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Abstract— We study the problem of path planning with soft
homology constraints on a surface topologically equivalent to
a disk with punctures. Specifically, we propose an algorithm,
named H∗, for the efficient computation of a path homologous
to a user-provided reference path. We show that the algorithm
can generate a suite of paths in distinct homology classes, from
the overall shortest path to the shortest path homologous to
the reference path, ordered both by path length and similarity
to the reference path. Rollout is shown to improve the results
produced by the algorithm. Experiments demonstrate that H∗

can be an efficient alternative to optimal methods, especially
for configuration spaces with many obstacles.

I. INTRODUCTION

Motion planning algorithms are ubiquitous in robotics,
serving as the bridge between high-level task specifications
and the low-level instructions that completion of the task
necessitates [1]. Whether due to the intrinsic properties of a
robot or the presence of obstacles in an environment, most
real-world configuration spaces in motion planning problems
have non-trivial topology [2]. Paths in a configuration space
with non-trivial topology can be partitioned into equivalence
classes by topological equivalence relations, namely homo-
topy and homology. Topology-constrained path planning has
proven to be useful in several robotics applications, including
multi-agent coordination [3], motion planning in dynamic
environments [4], and guided AUV navigation [5].

As previously mentioned, homotopy and homology can
define equivalence relations on paths. Two paths with iden-
tical start and end points are homotopic if they can be
continuously deformed into one another. They are said to
be homologous if the concatenation of the paths does not
enclose any holes. Homotopy and homology classes are
defined as the set of all homotopic and homologous paths,
respectively. The Hurewicz theorem relates these equiva-
lences [6], implying that homotopic paths are homologous
(the converse, however, is false; see [7, Figure 2]).

The fields of computational geometry and topology have
long studied topology constrained path planning problems
over discrete surfaces. An important line of work in these
fields is that of finding the shortest path between a pair of
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points belonging to a designated homotopy class. For exam-
ple, [8] makes use of the funnel algorithm [9], [10] to solve
this problem for boundary-triangulated 2-manifolds. Recent
work has extended these results to a more general class of
combinatorial surfaces [11]. Related work includes solving
for shortest homologous cycles [12], [13] and computing
a minimal homology basis [14], [15]. In recent years, the
robotics motion planning community has developed various
search [7], [16]–[18], sampling [19]–[21], and optimization
[4] based topology aware motion planning methods.

Despite these developments, however, there is no efficient
method for producing shortest paths in homology classes
that are similar to a designated class. Such a method would
enable users to produce paths that are similar to the shortest
path in the designated class, but with shorter length. Towards
this end, [7] introduces the H-signature, a homology class
invariant, that can be used to create an augmented graph
(or road map) over which computing the shortest path in
a homology class is trivial. This method can be inefficient,
however, as it often requires the computation of paths be-
longing to homology classes that are very different from the
designated class and of little practical relevance (e.g., paths
that loop around holes).

Our method enables users to tailor their search to paths in
homology classes similar to the designated class efficiently,
as experiments validate. Other works related to ours include
[4] and [18] which can efficiently construct paths in distinct
homotopy classes, however, they do not explicitly aim to
minimize the length of the resulting paths as our method
and [7] do.

We propose H∗ an efficient search-based algorithm that
can produce a sequence of paths in distinct homology classes
for configuration spaces homeomorphic to a disk with holes,
ordered by length and the degree of proximity to a user-
designated homology class. We propose a distance metric
between homology classes and show that paths that are close
in this metric appear topologically similar. As in [19], we
only consider paths that do not form complete loops around
obstacles/holes.

This paper is organized as follows. Section II establishes
the necessary background, notation, and preliminary results.
In Section III, we state the objectives of this paper. In
Section IV, we propose and justify algorithms for solving the
objectives. In Section V, we demonstrate the effectiveness of
the proposed algorithms and compare them with the methods
proposed in [7]. We conclude in Section VI with a summary.
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Fig. 1. (a) Simplicial Complex with two holes, (b) four distinct homotopy/homology classes with three paths each, (c) harmonic projection basis vectors,
and (d) the progression of the harmonic projection for each path in (b).

