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Abstract— This paper bridges the advances in computer
science and control to allow automatic synthesis of control
strategies for complex dynamical systems which are guaranteed,
by construction, to satisfy the desired properties even in the
presence of adversary. The desired properties are expressed
in the language of temporal logic. With its expressive power,
a wider class of properties than safety and stability can be
specified. The resulting system consists of a discrete planner
that plans, in the abstracted discrete domain, a set of transitions
of the system to ensure the correct behaviors and a continuous
controller that continuously implements the plan. To address the
computational difficulties in the synthesis of a discrete planner,
we present a receding horizon based scheme for executing finite
state automata that essentially reduces the synthesis problem
to a set of smaller problems.

I. INTRODUCTION

Recent advances in computer science, such as the devel-

opment of a polynomial-time algorithm to construct finite

state automata from their temporal logic specifications [1],

enable automatic synthesis of digital designs that satisfy a

large class of properties even in the presence of an adversary

(typically arising from changes in the environments). On the

other hand, recent advances in control and the abundance

of computational resources enable automatic synthesis of

continuous controllers that ensure safety and stability even

in the presence of disturbances and modeling errors [2], [3],

[4]. In many applications, systems need to perform complex

tasks and interact with (potentially adversarial) environments.

Such systems usually contain both continuous (physical) and

discrete (computational) components. A major challenge is

to integrate the methods from computer science and control

such that automatic synthesis of such systems is possible.

Hybrid system theory has been developed to handle sys-

tems that contain both discrete and continuous components.

Control of hybrid systems has been studied extensively but

properties of interest are typically limited to stability and

safety [5], [6]. For systems to perform complex tasks, a

wider class of properties such as guarantee (e.g. eventually

perform task 1 or task 2 or task 3) and response (e.g. if

the system fails, then eventually perform task 1 or perform

tasks 1, 2 and 3 infinitely often in any order) need to be

considered. Temporal logics have therefore garnered great

interest due to their expressive power. In particular, Kwon

and Agha [7] introduced LTLC, an extension of conventional

linear temporal logic for specifying properties of discrete-

time linear systems, and described LTLC model checking

that allows a sequence of control inputs to be automatically

computed such that a complex control objective expressed in
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LTLC is satisfied. To make LTLC model checking decidable,

its scope is limited to systems that reach a steady state in

finite time. Karaman et al. [8] proposed a method based on

mixed integer linear programming to incorporate temporal

logic in control. The interaction with environments, however,

was not taken into consideration.

The development of language equivalence and bisimula-

tion notions allows abstraction of the continuous component

of the system to a purely discrete model while preserving

all the desired properties [9]. This subsequently provides

a hierarchical approach to system design. In particular, a

two-layer design is common and widely used in the area

of planning and control [10], [11], [12], [13], [14]. In the

first layer, a discrete planner plans, in the abstracted discrete

domain, a set of transitions of the system to ensure the

satisfaction of the desired properties. This abstract plan is

then continuously implemented by a continuous controller

in the second layer. Simulations/bisimulations provide the

proof that the continuous execution preserves the desired

properties. One of the main challenges of this approach

is in the abstraction of continuous, infinite-state systems

into equivalent (in the simulation sense) finite state models.

Special cases of fully actuated (�̇ = �), kinematic (�̇ =
�(�)�), piecewise affine (PWA) and discrete-time control-

lable linear systems have been studied in [10], [11], [12]

and [13] respectively. Reference [14] deals with more general

dynamics by using the notions of approximate simulation and

simulation functions [15]. However, similar to a Lyapunov

function, a simulation function can be difficult to compute.

Another main challenge of the two-layer approach is

the computational complexity in the synthesis of discrete

planners. Although it has been shown that for a certain class

of properties, known as Generalized Reactivity(1), a discrete

planner can be automatically computed in polynomial time

[1], the applications of the synthesis tool are limited to small

problems due to the state explosion issue.

