the acceleration signals of
the performance of the signatures are not modified, the EER
in Table I are obtained.

From this table, some conclusions can be extracted:

o Algorithms based on DTW obtain better results than those
based on LCS.

o Euclidean approach improves the results in respect to
obtaining the distance directly from the algorithms in both
cases.

o An optimal 2.80 % of EER is obtained.

In addition to this, Figure 1 represents the ROC curves of
applying any of the algorithms previously presented.

2) “Maximum normalization”: When each acceleration
signal is divided by 2.5 the signals are normalized in the range
[-1,1], and the EER results in Table II are obtained for each
distance.



ROC curves when no normalization is made.

Fig. 1.
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TABLE II
EER RESULTS WHEN “MAXIMUM NORMALIZATION” IS MADE.
Algorithm | EER (%)
LCS 12.76
DTW 341
ELCS 6.91
EDTW 2.86
TABLE III
EER RESULTS WHEN “MAXIMUM ON-SIGNAL NORMALIZATION” IS
MADE.
Algorithm | EER (%)
LCS 13.18
DTW 3.23
ELCS 7.73
EDTW 2.80

From the results of this table, it can be deducted that
“Maximum normalization” does not improve the results of
no normalization approach. Actually, algorithms based on
LCS present significantly worse EER values. However, DTW
algorithms do not worsen too much (EER of EDTW is 0.06%
more and EER of DTW is 0.18% more).

Besides, The ROC curves of the behaviour of the perfor-
mance for each algorithm are presented in Figure 2.

3) “Maximum on-signal normalization”: This normaliza-
tion strategy divides each acceleration signal by its maximum
absolute value, so not only all the signals are normalized in
the range [-1,1] but also, the maximum absolute value of the
signal is 1. Following this procedure, the EER in Table III are
obtained.

As it can be inferred from the results of this table, “Max-
imum on-signal normalization” does not improve neither the

Fig. 2. ROC curves when “Maximum normalization” is made.
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results of no normalization approach. As well as in “Maximum
normalization”, algorithms based on LCS present significantly
worse EER values. However, utilizing DTW algorithms, the
same EER results are obtained than when no normalization is
performed.

ROC curves are shown in Figure 3.

Fig. 3. ROC curves when “Maximum on-signal normalization” is made.
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4) “Maximum-average normalization”: In this case, the
average of each signal is first subtracted, and then, the signal
is divided by its maximum absolute value. Consequently, the
signals are centered around O and belong to the range [-1,-1].
When this normalization method is applied, the EER values
in Table IV are resulted.

The results of this Table mean that this method of nor-
malization is absolutely not recommended for the analysis
of acceleration signals with the temporal distance algorithms



TABLE IV
EER RESULTS WHEN “MAXIMUM AVERAGE NORMALIZATION” IS MADE.

Algorithm | EER (%)
LCS 49.46
DTW 48.09
ELCS 47.25
EDTW 48.15

presented in this work, due to when normalization is performed
applying this procedure, values of signals are deeply modified,
so alignment algorithms do not work properly.

Finally, Figure 4 symbolizes the ROC curves of each of
the algorithms presented when applying this normalization
procedure.

Fig. 4. ROC curves when “Maximum-average normalization” is made.
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VI. CONCLUSION

In this article a verification technique for mobiles embed-
ding an accelerometer has been presented. Users are authenti-
cated by making their signature in the air while holding their
mobile phone.

Several temporal signal analysis approaches have been intro-
duced based on Longest Common Subsequence and Dynamic
Time Warping algorithms. These algorithms have been adapted
to acceleration signals, and also, a modification of them has
been proposed based on perform an optimal alignment and
calculate the Euclidean distance of the aligned signals.

In addition to this, four different signal normalization meth-
ods have been proposed and evaluated: No normalization,
“Maximum normalization”, “Maximum on-signal normaliza-
tion” and “Maximum-average normalization”.

The four distance algorithms of temporal signals proposed
and the four normalization strategies described have been
assessed analyzing a database of 50 users who have performed

their signature in the air in front of a video camera. From
these records, each signature has been tried to be forged by
six different people.

The evaluation of each algorithm and normalization method
has been performed calculating the Equal Error Rate and
presenting the Receiver Operating Characteristic curves.

From these experiments the following ideas are concluded:

e Algorithms based on Dynamic Time Warping distances
offer a higher performance in respect to those based on
Longest Common Subsequences.

o Normalization of the signals is not required since none
of the strategies studied improves the results of when no
normalization is performed.

Future works will be focused in studying different multi-
biometric architectures in order to fuse the information of the
three axis in an optimal manner.
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