II. PRELIMINARIES

A. Simplicial Complexes

Let V = {v1, ..., vN} be a finite set of elements called
vertices. We call a non-empty subset σ ⊂ V with |σ| = k+1
a k-simplex, and say it has dimension k. An (abstract)
simplicial complex (SC) X is a collection of simplices that is
closed under restriction [22]; i.e., if σ ∈ X and π ⊆ σ then
π ∈ X . The SCs in this paper are assumed to be discretized
(manifold) surfaces [23] and are thus comprised of {0, 1, 2}-
simplices which we call nodes, edges and triangles, respec-
tively. Denoting the sets of edges and triangles respectively
as E , and T , we can express an SC as X = (V, E , T ). Each
edge e ∈ E is assigned a weight by a function w such that
w(e) > 0.

We assign an orientation to all nodes, edges and triangles.
Nodes have positive orientation by convention. The canonical
positive orientation of an edge/triangle is that in which all
nodes are in label order (e.g., [v1, v2, v3]). A pair of oriented
edges/triangles are equivalent if they differ by an even
permutation (e.g., [v1, v2, v3] = [v3, v1, v2]). An oriented
edge/triangle can be negated by any odd permutation of its
elements (e.g., −[v1, v2] = [v2, v1]). Orientation and sign can
be extended to simplices of any dimension; we denote the
set of oriented k-simplices by X k.

The k-th chain group Ck of X is the vector space over R
generated by a basis formed by the oriented k-simplices. As
Ck is a finite-dimensional vector space, its elements, called k-
chains, can be represented as vectors with real coefficients.
The boundary operator ∂k is a linear mapping from Ck to
Ck−1 which acts on σ ∈ X k by ∂k(σ) =

∑m
i=0(−1)iσ−i

where σ−i = [σ0, ..., σi−1, σi+1, ..., σm] is the (k − 1)-
simplex formed by removing the i-th node of σ. As a linear
operator ∂k can be encoded by a matrix.

Recommended texts on simplicial complexes, their appli-
cations, and related concepts include [6], [22], [24], [25].

B. Paths
Let vi, vf ∈ V be distinct nodes, which we respectively

call the source and destination. We represent a path as a
sequence of edge-connected nodes τ = (τ (0), ..., τ (n)) where
τ (0) = vi and τ (n) = vf . We denote the (weighted) length
of τ by

W (τ) =

n−1∑
i=0

w(τ (i), τ (i+1)) (1)

We define simple algebraic operations on paths as follows.
Let τ1 = (τ

(0)
1 , ..., τ

(n)
1 ) and τ2 = (τ

(0)
2 , ..., τ

(m)
2 ) be

paths. Addition is defined by path concatenation τ1 + τ2 =

(τ
(0)
1 , ..., τ

(n)
1 , τ

(1)
2 , ..., τ

(m)
2 ) given that τ

(n)
1 = τ

(0)
2 . Nega-

tion is defined as path reversal −τ1 = (τ
(n)
1 , ..., τ

(0)
1 ) and

subtraction by τ1 − τ2 = τ1 +(−τ2). The sum of a path and
a node is τ1 + (v) = τ1 + (τ

(n)
1 , v) given that (τ (n)1 , v) ∈ E .

A path from vi to vf can also be represented as a 1-
chain x ∈ C1 satisfying ∂1(x) = −vi + vf . The map Φ can
transform a path τ to x ∈ C1

x = Φ(τ) =

n−1∑
i=0

ϕ(τ (i), τ (i+1)) (2)

where ϕ(vi, vj) = [vi, vj ] if i < j, and ϕ(vi, vj) = −[vj , vi],
otherwise.

