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Robust Finite-Time Control Tracking Via an Enhancing Supertwisting
with Application to UAVs

Moussa Labbadi, Member, IEEE

Abstract— This study deals with an underactuated unmanned
aerial vehicle tracking control problem in finite time under dis-
turbances. The two control loops that make up the hierarchical
finite-time controller are the inner-loop rotation control and
the outer-loop translation control. It was constructed using
a predetermined terminal sliding manifold and a high-order
sliding mode control. Using a modified supertwisting method,
we offer a unique Lyapunov-based predefined-time control
technique for z-position in translation control. For both x and
y positions, a simple controller is then used. Roll, pitch, and
yaw motions have been subjected to rotation control using
high order sliding mode control with a predefined-time sliding
mode manifold. Numerical simulation results are presented
to illustrate how well the suggested control system works in
trajectory tracking and disturbances.

Index Terms— Quadrotors; fixed-time tracking control;
matched perturbations.

I. INTRODUCTION

The past few decades have seen a significant increase
in the study of unmanned aerial vehicles (UAVs), driven
by their unique benefits in carrying out missions in haz-
ardous and inaccessible environments. Typical rotary-wing
UAVs with the ability to take off and land vertically are
called quadrotors(QR), and they are especially well-suited
for a variety of possible uses, including mapping, rescue,
surveillance, and transportation [1]. The development of
autonomous control algorithms for QR is crucial for the
emergence of these applications, which presents a number
of difficulties. Initially, the designed controller needs to
have good closed-loop performance, quick response times,
and resilience to outside shocks and model uncertainty.
To guarantee the viability of the achieved control actions,
input constraints—which typically stem from the physical
restrictions of actuators—should also be taken into account.

A. Related Works

The ability of UAVs to fly precisely and smoothly is one of
their most difficult tasks. Some of these include the sliding
mode control (SMC) [2], [3], adaptive control [4], neural
network [5], backstepping approach [6], etc. Regarding eval-
uating the effectiveness of completing time-sensitive flight
missions, the convergence speed of the formation control
system is crucial since the QR UAV cluster cannot precisely
complete the task before the intended formation shape has
been established [7]. In addition to having the benefit of
strong robustness to shocks and high formation efficiency,
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the finite-time formation control approach can guarantee the
closed-loop system’s finite-time convergence. A recursive
integral terminal sliding function-based adaptive controller
was proposed in [8]. In [9], the finite-time stabilization of
the QR using the global terminal sliding mode control is
suggested. The authors in [12] proposed an adaptive super
twisting sliding mode control technique for robust control of
the six-DOF nonlinear dynamics of an uncertain air vehicle.
An adaptive control strategy based on super-twisting was
offered for a UAV with winds in [10], [11]. Obtaining the
initial conditions of dynamic systems in practice is also a
challenging task [13]. Extending the finite-time stabilization
is one method of addressing the problem. One of the ad-
vantages of fixed-time stability is the ability to define and
modify a uniformly bounded settling-time. Furthermore, the
system’s states can be stabilized in fixed-time. Specifically
when it comes to the formation control of the QR, which
needs to quickly converge to the intended formation pattern.

B. Contributions

Based on the above analysis, a generalized supertwisting-
based fixed-time sliding mode control (FxT-SMC) is studied
for the anti-disturbance tracking control of the quadrotor sys-
tem. Comparing the suggested technique to other approaches,
the numerical simulation demonstrates reduced performance
index values and excellent stabilization accuracy. The major
contributions of this paper can be summarized in the follow-
ing points:

• A novel generalized supertwisting algorithm (GSTA)
Based-FxTSM control using GSTA scheme. Obtained
by combining an improved terminal sliding mode man-
ifold and FxT stability.

• The proposed control approach has been applied to QR
systems, and compared to previous works.

• A novel control technique is proposed to address the
chattering problem and achieve finite-time convergence
for both subsystems.

• Simulation results are also used to confirm the effec-
tiveness of the proposed control for the QR system.