This paper partially addresses both of the aforementioned

challenges. First, we present a fully automated approach

to construct a finite state abstraction of a system with

PWA dynamics. A notion of reachability is defined that is

sufficient to ensure that the continuous execution preserves

the correctness of the discrete plan. The requirement of

a bisimulation abstraction is then relaxed to a simulation

abstraction that is enforced by restricting the set of discrete

plans to those satisfying the reachability relation, which can

be established by solving a multi-parametric programming

problem. The Multi-Parametric Toolbox [4] provides an off-

the-shelf computational machinery that enables the multi-

parametric programming problem to be solved in an auto-

mated fashion. As opposed to the approach proposed by

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThCIn2.6

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 5997



Kloetzer and Belta [12] where the state space is partitioned

based solely on the linear predicates appearing in the desired

properties, our approach allows refinement of the predicate-

based partition of the state space. This subsequently reduces

the conservativeness of simulation abstractions and enables

us to identify the set of initial states starting from which

a control law that ensures the satisfaction of the desired

properties cannot be found and allows the synthesis problem

to be solved assuming that the system starts from other

states. Together with the digital design synthesis tool [1],

our technique allows automatic design of dynamical systems

that satisfy a wide range of properties expressed in temporal

logic, taking into account the interaction with potentially

adversarial environments.

Second, to partially address the state explosion problem

in digital design synthesis, we introduce a receding horizon

scheme for executing finite state automata while ensuring

system correctness. This allows the synthesis to be performed

on a smaller domain and thus potentially substantially reduce

the size of the synthesis problem. Although the proposed

approach is not completely automatic, to the authors’ knowl-

edge, it is the first time that a receding horizon technique is

applied to finite state automata and ensures more sophisti-

cated properties than stability, safety and convergence.

II. PRELIMINARIES

We use linear temporal logic (LTL) to describe the desired

properties of the system. Given an LTL formula, we want to

construct a finite state automaton, which can be thought of

as a graph with a finite number of nodes (representing the

states of the system) and edges (representing the transitions

between states), such that the state transitions in the automa-

ton ensure the correctness of the system. In this section, we

briefly describe the definition of LTL and the synthesis of a

finite state automaton which satisfies a given LTL formula.

A. Terminology and Notations

Definition 1: A system consists of a set � of variables.

The domain of � , denoted by dom(� ), is the set of valua-

tions of � . A state of the system is an element � ∈ dom(� ).
Definition 2: A finite transition system is a tuple � =

(� ,→) where � is a finite set of states, and → ⊆ �×� is a

transition relation. Given states ��, �� ∈ � , we write �� → ��
if there is a transition from �� to �� .

Definition 3: An atomic proposition is a statement on

system variables � that has a unique truth value (True or

False) for a given value of �. Let � ∈ dom(� ) be a state of

the system and 	 be an atomic proposition. We write � ⊩ 	

if 	 is True at the state �. Otherwise, we write � ⊮ 	.

Definition 4: An execution of a discrete-time system is an

infinite sequence of the states of the system over a particular

run, i.e., an execution 
 can be written as 
 = �0�1�2 . . .

where for each � ≥ 0, �� ∈ dom(� ) is the state of the system

at time �.

B. Linear Temporal Logic

The use of linear temporal logic (LTL) as a specification

language was introduced by Pnueli [16], [17]. LTL is built

up from a set of atomic propositions, the logic connectives

(¬, ∨ , ∧ , =⇒), and the temporal modal operators (�, □,

�, � which are read as “next,” “always,” “eventually,” and

“until,” respectively). An LTL formula is defined inductively

as follows: (1) any atomic proposition 	 is an LTL formula;

and (2) given an LTL formula 
 and �, the following are also

LTL formulas: ¬
, 
 ∨ �, �
 and 
 � �. Other operators

can be defined as follows: 
 ∧ � = ¬(¬
 ∨ ¬�), 
 =⇒
� = ¬
 ∨ �, �
 = True � 
, and □
 = ¬�¬
. A

propositional formula is one that does not include temporal

operators. Given a set of LTL formulas 
1, . . . , 
�, their

boolean combination is an LTL formula formed by joining


1, . . . , 
� with logic connectives.