Definition 1: (Homologous paths) Paths τ1 and τ2 con-
necting points vi, vf are homologous, denoted τ1 ∼ τ2, if
the difference of their 1-chain representations Φ(τ1)−Φ(τ2)
is a 2-chain boundary (i.e. Φ(τ1)− Φ(τ2) ∈ im(∂2)).
It can be shown that ∼ is an equivalence relation on paths
with fixed endpoints. We refer to an equivalence class of
homologous paths as a homology class.

C. Hodge Theory, Homology and Harmonics

The composition of consecutive boundary maps is null,
that is, for all x ∈ Ck+1, ∂k ◦ ∂k+1(x) = 0 [24]. As a
consequence, we can define the quotient vector space Hk =
ker(∂k)/im(∂k+1), called the k-th homology group, where
im(·) and ker(·) respectively denote the image and kernel of
an operator. Moreover, the Hodge k-Laplacian can be defined
using the boundary operator as

Lk = ∂⊤
k ∂k + ∂k+1∂

⊤
k+1. (3)

The Hodge Decomposition Theorem [26] states that Ck can
be decomposed into three orthogonal subspaces

Ck
∼= im(∂k+1)⊕ im(∂⊤

k )⊕ ker(Lk) (4)

where ⊕ denotes the direct sum between a pair of subspaces.
Discrete Hodge Theory implies that Hk and ker(Lk)

are isomorphic [27], allowing for an algebraic condition to
determine whether a pair of paths are homologous. Toward
this, we construct a matrix H = [h1...hD], where D is the
number of holes in the SC, whose columns span ker(L1) and



define an operator which we call the harmonic projection of
a path τ

γ(τ) = H⊤Φ(τ). (5)

Proposition 1: Two paths τ1 and τ2 connecting the same
points are homologous if and only if γ(τ1) = γ(τ2).

Proof: Let x1 = Φ(τ1) and x2 = Φ(τ2).
Suppose τ1 ∼ τ2. Therefore, x1 − x2 ∈ im(∂2). As

ker(L1) = im(H) and im(∂2) ∩ ker(L1) = {0} by Eq.
(4), the fundamental theorem of linear algebra [28] implies
x1 − x2 ∈ ker(H⊤), or H⊤(x1 − x2) = 0. Equivalently
H⊤x1 = γ(τ1) = γ(τ2) = H⊤x2.

Suppose now that γ(τ1) = H⊤x1 = H⊤x2 = γ(τ2).
Hence, x1 − x2 ∈ ker(H⊤) = im(H)⊥. By construction
im(H) = ker(L1) which by Eq. (4) implies that x1 − x2 ∈
ker(L1)

⊥ = im(∂2) ⊕ im(∂⊤
1 ). As τ1 and τ2 are connected

by the same points x1 − x2 ∈ ker(∂1) = im(∂⊤
1 )⊥. As

im(∂⊤
1 )⊥ ∩ im(∂⊤

1 ) = {0}, we have x1 − x2 ∈ im(∂2) thus
τ1 ∼ τ2.

Works that leverage harmonic 1-(co)chains to measure
topological similarity between paths include [29]–[36].
Proposition 1 is analogous to [7, Lemma 2] as the holo-
morphic functions in H-signature are harmonic [23].

III. PROBLEM STATEMENT

Let X = (V, E , T ) be an oriented 2-dimensional simplicial
complex topologically equivalent to a disk with D holes. Let
vi, vf ∈ V respectively denote the source and destination
nodes. Let τ̄ = (τ̄ (0), ..., τ̄ (n)) be a path called the reference
path with harmonic projection γ̄ = γ(τ̄). We aim to effi-
ciently compute a path τ∗ homologous to τ̄ with minimal
length; in other words, we want to solve

τ∗ = argmin
τ∈P

W (τ) s.t. γ(τ) = γ(τ̄). (P1)

where P is the set of all edge-connected paths with source
vi and destination vf .

A search-based algorithm to solve P1 would require the
ability to compute several paths connecting vi to vf that are
the shortest in their respective class. The method proposed
in [7] enables this by lifting the problem to an augmentation
of the original graph in which an augmented node v′ =
(v,H(v)) consists of both a node v ∈ V and an H-signature
(harmonic projection) H(v) ∈ CD. A τ∗ can thus be found
by solving for a path connecting v′i = (vi, 0) to v′f = (vf , γ̄)
in the augmented graph using A∗ [37].