C. Paper organization

The remainders of this study are structured as follows.
The system model and control objective of the QR are
introduced in Section 2. In Section 3 the design of the
proposed controller is given. Section 4 demonstrates the
supertwisting manifold and the finite-time QR stability. The
results of numerical simulations are shown in Section 5.
Finally, Section 6 ends this paper with conclusions.
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Fig. 1: QR structure design.

II. SYSTEM MODELING

The QR under consideration is a rigid-body aerial vehicle
with six degrees of freedom that is maneuvering in three
dimensions. A QR typically has four rotors arranged sym-
metrically and equally spaced from the center, as seen in
Fig. 1. F1, F2, F3, and F4 are the upward-lifting forces
produced by the four rotors, which are arranged to spin
in two pairs in opposing orientations. Each rotor’s spinning
speed can be adjusted to provide the force and torque needed
to drive the vehicle to carry out specific translation and
rotation behaviors.

Two reference frames are established to represent the
translational and rotational motions: an earth-fixed inertial
frame with origin Oe and axes ξex, ξey , and ξez ; the other is a
body-fixed frame with Ob and ξebx, ξeby , and ξebz . Let define
P =

[
x y z

]T
as absolute position of the QR which is

the coordinate values of the center mass in the fixed frame.
The formula for the vehicle’s linear velocity with regard
to the body-fixed frame is v =

[
vx vy vz

]T
. The QR’s

attitude, where describes how the body-fixed frame rotates in
relation to the earth-fixed frame, is denoted by Euler angles
as Q =

[
ϕ θ ψ

]T
, which the ϕ, θ, ψ are respectively the

roll, pitch and yaw angles. Let define the attitude velocity as
ϖ =

[
ϖx ϖy ϖz

]T
.

The following differential equation sets depict the dynamic
model of the QR around a hovering point that may be built
using the Euler-Newton approach.

Position system
{

Ṗ = v

mv̇ = −mG +R(Q)FT +KX + δX(t)

Attitude system
{

Q̇ = ϖ

Iϖ̇ = −ϖ × Iϖ + τϖ +Kη + δΩ(t)

(1)

• m is the QR mass;
• G = [0 0 − g]T with g being the gravitational acceleration;

• R(Q) =

sin θ cosψ cosϕ+ sinψ sinϕ
sin θ cosϕ sinψ − sinϕ cosψ

cosϕ cos θ


is the component of the orthogonal rotation matrix in the
direction of eez with eez = [0 0 1]T ;

• I = diag{J1, J2, J3} is a moments of inertia diagonal matrix;
• τϖ = [τx τy τz]

T , where τi is the quadrotor torque.
• Kη = diag[Kη1,Kη2,Kη3] and KX = diag[Kx,Ky,Kz]

are the aerodynamic coefficient matrices. τc is the resultant
torque due to the gyroscopic effect;

• δX(t) = diag[δx(t), δy(t), δz(t)] and δΩ(t) =
diag[δη1(t), δη2(t), δη3(t)] are the external disturbances.

The QR system’s control inputs are the thrust force FT and the
torque vector τϖ . As seen below, they are all produced by the lifting
forces F1, F2, F3, and F4, that the four rotors produce.

[
FT
τϖ

]
=

 a a a a
0 −a 0 a
a 0 −a 0
−a a −a a


F1

F2

F3

F4

 (2)

where a is the distance from the rotors to the center of mass of the
vehicle.

III. PROBLEM FORMULATION AND CONTROL STRATEGY

Consider the QR mathematical model, which represents the
whole dynamics in the presence of disturbances.

ϕ̈ = χ1θ̇ψ̇ − χ2θ̇η − χ3ϕ̇
2 + χ1τx + dη1(t) (3a)

θ̈ = φ1ϕ̇ψ̇ + φ2ϕ̇η − φ3θ̇
2 + φ1τy + dη2(t) (3b)

ψ̈ = ς1ϕ̇θ̇ − ς2ψ̇
2 + ς1τz + dη3(t) (3c)

ẍ = (sin θ cosψ cosϕ+ sinψ sinϕ)
FT
m

− axẋ+ δx(t) (3d)