Semantics of LTL: An LTL formula is interpreted over

an infinite sequence of states. Given an execution 
 =
�0�1�2 . . . and an LTL formula 
, we say that 
 holds at

position � ≥ 0 of 
, written �� ∣= 
, if and only if 
 holds for

the remainder of the execution 
 starting at position �. The

semantics of LTL is defined inductively as follows: 1) For

an atomic proposition 	, �� ∣= 	 iff �� ⊩ 	; 2) �� ∣= ¬
 iff

�� ∣∕= 
; 3) �� ∣= 
 ∨ � iff �� ∣= 
 or �� ∣= �; 4) �� ∣= �


iff ��+1 ∣= 
; and 5) �� ∣= 
 � � iff ∃� ≥ �, �� ∣= � and

∀� ∈ [�, �), �� ∣= 
. Based on this definition, □
 holds

at position � iff 
 holds at every position in 
 starting at

position �, and �
 holds at position � iff 
 holds at some

position � ≥ � in 
.

Definition 5: An execution 
 = �0�1�2 . . . satisfies 
,

denoted by 
 ∣= 
, if �0 ∣= 
.

Definition 6: Let Σ be the set of all executions of a

system. The system is said to be correct with respect to its

specification 
, written Σ ∣= 
, if all its executions satisfy


, that is, (Σ ∣= 
) ⇐⇒
(

∀
, (
 ∈ Σ) =⇒ (
 ∣= 
)
)

.

C. Synthesis of Finite State Automata

In many applications, systems need to interact with their

environments and whether they satisfy the desired proper-

ties depends on what the environments do. For example,

whether an autonomous car exhibits the correct behavior at

an intersection depends on the behavior of other cars at the

intersection, e.g. which car gets to the intersection first, etc.

In this section, we informally describe the work of Piterman,

et al. [1]. We refer the reader to [1] and references therein

for the detailed discussion of automatic synthesis of a finite

state automaton from its specification.

From Definition 6, for a system to be correct, its specifica-

tion 
 must be satisfied regardless of what the environment

does. Thus, the environment can be treated as adversary and

the synthesis problem can be viewed as a two-player game

between the system and the environment: the environment

attempts to falsify 
 while the system attempts to satisfy 
.

We say that 
 is realizable if the system can satisfy 
 no

matter what the environment does.

For a specification of the form

(
⋀

�∈�

□�
�) =⇒ (
⋀

�∈�

□���), (1)

known as Generalized Reactivity(1), Piterman et al. shows

that checking its realizability and synthesizing the corre-

sponding automaton can be performed in polynomial time.
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In particular, we are interested in a specification of the form


 = (
�=⇒
	) (2)

where roughly speaking, 
� characterizes the initial states

of the system and the assumptions on the environment and


	 describes the correct behavior of the system, including

the valid transitions the system can make. We refer the

reader to [1] for precise definitions of 
� and 
	. Note that

since 
� =⇒ 
	 is satisfied whenever 
� is False , if the

assumptions of the environment or the initial state of the

system violate 
�, the correct behavior 
	 of the system is

not ensured, even though the specification 
 is satisfied.

If the specification is realizable, the synthesis tool gener-

ates a finite state automaton that represents a set of transitions

the system should follow in order to satisfy 
. Otherwise,

it provides an initial state of the system starting from which

there exists a set of moves of the environment such that the

system cannot satisfy 
. The knowledge of the realizability

of the specification is useful since it provides information

about the conditions under which the system will fail to

satisfy its desired properties.

The main limitation of the synthesis of finite state au-

tomata is the state explosion problem. In the worst case, the

resulting automaton may contain all the possible states of the

system. For example, if the system has 10 variables, each can

take any value in {1, . . . , 10}, then there may be as many as

1010 nodes in the automaton.

III. PROBLEM FORMULATION
Consider a system � with a set of variables � = � ∪ �

where � and � represent, respectively, the set of variables

controlled by the system and the set of variables controlled

by the environment. For example, for an obstacle avoidance

problem where a robot needs to navigate an environment

populated with obstacles, � may include the state of the robot

while � may include the positions of obstacles. The domain

of � is therefore given by dom(� ) = dom(�) × dom(�)
and a state of the system can be written as � = (�, �) where

� ∈ dom(�) and � ∈ dom(�). Throughout the paper, we

call � the controlled state and � the environment state.