Depending on the length of τ∗, however, this algorithm
can require constructing extremely large graphs, which we
would like to avoid, so we restrict our focus to solutions in
the original problem space.

To bypass the homology constraint, we soften it, introduc-
ing a penalty to the cost function, as one does in Lagrangian-
based optimization [38]. Let

∆γ(τ1, τ2) = ∥γ(τ1)− γ(τ2)∥2 (6)

denote the harmonic projection difference between τ1 and
τ2, where ∥·∥2 is the Euclidean norm. We reformulate P1 as

min
τ∈P

Cα(τ, τ̄). (P2)

where Cα(τ, τ̄) = W (τ) + α∆γ(τ, τ̄) and α > 0. This
reformulation cannot be solved optimally on the SC us-
ing dynamic programming-based (DP) methods as the cost
function lacks the optimal substructure that characterizes DP
problems [39]. Therefore, we develop a heuristic function to
approximate a solution to P2 that leverages the sequential
structure of the harmonic projection (as seen in Fig. 1(d))
and use rollout to improve results produced by the heuristic.
It can be shown that for sufficiently large α, the minimizers
for P1 and P2 are equivalent.

Proposition 2: There exists a sufficiently large α > 0 in
P2, such that a minimizer of P1 is a minimizer of P2.

Proof: Let τ∗1 denote the shortest path from vi to vf
and τ∗ be a solution to P1 (i.e. τ∗ is shortest path such that
τ∗ ∼ τ̄ ). Without loss of generality, assume that there are
m ≥ 1 distinct homology classes whose respective shortest
paths τ∗1 , ..., τ

∗
m have shorter length than τ∗ (i.e. W (τ∗1 ) <

... < W (τ∗m) < W (τ∗)). Proposition 1 states that if τ∗ ∼ τ̄
then γ(τ∗) = γ(τ̄), hence the cost of τ∗ in P2 is

Cα(τ∗, τ̄) = W (τ∗i ) + α∆γ(τ∗, τ̄) = W (τ∗) + 0 = W (τ∗)

which is independent of α. Path τ∗ is thus a minimizer of
P2 when α∗ satisfies Cα∗

(τ∗, τ̄) < Cα∗
(τ∗i , τ̄) for all τ∗i , in

particular, when

α∗ > max {αi}mi=1 = max

{
W (τ∗)−W (τ∗i )

∆γ(τ∗i , τ̄)

}m

i=1

. (7)

We say P2 has a soft homology constraint as it penalizes
paths in homology classes that are “farther away” from
the desired homology class, as measured by the projection
difference ∆γ.

IV. METHODS

A. The H∗ Algorithm

We introduce H∗, a homology-informed heuristic algo-
rithm best-first search algorithm providing approximate so-
lutions to P2. H∗ is essentially A∗ [37] with a heuristic that
measures the harmonic projection difference between τ̄ and
a partial path from vi to a node τ (k). In particular, the cost
of a node τ (k) connected to vi by path τk = (τ (0), ..., τ (k))
is W (τk) + α∆γ(τk, τ̄). The parameter α thus controls the
extent to which the projection difference contributes to the
overall cost at a node. Note that when the destination node
is reached, its cost coincides with the cost function in P2.

The H∗ heuristic was inspired by the equivalence of
homologous paths in harmonic projection (Proposition 1) and
an observation about the similarity of sequential structure of
paths within a homology class, as can be seen in Fig. 1(d).
Notice, in particular, that over each edge in a path in Fig.
1(d), the projection difference tends to decrease until the
destination is reached.

We now describe the parameters and steps of the H∗

algorithm. At a stage k, a set Ak of visited nodes is
maintained; we denote the set of unvisited nodes by Ac

k =
V \ Ak. Each node v ∈ V is associated with: i) a weight
Wk(v), ii) harmonic projection γk(v), iii) cost Cα

k (v) =



Fig. 2. (a) Paths produced by H∗ for various α and (b) the projection difference of all visited nodes after a path has been found.