ÿ = (sin θ sinψ cosϕ− sinϕ cosψ)
FT
m

− ay ẏ + δy(t) (3e)

z̈ = −g + cos θ cosϕ
FT
m

− az ż + δz(t) (3f)

χ1 = J2−J3
J1

, χ2 = Jr
J1
, χ3 =

Kη1
J1

, χϕ = 1
J1

, φ1 =
J3−J1
J2

, φ2 = Jr
J2
, φ3 =

Kη2
J2

, φθ = 1
J2

, ς1 = J1−J2
J3

, ς2 =
Kη3
J3

, ςθ = 1
J3

, ax = Kx
m
, ay =

Ky
m
, az = Kz

m
where ωq =

ω1 − ω2 + ω3 − ω4.
Assumption 1: The Euler angles have the following bounds: θ,

ϕ ∈ [−π
2
, π
2
] and ψ ∈ [−π, π].

Assumption 2: The disturbances δη(t) and δX(t) are assumed to
be unknown, but their amplitude is limited as |δX(t)| < ΥT1 and
|δη(t)| < ΥT2. The time derivative of the disturbances is supposed
to be bound such as

∣∣∣δ̇X(t)
∣∣∣ < Kd1 > 0 and

∣∣∣δ̇η(t)∣∣∣ < Kd2 > 0.
In order to generate the thrust FT and the desired angles (ϕd, θd),

the virtual controls can be presented as follows:

Vx = (cosϕ sin θ cosψ + sinϕ sinψ)
FT
m

(4)

Vy = (cosϕ sin θ sinψ − sinϕ cosψ)
FT
m

(5)

Vz = −g + (cosϕ cos θ)
FT
m

(6)

Then, the inverse of (4) are:

ϕd = arctan

(
cos θd

sinψdVx − cosψdVy

Vz + g

)
(7a)

θd = arctan

(
cosψdVx + sinψdVy

Vz + g

)
(7b)

FT = m
√

V2
x + V2

y + (Vz + g)2 (7c)

A. Control tracking objective

The control objective is to design a high-order sliding mode
control with a FxT convergence of the tracking errors for system.
The virtual signal Vi = [Vx, Vy, Vz]T will be designed in order to
generate the total thrust FT and the titling anglers (ϕd, θd) for the
inner loop as shown in Fig. (2), also, the torque controls (τx, τy, τz).
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Fig. 2: GSTA based-FxTS Control design.

B. Design tracking control for QR
Let us define the position’s tracking errors and their derivatives

as follows:

ex =x− xd, ex = y − yd, ez =z − zd (8)

ėx =ẋ− ẋd, ėy = ẏ − ẏd, ėz =ż − żd (9)

Similarly, the tracking errors and its derivatives are defined for the
attitude as follows:

eϕ =ϕ− ϕd, eθ = θ − θd, eψ =ψ − ψd (10)

ėϕ =ϕ̇− ϕ̇d, ėθ = θ̇ − θ̇d, ėψ =ψ̇ − ψ̇d (11)

IV. CONTROLLER DESIGN

A. Backstepping sliding mode control for Horizontal position
In this part, the horizontal virtual control signals Vx and Vy will

be designed. These enable to generate the thrust FT and desired
angles [ϕd θd]

T . The GSTA-based FxTS controller for the altitude
subsystem can ensure rapid convergence to the desired altitude
in finite time. However, for position subsystem has three outputs
(z(t), x(t), y(t)) but it is controlled by only one single control.
Hence the fact that the proposed control scheme does not apply
to every subsystem. Therefore, to regulate the horizontal position,
backstepping with SMC is used.

Let define the sliding mode surface as:

σ7(t) = ėx + Λ7ex, σ9(t) = ėx + Λ9ey (12)

The time-derivative of these surfaces is,

σ̇7(t) = ẋ8(t)− ẍd + Λ7ėx,

σ̇9(t) = ẋ10(t)− ÿd + Λ10ėy
(13)

The horizontal position can be controlled by the following laws:

Va =− κ9x8(t) + ẍd − ex − κ1x(ex − κ1xex)− κ2xsign(σ7(t))

Vb =− κ10x10(t) + ÿd − ey − κ1y(ey − κ1yey)− κ2ysign(σ9(t))
(14)

where κ1x, κ2x, κ1y, κ2y > 0.