Assume that the controlled state evolves according to the

following discrete-time piecewise-affine (PWA) dynamics1:

�[�+ 1] = ���[�] +���[�] + �� if (�[�], �[�]) ∈ Ω�

�[�] ∈ �
(3)

where � ∈ {1, . . . , �PWA}, �PWA is the number of re-

gions in the PWA partition, � is the set of admissible

control inputs, {Ω1, . . . ,Ω
PWA
} is a polyhedral partition of

dom(�) × � , for any natural number �, �[�] ∈ dom(�) is

the controlled state at time � and � is the control signal.

Let Π be a finite set of atomic propositions of variables

from � and 
 be an LTL specification built from Π. Suppose


 is a Generalized Reactivity(1) formula of the form (2)

and can be expressed without the next operator (�). 2 We

want to design a controller that ensures that any execution

1We restrict ourselves to PWA dynamics for computational reasons. Our
framework straightforwardly generalizes to nonlinear dynamics.

2This assumption is sufficient to ensure that � is stutter invariant. See,
for example, [18] for more detail.


 = �0�1 . . . of the system satisfies 
 where for each natural

number �, �� ∈ dom(� ) is the state of the system at time �.

IV. HIERARCHICAL APPROACH
In general, constructing a controller that ensures that any

execution of the system satisfies the specification 
 while

respecting the dynamics (3) is hard since both the adversarial

nature of the environment and the dynamics of the system

need to be taken into account. To separate the concern of the

environment from the concern of the dynamics, we apply a

hierarchical approach to solve the problem defined in Section

III. That is, we decompose the problem into (a) designing

a discrete planner that computes a discrete plan satisfying

the specification 
 regardless of what the environment does

and (b) designing a continuous controller that implements the

discrete plan while ensuring that the evolution of the system

satisfies the dynamics (3).

The discrete planner can be automatically synthesized

using the digital design synthesis tool [1] as described in

Section II-C. However, since the synthesis algorithm requires

a finite domain, the system � must be abstracted to a finite

transition system. To construct a finite transition system �

from �, we first partition dom(�) and dom(�), as in [10],

[12], into a finite number of equivalence classes or cells �
and ℰ , respectively, such that the partition is proposition

preserving [9]. Roughly speaking, this means that for any

atomic proposition 	 ∈ Π and any states �1 and �2 that

belong to the same cell in the partition, if �1 satisfies 	, then

�2 also satisfies 	. We denote the resulting discrete domain

of the system by � = � × ℰ . Throughout the paper, we call

� ∈ dom(� ) a continuous state and � ∈ � a discrete state

of the system. For a discrete state � ∈ � , we say that �

satisfies an atomic proposition 	 ∈ Π, denoted by � ⊩� 	, if

and only if there exists a continuous state � contained in the

cell labeled by � such that � ⊩ 	. Given an infinite sequence

of discrete states 
� = �0�1�2 . . . and an LTL formula 
 built

from Π, we say that 
 holds at position � ≥ 0 of 
�, written

�� ∣=� 
, if and only if 
 holds for the remainder of 
�

starting at position �. With these definitions, the semantics

of LTL for a sequence of discrete states can be derived from

the general semantics of LTL defined in Section II-B.

Next, we need to determine the transition relations → of

�. Since constructing a bisimulation partition for a general

system with PWA dynamics is hard and such a partition

may not be finite, in this section, we relax the requirement

that the partition is bisimulation and define the notion of

reachability that is sufficient (but not necessary) to guarantee

that if a discrete controlled state �� is reachable from ��, the

transition from �� to �� can be continuously implemented

or simulated by a continuous controller. (See, for example,

[19] for the exact definition.) A computational scheme that

provides a sufficient condition for reachability between two

discrete controlled states and subsequently refines the state

space partition is also presented in Section IV-B.

A. Reachability
Let � = {�1,�2, . . . ,��} be a set of discrete controlled

states. We define a map �	 : dom(�) → � that sends a

continuous controlled state to a discrete controlled state of
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its equivalence class. That is, �−1
	 (��) ⊆ dom(�) is a set

of all the continuous controlled states contained in the cell

labeled by �� and {�−1
	 (��), . . . , �−1

	 (��)} is the partition

of dom(�). We define the reachability relation, denoted by

⇝, as follows: a discrete state �� is reachable from a discrete

state ��, written �� ⇝ �� , only if starting from any point

�[0] ∈ �−1
	 (��), there exists a control law � ∈ � that takes

the system (3) to a point �[� ] ∈ � −1
	 (��) satisfying the

constraint �[�] ∈ �−1
	 (��) ∪ �−1

	 (��), ∀� ∈ {0, . . . , �} for

some horizon length � . Note that this is stronger than the

usual definition of reachability [20]. We write � � ∕⇝ �� if ��
is not reachable from ��.