Wk(v) + α∆γk(v) where ∆γk(v) = ∥γk(v) − γ̄∥2, and iv)
the node prev(v) preceding v in the path from vi to v.

At stage 0, we initialize the aforementioned data to
W0(v) = I(v, vi), γ0(v) = 0D ∈ RD, Cα

0 (v) = W0(v) +
α∆γ0(v), and prev = ∅ where I(u, v) = 0 if u = v, and ∞,
otherwise, and ∅ means that a node has no predecessor.

For k > 0, we compute the node in Ac
k−1 with least cost,

v∗k = argmin
v∈Ac

k−1

Cα
k−1(v), (8)

add it to the visited node set Ak = Ak−1∪{v∗k}, then update
the cost of its neighbors, which we denote by N (v∗k) =
{u ∈ V | (u, v∗k) ∈ E}. In particular, the cost of a node
v ∈ N (v∗k) ∩Ac

k is updated according to

Cα
k (v) = min{Cα

k−1(v),W
′(v) + α∆γ′(v)} (9)

W ′(v) = Wk−1(v
∗
k) + w(v∗k, v) (10)

∆γ′(v) = ∥γ(v∗k) + γ(v∗k, v)− γ̄∥2 (11)

where, if the path through v∗k has lower cost, then prev(v) =
v∗k; nodes outside of this set do not change at this stage.
The algorithm terminates when v∗k = vf , after which, the
path from vi to vf is reconstructed using prev. We use
H∗(vi, vf , τ) to denote the output of the H∗ algorithm.

B. Fortified Rollout

Solutions to a combinatorial problem provided by a heuris-
tic algorithm (not to be confused with ‘heuristic’ in the
A∗ sense) can be improved by embedding the heuristic in
a rollout framework [40]. Instead of solving for the entire
path, as in P2, rollout sequentially constructs the path using
a heuristic. We detail how rollout is leveraged for our
purposes. At a non-terminal stage k, we maintain a path
τk = (τ (0), ..., τ (k)), where τ (0) = vi and τ (k) ̸= vf . The
path is updated by τk+1 = τk + (vk+1), where

vk+1 = argmin
v∈N (τ(k))

Cα(τk +H∗(v, vf , τ̄k(v)), τ̄). (12)

Because the source node for H∗ in Eq. (12) changes at each
stage, the reference path at stage k for a node v is τ̄k(v) =
(v)− τk + τ̄ .

If a heuristic satisfies the sequential consistency property
[40, Definition 2.2], rollout produces a path no worse than
the one produces by the heuristic alone [40, Proposition 3.2].
Under mild conditions, a heuristic can be made sequentially
consistent using the fortified rollout algorithm outlined in

[40, Section 4]. The key difference between rollout and
fortified rollout is that at every stage, the fortified variant
maintains a full path τ̃k from vi to vf ; in particular, contin-
uing from Eq. (12), we have

τ̃k+1 = argmin{Cα(τ̃k, τ̄), C
α(τ ′k+1, τ̄)} (13)

τ ′k+1 = τk +H∗(vk+1, vf , τ̄k(vk+1)) (14)

where τ̃0 = H∗(vi, vf , τ̄).
While rollout can improve the performance of H∗, it

requires several uses of H∗, thereby increasing the effective
number of nodes visited to produce a result. We mitigate this
by pruning nodes that increase the projection difference by
more than some small value ϵ

N (v, ϵ) = {u ∈ N (v)|∆γ(τk + (u), τ̄) < ∆γ(τk, τ̄) + ϵ}.
(15)

We use RH∗(vi, vf , τ̄) and PRH∗(vi, vf , τ̄ , ϵ) to denote
the output of fortified rollout without and with pruning,
respectively.