B. GSTA based-FxTS Control design for altitude subsystem
In this section, the GSTA based-FxTS altitude subsystem control

design, will be presented. In order to achieve fixed-time conver-
gence for both z(t) and ż(t), we define the following terminal
sliding mode variable.

σ11(t) = ėz +
⌈
⌈ėz⌉2 + Cpez + Cq ⌈ez⌉3

⌉ 1
2 , (15)

with,
• ⌈X⌉∗ = |X |∗sign(X );
• Cp, and Cq are positive parameters.

σ̇11(t) = ëz +
|ėz|ëz + Cp+Cqe3z

2
ėz∣∣⌈ėz⌉2 + Cpez + Cq ⌈ez⌉3

∣∣ 1
2︸ ︷︷ ︸

Ξz(ez ,ėz)

,

=
ëzΞz(ez, ėz) + |ėz|ëz + Cp+Cqe3z

2
ėz

Ξz(ez, ėz)
,

=
ëz

(
Ξz(ez, ėz) + |ėz|

)
+

Cp+Cqe3z
2

ėz

Ξz(ez, ėz)
,

= ëz

(
Ξz(ez, ėz) + |ėz|

)
Ξz(ez, ėz)︸ ︷︷ ︸

Bz
(
Ξz(ez, ė)

)
+

Cp+Cqe3z
2

ėz

Ξz(ez, ėz)︸ ︷︷ ︸
Az

(
Ξz(ez, ėz)

)
,

= ëzBz
(
Ξz(ez, ėz)

)
+Az

(
Ξz(ez, ėz)

)

(16)

In the following parts of the paper, we use Az for Az

(
Ξz(ez, ėz)

)
and Bz for Bz

(
Ξz(ez, ėz)

)
. The double time-derivative of the

altitude tracking error can be defined as :

ëz = Vz − az ż + δz(t)− z̈d. (17)

substituting (17) into (16), we have

σ̇11(t) = BzVz −
(
az ż − δz(t) + z̈d

)
Bz +Az (18)

The equivalent control law is done by setting σ̇11(t) = 0 without
disturbances, then it may be given by :

Veqz =

(
az ż + z̈d

)
Bz −Az

Bz
. (19)

It is demonstrated in the Theorem 2 on the paper [13] that the
system (15) is globally fixed-time stable and with a setting time
Tz(ez(0)) ≤ Tmaxz = 4

√
2√

Cp
+ 4

√
2√

Cq
. Now, we use a generalized

supertwisting algorithm [15] to address the chattering problem
unlike in the classical supertwisting algorithm with a finite-time
stability of the sliding variable. The main idea is to use a power
fraction on the discontinuity term in STA. In the following part of
the paper, the design steps of the GSTA are presented.

Vsz = −
(
ηzBz ⌈σ11(t)⌉αz + uz(t)

)
uz(t) = ηżBz ⌈σ11(t)⌉αż

(20)

where αz ∈ ([1/2], 1) and αż = 2αz − 1 are positive constants.
Substituting controller (20) into system (3f) obtains

σ̇z = σż − ηz ⌈σ11(t)⌉αż

σ̇ż = −ηż ⌈σ11(t)⌉αż + δ̇z(t)
(21)

where σz = σ11(t) and σż = δη(t)z(t)− ηż
∫ 1

0
⌈σ11(t)⌉αż dτ .

Remark 4.1: the standard STA contains a discontinuous function
sign(σz), but the provided GSTA (21) does not have any discon-
tinuous terms.

Remark 4.2: It is important to note that the suggested GSTA
degenerates into the traditional STA when αz = 0.5. As can
be seen, the Lyapunov function for the typical STA is built as
V (σ) = ϵTPϵ where ϵT = (ϵz, ϵż) and P is a asymmetric positive
matrix. After that we can ensure the finite-time stability of the
system using STA. For our proposed GSTA the Lyapunov function
is inapplicable.
So, in the following part, the main results can be found using the
proposed control method. A brand-new Lyapunov method will then
be developed to confirm it.