In general, for two discrete states �� and �� , verifying

the reachability relation �� ⇝ �� is hard. Therefore, we

resort to a heuristic based on the following optimal control

problem: Given discrete controlled states ��,�� ∈ �, the set

of admissible control inputs � , the matrices �� and �� as in

(3), a horizon length � ≥ 0 and the cost matrices �
 , � ર 0
and � ≻ 0, solve

min
�[0],...,�[
−1]

∥�
 �̂[� ]∥2 +

−1
∑

�=0

∥��̂[�]∥2 + ∥��[�]∥2

s.t. �[� ] ∈ �−1
	 (��), �[0] ∈ dom(�)

�[�+ 1] = ���[�] +���[�] if (�[�], �[�]) ∈ Ω�

�[�] ∈ �

�[�] ∈ �−1
	 (��) ∪ �−1

	 (��)
∀� ∈ {0, . . . , � − 1}

(4)

where for any � ∈ {0, . . . , �}, �̂[�] = �[�] − �� for some

chosen �� ∈ �−1
	 (��) (e.g. �� may be the center of the

cell labeled by �� ). Note that (4) is a finite horizon optimal

control problem. Furthermore, one can consider the problem

in (4) as a family of problems parametrized by �[0] and it can

be regarded as a multi-parametric programming problem [3].

For the case where �−1
	 (��), �−1

	 (��), and � are polytopic

sets, i.e., sets defined by affine inequalities, the explicit

solution for this multi-parametric programming problem (i.e.,

the sequence of control inputs �[0], . . . , �[� − 1] as a

function of �[0] and the set ��,� ⊆ �−1
	 (��)∪�−1

	 (��) such

that (4) is feasible for all �[0] ∈ ��,�) can be computed

using the Multi-Parametric Toolbox [4]. We refer the reader

to [21] for a detailed discussion on how this multi-parametric

programming problem can be solved. An example of a set

��,� along with �� and �� is shown in Figure 1.

Fig. 1. An example of a set ��,� represented by the unshaded region. For
any �[0] in the shaded region, the optimal control problem (4) is infeasible.
Different unshaded regions have different associated controllers. For more
detail, see [4].

B. State Space Discretization

In general, given the previous partition of dom(�) and

any �, � ∈ {1, . . . , �}, the reachability relation between ��

and �� may not be established through the solution of the

TABLE I

DISCRETIZATION ALGORITHM

Discretization Algorithm

input: The lower bound on cell volume (Volmin ), the parameters �� ,
�� , Ω� , � , � , �� , �, 	 of the multi-parametric programming

problem, and the original partition ({
−1
� (��) ∣ � ∈ {1, . . . , �}})

output: The new partition sol

sol = {
−1
� (��) ∣ � ∈ {1, . . . , �}}; IJ = {(�, �) ∣ �, � ∈ {1, . . . , �}};

while (size(IJ ) > 0)
Pick an (�, �) ∈ IJ ;
Solve the multi-parametric programming problem for ��,� ;
if (volume(sol [�] ∩ ��,�) > Volmin and

volume(sol [�] ∖ ��,�) > Volmin ) then
Replace sol [�] with sol [�] ∩ ��,� and add sol [�] ∖ ��,� to sol ;
For each � ∈ {1, . . . , size(sol)}, add (�, �), (�, �),

(size(sol), �) and (�, size(sol)) to IJ ;
else

Remove (�, �) from IJ ;
endif

endwhile

multi-parametric programming problem (4) since � −1
	 (��) is

not necessarily covered by ��,� (due to the constraints on �

and a specific choice of the finite horizon � ). This section

describes a state space discretization scheme based on the

reachability relation defined earlier to increase the number

of valid discrete state transitions of �. The underlying idea

is that for each �� and �� , we determine ��,� such that

for any �[0] ∈ ��,� , the problem in (4) is feasible. Then,

we partition �−1
	 (��) into �−1

	 (��) ∩ ��,� , labeled by ��,1

and �−1
	 (��) ∖ ��,� , labeled by �−1

	 (��,2) and obtain the

following reachability relations: ��,1 ⇝ �� and ��,2 ∕⇝ �� .