V. NUMERICAL ANALYSIS

We show the utility of H∗ and its variants on various
synthetic configuration spaces. Configuration spaces are con-
structed by triangulating a uniform grid of 19 × 19 of
points on [−1, 1]2 ⊂ R2. Holes are created by removing
all simplices within a specified region and edge weights
are set to the Euclidean distance between node positions.
We construct the Hodge 1-Laplacian L1 of the configuration
space and compute a basis for its null space to form H =
[h1, ..., hD]. Reference paths τ̄ are constructed by connecting
set key points by shortest path.

For each experiment we compare the length and number
of nodes visited for H∗, RH∗, PRH∗ and BLK [7] 1. All
experiments were run on a 1.1 GHz Quad-Core Intel Core i5
processor. Per node visit, on average, H∗, RH∗ and PRH∗

each take 0.001 seconds while BLK takes 0.002 seconds.

A. Illustrative Example

We provide a practical example on an SC with five holes,
consisting of 316 nodes. Figure 2(a) shows H∗ results for
several α values (in green), given the S-shaped reference path
(in blue) with source and destination nodes at the bottom-
left and top-right, respectively. We plot the BLK path (in

1Experiment code available here: https://github.com/ctaveras1999/h-star

https://github.com/ctaveras1999/h-star


Fig. 3. (a) Path length, (b) projection difference, and (c) number of nodes visited for H∗,RH∗, and PRH∗ as a function of α. The color-coded (and
labeled) horizontal lines each correspond to a distinct homology class in (a) denoting the classes’ shortest path length and (b) the projection difference.
The horizontal line in (c) shows the number of nodes visited by BLK.

orange) that is homologous to the H∗ path for a given α.
Paths produced by H∗ for α = 0.0, 0.5, 1.6 and 2.0 belong
to distinct homology classes, the last of which is homologous
to τ̄ . For α ∈ {0.0, 0.5, 1.6, 2.0}, the H∗ and BLK paths are
equal in length. To achieve this, H∗ visits 315, 315, 315 and
251 nodes, respectively, whereas BLK visits 14, 269 nodes –
a two order of magnitude difference in node visits to achieve
the same results.

In addition to efficiency gains, H∗ provides an inter-
pretable interface for producing paths that are increasing
similar to τ̄ , as measured by ∆γ(τ, τ̄), as α increases. This
ordering allows users to use α to trade off between path
length and topological similarity to the reference path. The
H∗ path for α = 1.6 has length 4.2 whereas the solution to
P1, which is achieved by H∗ for α = 2, has length 6.2. If
the user is able to ignore the loop around the top left hole,
they are provided a similar, but much shorter route, to the
destination.

For α ∈ {5, 7}, the H∗ paths are homologous to τ̄ both
with length 6.6, providing examples of non-optimal paths
produced by H∗. These results are achieved after visiting
only 86 and 63 nodes, respectively, which is about a quarter
of the SC’s 316 nodes and two orders of magnitude fewer
than BLK. Such a trade-off can be justified for applications
in which the speed of a planner is critical, as is the case in
many real-time systems.

The larger α is, the earlier H∗ visits nodes with smaller
projection difference. Due to this and the sequential structure
of the harmonic projections (e.g., Fig. 1(d)), H∗ builds paths
to nodes that are closer in harmonic projection at the expense
of optimality in path length. Figure 2(b) demonstrates this
phenomenon, showing that the harmonic projection differ-
ence decreases (or remains unchanged) at each visited node,
as α goes from 0 to 2.0. Increasing α arbitrarily promotes
increasingly greedy behavior towards minimizing projection
difference. This behavior can be seen in Fig. 2(b) as α
transitions from 2.5 to 5.0 to 7.0.

B. Characterizing the Effect of α

In this next experiment, we aim to characterize the effect
of the parameter α on the behavior of H∗, RH∗, and PRH∗.
The SC and reference path in this experiment are identical
to that of the first (i.e. Fig. 2(a)). We sample thirty evenly
spaced points from 0 to 6 for α and use them to produce

paths with H∗ (in green), RH∗ (in purple) and PRH∗ (in
pink). Figure 3 (a), (b) and (c), respectively plot the length,
projection difference, and number of nodes visited by the
algorithms. The (orange) horizontal lines in Fig. 3 correspond
to the output of BLK (which is independent of α).