Theorem 1: The variables σz and σż will converge in finite
time to the region shown in the following diagram when the SM
dynamics (21) with Assumption 1 is taken into account:



Region =

∣∣∣∣(σz, σż) : |σz| ≤ tσz
|σż| ≤ tσż

∣∣∣∣ (22)

with tσz = λ
1

2−αz+αż
ż

(
λzKd1
λz(1−p)

) 1
αż

[(
2
αz

)
+ 20.5

]
and tσż =

η
1

2−αz+αż
z

(
2
αz

)αz
2

(
λzKd1
λz(1−p)

)αz
αż .

λz and λż are positive constants, and p ∈ (0, 1) is an arbitrarily
small parameter.

Proof: Define new variables as: zz = σz and zż = 1
ηz
σż , the

system (21) becomes

żz = ρz(zż − ⌈zz⌉αz

żż = −ρż ⌈zz⌉αż +
δ̇z(t)

ρz

(23)

with ρz = ηz and ρz = ηż
ηz

. Next step, we define a new system as

żz = ρzϱz

żż = ρż(ϱż + ϱ3) +
δ̇z(t)

ρz

(24)

with ϱz = −⌈zz⌉αz+zż , ϱ3 = −⌈zż⌉
αż
αz , ϱ3 = ⌈zż⌉

αż
αz +⌈zz⌉αż

and ϱ4 = −zz + ⌈zż⌉
1
αz .

Stimulated by the work in [15], [16], the Lyapunov function can
be selected as

V (zz, zż) = Υz +Υż, (25)

with Υz = 0.5(zz −⌈zż⌉
1
αz )2 Υż = 0.5αz|zż|

2
αz . We can follow

the same steps in [15] to demonstrate the finite-time convergence.

C. GSTA based-FxTS inner-loop control design
In this section, the GSTA based-FxTS attitude subsystems control

design, will be presented. To achieve fixed-time convergence for
both ϕ(t), θ(t), ψ(t), ϕ̇(t), θ̇(t) and ψ̇(t), we define the following
terminal sliding mode variables.

σϕ(t) = ėϕ +
⌈
⌈ėϕ⌉2 + Cpϕeϕ + Cqϕ ⌈eϕ⌉3

⌉ 1
2 (26)

σθ(t) = ėθ +
⌈
⌈ėθ⌉2 + Cpθeθ + Cqθ ⌈eθ⌉3

⌉ 1
2 (27)

σψ(t) = ėψ +
⌈
⌈ėψ⌉2 + Cpψeψ + Cqψ ⌈eψ⌉3

⌉ 1
2 (28)

with, Cpϕ,θ,ψ , and Cqϕ,θ,ψ are positive parameters.
Therefore, the time-derivative of these surfaces is as follows:

σ̇ϕ(t) = ëϕ +
|ėϕ|ëϕ +

Cpϕ+Cqϕe3ϕ
2

ėϕ∣∣⌈ėϕ⌉2 + Cpϕeϕ + Cqϕ ⌈eϕ⌉
3
∣∣ 1
2︸ ︷︷ ︸

Ξϕ(eϕ,ėϕ)

,

=
ëϕΞϕ(eϕ, ėϕ) + |ėϕ|ëϕ +

Cpϕ+Cqϕe3ϕ
2

ėϕ

Ξϕ(eϕ, ėϕ)
,

=
ëϕ

(
Ξϕ(eϕ, ėϕ) + |ėϕ|

)
+

Cpϕ+Cqϕe3ϕ
2

ėϕ

Ξϕ(eϕ, ėϕ)
,

= ëϕ

(
Ξϕ(eϕ, ėϕ) + |ėϕ|

)
Ξϕ(eϕ, ėϕ)︸ ︷︷ ︸

Bϕ
(
Ξϕ(eϕ, ė)

)
+

Cpϕ+Cqϕe3ϕ
2

ėϕ

Ξϕ(eϕ, ėϕ)︸ ︷︷ ︸
Aϕ

(
Ξϕ(eϕ, ėϕ)