Discretization Algorithm: Pick a natural number � and the

cost matrices �
 , � and �. Define a lower bound Volmin

on the volume of each cell in the new partition. Starting with

a pair (�, �) where �, � ∈ {1, . . . , �}, determine the set ��,�

such that for any �[0] ∈ ��,� , the problem in (4) is feasible.

If the volumes of both � −1
	 (��)∩��,� and �−1

	 (��)∖��,� are

greater than Volmin , then partition �−1
	 (��) into �−1

	 (��)∩
��,� and �−1

	 (��) ∖ ��,� . Repeat this process until none of

the cells can be partitioned. Table I shows the pseudo-code

of the algorithm.

Remark 1: Volmin only provides a terminating criterion

for the proposed algorithm. Other criteria such as the maxi-

mum number of iterations can be used as well.

Remark 2: The proposed discretization algorithm termi-

nates when no cell can be partitioned such that the volumes

of the two resulting new cells are both greater than Vol min .

Larger Volmin causes the algorithm to terminate sooner.

Remark 3: The point at which the algorithm terminates

affects the reachability between discrete controlled states of

the new partition and as a result, affects the realizability

of the specification. Generally, a coarse partition makes the

specification unrealizable but a fine partition causes state

space explosion. A way to decide when to terminate the

algorithm is to start with a coarse partition and keep refining

it until the specification is realizable.

C. Correctness of the System

Let � ′ = {� ′
1,� ′

2, . . . ,� ′
�} be the set of all the dis-

crete controlled states corresponding to the resulting par-

tition of dom(�) after applying the discretization algo-
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rithm proposed in Section IV-B. Since the partition ob-

tained from the proposed algorithm is a subpartition of

{�−1
	 (�1), . . . , �−1

	 (��)} and � = � × ℰ is proposition

preserving, it is trivial to show that � ′ = � ′ × ℰ is also

proposition preserving. We define the finite transition system

� that serves as the abstract model of � as follows: � ′ =
� ′ × ℰ is the set of states of � and for any two states

�� = (� ′
�	, ℰ��) and �� = (� ′

�	, ℰ��), �� → �� (i.e. there

exists a transition from �� to ��) only if � ′
�	 ⇝ � ′

�	. Using

the abstract model �, a discrete planner that guarantees the

satisfaction of 
 while ensuring that the discrete plans are

restricted to those satisfying the reachability relations can be

automatically synthesized using the digital design synthesis

tool as described in Section II-C.

From the stutter invariant property of 
, the formulation

of the optimal control problem (4) and the proposition

preserving property of � ′, it is straightforward to prove the

following proposition.

Proposition 1: Let 
� = �0�1 . . . be an infinite sequence

of discrete states of � where for each natural number �,

�� → ��+1, �� = (��,  �), �� ∈ � ′ is the discrete controlled

state and  � ∈ ℰ is the discrete environment state. If


� ∣=� 
, then by applying a sequence of control laws,

each corresponding to the solution of (4) with � � = ��
and �� = ��+1, the infinite sequence of continuous states


 = �0�1�2 . . . satisfies 
.

V. RECEDING HORIZON STRATEGY

As discussed in Section II-C, automatic synthesis of finite

state automata from their LTL specifications [1] suffers from

the state explosion problem. In many applications, however,

it is not necessary to plan for the whole execution, taking into

account all the possible behaviors of the environment since

a state that is very far from the current state of the system

typically does not affect the near future plan. For example,

consider a robot motion planning problem where the robot

has to travel 100 kilometers. Under certain conditions, it may

be sufficient to only plan out an execution for 500 meters and

implement it in a receding horizon fashion, i.e., re-compute

the plan as the robot moves. In this section, we present

a sufficient condition and a receding horizon scheme that

allows the synthesis to be performed on a smaller domain;

thus, substantially reduces the number of states (or nodes)

of the automaton while still ensuring the system correctness.