For 0 ≤ α ≤ 2, the H∗, RH∗, and PRH∗ results are
stable (i.e. remain in the same homology class) over several
ranges, eventually jumping to homology classes with smaller
harmonic projection difference, at the cost of increased path
length. Moreover, for α < 2, as shown in Fig. 2(a), H∗

produces a shortest path in each homology class leading up
to the desired one. Around α = 2, each of the algorithms
produce a shortest path in the desired homology class. Figure
3(c) shows that, across α, H∗ visits the least amount of nodes
among all methods (315 at most), while achieving results
comparable to BLK for each homology class H∗ produces
solutions to. From α < 2, BLK requires the second least
amount of node visits at about 19k, followed by PRH∗,
then RH∗ ranging between 30k and 15k. As α increases,
the number of nodes visited by PRH∗ and RH∗ trends
downwards, requiring less node visits than BLK for α > 2.
The reason for this is explained in the previous experiment
and can be seen in Fig. 2(b).

Importantly, RH∗ and PRH∗ produce shorter length
paths than H∗ does for all α in which the algorithm outputs
are homologous, as can be seen in Fig. 3(a), demonstrating
the utility of the rollout procedure. Finally, Fig. 3(c) shows
that node pruning, as proposed in Sec. IV-B, can reduce the
number of nodes visited when using rollout.

C. Characterizing the Effect of the Number of Holes

This final experiment studies how the number of holes
in an SC affects the number of nodes each algorithm visits
to produce a path homologous to the reference. We show
that the number of nodes visited by BLK can scale with the
number of holes, while our algorithms do not.

Towards this, we generate nine SCs, with between one
and nine holes each with fixed hole location and reference
path. Examples of these SCs and reference paths can be seen
in Fig. 4(c). Figure 4(a) and (b) respectively show the path
lengths and number of node visits for each algorithm. For
H∗,RH∗ and PRH∗, the paths were produced by sampling
twenty α values between 0 and 3, and choosing the path in
the desired homology class with shortest length.



Fig. 4. (a) The length of paths produced by algorithms for each SC, (b)
number of nodes visited to produce the paths, and (c) example paths.

In all cases, the H∗ algorithms produce optimal shortest
paths while maintaining a relatively constant number of
node visits for each SC. For the first four SCs, H∗ and
BLK visit a comparable amount of nodes, while RH∗ and
PRH∗ visit significantly more. For each hole added after
the fourth, the number of nodes visited by BLK increases
almost exponentially. This is because each time a hole is
added, short paths that had previously been homologous
no longer are. Consequently, the number of homologically
distinct paths between vi and vf that have shorter length than
that of the desired path can increase as the number of holes
increases. For instance, in the five, six, and seven hole cases,
BLK respectively produces 102, 252, and 675 homologically
distinct shortest paths before producing the desired path.

The H∗ algorithm, on the other hand, does not scale with
the number of holes as it visits each node once, at most.
Moreover, RH∗ and PRH∗ scale with the number of nodes
in a path and the size of the nodes’ neighborhoods, which
is unrelated to the number of holes. As such, the H∗-based
algorithms can be used as efficient alternatives to BLK in
many-obstacled environments.

VI. CONCLUSION

We present H∗, an efficient heuristic algorithm for solving
a relaxation of the problem of finding the shortest path
homologous to some user-provided reference path. We show
that H∗ can be useful for suggesting paths in homology
classes that are similar to, but with shorter shortest path
than, the reference class. RH∗ and PRH∗ are introduced
as rollout-based variants of H∗ that can improve its results.
Experiments demonstrate that H∗ can produce results that
are often comparable to [7] and at a significantly reduced
computational cost, especially for environments with many
obstacles or holes present.
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