)
,

= ëϕBϕ
(
Ξϕ(eϕ, ėϕ)

)
+Aϕ

(
Ξϕ(eϕ, ėϕ)

)

(29)

Besides, using the same calculations, we find the sliding manifold
of attitude subsystems

σ̇ϕ(t) = ëϕBϕ
(
Ξϕ(eϕ, ėϕ)

)
+Aϕ

(
Ξϕ(eϕ, ėϕ)

)
(30)

σ̇θ(t) = ëθBθ
(
Ξθ(eθ, ėθ)

)
+Aθ

(
Ξθ(eθ, ėθ)

)
(31)

σ̇ψ(t) = ëψBψ
(
Ξψ(eψ, ėψ)

)
+Aψ

(
Ξψ(eψ, ėψ)

)
(32)

In the following parts of the paper, we use Aζ for
AΦ

(
Ξζ(eζ , ėζ)

)
and Bζ for

Bζ
(
Ξζ(eζ , ėζ)

)
with ζ = {ϕ, θ, ψ}.

The double time-derivative of the altitude tracking error can be
defined as :

ëζ = Vζ − aζ ζ̇ + δζ(t)− ζ̈d. (33)

substituting (33) into (29), we have

σ̇ζ(t) = BζVζ −
(
aζ ζ̇ − δζ(t) + ζ̈d

)
Bζ +Aζ (34)

The equivalent control law is done by setting σ̇ζ(t) = 0 without
disturbances, then it may be given by :

Vϕeq =

(
aϕϕ̇+ ϕ̈d

)
Bϕ −Aϕ

Bϕ
.

Vθeq =

(
aθ θ̇ + θ̈d

)
Bθ −Aθ

Bθ
.

Vψeq =

(
aψψ̇ + ψ̈d

)
Bψ −Aψ

Bψ
.

(35)

In the following part of the paper, the design steps of the GSTA
of the attitude subsystem are presented.

Vsζ = −
(
cζ1 ⌈σζ(t)⌉αζ + uζ(t)

)
uζ(t) = cζ2 ⌈σζ(t)⌉αζ̇

(36)

where αζ ∈ ([1/2], 1), ζ1, ζ2 and αζ̇ = 2αζ − 1 are positive
constants.

Substituting controller (36) into attitude subsystem obtains

σ̇ζ = σζ̇ − cζ1 ⌈σζ(t)⌉αζ̇

σ̇ζ̇ = −cζ2 ⌈σζ(t)⌉αζ̇ + δ̇ζ(t)
(37)

where σζ = σζ(t) and σζ̇ = δη(t)ζ(t)− ηζ̇
∫ 1

0
⌈σζ(t)⌉αζ̇ dτ .

Theorem 2: The variables σζ and σζ̇ will finite-time converge to
the region shown in the following diagram when the SM dynamics
(37) with Assumption 1 is taken into account:

Region =

∣∣∣∣(σζ , σζ̇) : |σζ | ≤ tσζ
|σζ̇ | ≤ tσ

ζ̇

∣∣∣∣ (38)

with tσζ = λ

1
2−αζ+αζ̇
ζ̇

(
λζKd2
λζ(1−p)

) 1
α
ζ̇

[(
2
αζ

)
+ 20.5

]
and tσ

ζ̇
=

η

1
2−αζ+αζ̇
ζ

(
2
αζ

)αζ
2

(
λζKd2
λζ(1−p)

)αζ
α
ζ̇ .

λζ and λζ̇ are positive constants, and pζ ∈ (0, 1) is an arbitrarily
small parameter.

Proof: Define new variables as: Vζ = σζ and Vζ̇ = 1
ηζ
σζ̇ ,

the system (21) becomes

V̇ζ = ρζ(Vζ̇ − sig(Vζ , αζ))

V̇ζ̇ = −ρζ̇sig(Vζ , αζ̇) +
δ̇ζ(t)

ρζ

(39)

with ρζ = ηζ and ρζ̇ =
η
ζ̇

ηζ
. Next step, we define a new system as

V̇ζ = ρζϱζ

V̇ζ̇ = ρζ̇(ϱζ̇ + ϱ3) +
δ̇ζ(t)

ρζ

(40)
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Fig. 3: Position trajectory tracking.

with ϱζ = −sig(Vζ , αζ) + Vζ̇ , ϱ3 = −sig(Vζ̇ ,
α
ζ̇

αζ
), ϱ3 =

sig(Vζ̇ ,
α
ζ̇

αζ
) + sig(Vζ , αζ̇) and ϱ4 = −Vζ + sig(Vζ̇ ,

1
αζ

).
Stimulated by the work in [15], [16], the Lyapunov function can

be selected as

V (Vζ , Vζ̇) = Υζ +Υζ̇ , (41)

with Υζ = 0.5(Vζ − sig(Vζ̇ ,
1
αζ

)2 Υζ̇ = 0.5αζ |Vζ̇ |
2
αζ . We

can follow the same steps in [15] to demonstrate the finite-time
convergence.

V. SIMULATION STUDY RESULTS

In this section, we present simulation tests in term tracking
trajectories in the presence of complex perturbations. The proposed
control is tested with a complex trajectory. In order to validate its
performance, a finite-time controller is used for a comparison. This
later was developed in [17] as operate on all results by “Method
of Labbadi et al. (2020)”. The QR parameters in the simulations
are illustrated in the Table I. In the simulations, the following
disturbances are used.

δx(t) = (.8 sin(π(t− 30)/31) + 0.4 sin(π(t− 30)/7)

+ .08 sin(π(t− 30)/2) + .056 sin(π(t− 30)/11)),

m/s2], t ∈ [10, 30]; δx(t) = 0, m/s2], else

δy(t) = 0.5 sin(0.4t) + 7.5 cos(0.7t),m/s2], t ∈ [10, 50]

δy(t) = 0, m/s2, else

δy(t) = 0.5 cos(0.7t) + 0.7 sin(0.3t),m/s2]

δϕ(t) = 0.5 cos(0.4t) + 1, rad/s2,

δθ(t) = 0.5 sin(0.5t) + 1, rad/s2,

δψ(t) = .5 sin(0.7t) + 1, rad/s2, t ∈ [0, 10]

The results of the tracking performance of the proposed control
and method developed in [17] are depicted in Figs. 3-7. The linear
position is plotted in Fig. 3. It is clear these results demonstrate the
finite-time convergence of the errors and position states. However,
the results provided by the [17] present high oscillations on the
states with some in the start time on all states. This demonstrate
our proposed controller is better than the Ref. [17]. The finite-time
convergence of the attitude is shown in Fig. 4. Fig. 5 displays the
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Fig. 4: Attitude trajectory tracking.

TABLE I: QR parameters.

Parameter Value Parameter Value
g(m/s2) 9.8 kdy(Nms2) 0.01
m(kg) 2 kdz(Nms2) 0.01

I11(kg.m2) 0.016 kax(Nrads2) 0.012
I22(kg.m2) 0.016 kay(Nrads2) 0.012
I33(kg.m2) 0.032 kaz(Nrads2) 0.012
Jr(kg.m2) 2.8385e-5 bk(N.s2) 2.9842e-3
kdx(Nms2) 0.01 cd(N.m.s2) 3.2320e-2

time evolution of the control signals for position and attitude. Also,
the results in 3D and 2D demonstrate the finite-time convergence
of the proposed control method as show in Figs. 6 and 7.

VI. CONCLUSIONS

A dual-loop, finite-time hierarchical control scheme for QR
exposed to complicated disturbances is presented in this study.
To construct the outer-loop translation controller and the inner-
loop rotational controller, a high-order sliding mode control-based
supertwisting framework is integrated with a predefined-time sliding
mode manifold. Using a preset surface as a basis, the high faster
property of the inner-loop rotation controller is designed and pre-
cisely characterized using fixed-time stability theory. Next, in order
to handle the discontinuous term on the traditional supertwisting
algorithm, we applied a generalized supertwisting algorithm. The
z-position control has been subjected to the rotational controller
step. Extensive simulation analyses confirm that the suggested
hierarchical control architecture is effective.
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