We consider a subclass of Generalized Reactivity(1) for-

mulas (1): (a) let ����� be a propositional formula of variables

from � which characterizes the initial state of the system;

(b) let �� be a boolean combination of propositional formulas

of variables from � and expressions of the form �� �
� where

��
� is a propositional formula of variables from � which

describes the assumptions on the transitions of environment

states; (c) let �	 be a boolean combination of propositional

formulas of variables from � and expressions of the form

���
	 where ��

	 is a propositional formula of variables from �

which describes the constraints on the transitions of discrete

controlled states; and (d) let �� be a propositional formula

of variables from � . We assume that the corresponding

(stronger) specification for � is given by3


� = (����� ∧ □��) =⇒ (□�	 ∧ ���) (5)

where □�	 and ��� express the safety and the progress

properties of the system. Let � ′ = � ′ × ℰ be the discrete

domain of the system after applying the discretization al-

gorithm presented in Section IV. Similar to the map �	

for the controlled states defined in Section IV, we let � :
dom(� ) → � ′ be a map that sends a continuous state to a

discrete state of its equivalence class, i.e. for each �� ∈ � ′,

�−1(��) ∈ dom(� ) is the set of all the continuous states

contained in the cell labeled by �� and {�−1(��) ∣ �� ∈ � ′}
is a partition of dom(� ).

Suppose there exists a collection of disjoint subsets

�0, . . . ,�� of � ′ such that (a) �0 ∪�1 ∪ . . .∪�� = � ′,

(b) �� is satisfied for any � ∈ ∪

��∈�0
�−1(��), i.e., �0

is the set of the final states, and (c) ({�0, . . . ,��},⪯��
)

is a partially ordered set. By an abuse of notation, for each

� ∈ {0, . . . , !}, we let �−1(��) =
∪

��∈��
�−1(��), i.e.,

�−1(��) is the set of all the continuous states contained in

the cells that belong to the set ��. Further assume that there

exists a propositional formula Φ of variables from � and for

each � ∈ {0, . . . , !}, there exist "� ∈ {0, . . . , !} and a subset

�� of dom(�) satisfying the following conditions:
(1) ����� =⇒ Φ is a tautology, i.e., any state that satisfies

����� also satisfies Φ,

(2) �−1(��), �−1(���) ⊆ �� × dom(�), and

(3) ��� ⪯��
�� and for each � ∕= 0, ��� ≺��

��

such that

Ψ� =
(

(� ∈ �−1(��)) ∧ Φ ∧ □��

)

=⇒
(

□�	 ∧ �(� ∈ �−1(���)) ∧ □Φ
) (6)

is realizable with the domain of � restricted to ��.

For � ∈ {0, . . . , !}, let !� be an automaton that satisfies

Ψ�. Since in the synthesis of !�, the domain of � is restricted

to��, this can substantially reduce the number of states in the

automaton, especially when the size of �� is much smaller

than the size of dom(�).
Receding Horizon Strategy: Starting from the state �0, pick

an automaton !� such that �0 ∈ �−1(��) and execute

!� until the system reaches the state � ∈ � −1(��) where

�� ≺��
��, at which point, switch to the automaton !� .

Repeat this process until !0 is executed.

Theorem 1: Suppose for each � ∈ {0, . . . , !}, Ψ� is real-

izable. Then the proposed receding horizon strategy ensures

the correctness of the system.

Proof: Consider an arbitrary execution 
 of the system

that satisfies the formula to the left of =⇒ in (5). From

the tautology of ����� =⇒ Φ, it is easy to show that if 


starts from � ∈ �−1(��), then 
 satisfies the formula to the

left of =⇒ in (6). Let �0 ∈ dom(� ) be the initial state of

the system. First, suppose �0 ∈ �−1(�0). Then, the system

always executes !0; thus, Ψ0 ensures that 
 satisfies (5).

Next, suppose �0 ∈ �−1(��) where � ∕= 0. Then, the system

3The specification of � is obtained by adding LTL formulas of the form
�1 =⇒ ��2 to the original specification � which essentially restricts
the valid state transitions to those satisfying the reachability relations as
described in Section IV-C. Note that �� is generally not stutter invariant.
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executes !� and Ψ� ensures that the safety property �	 holds

at every position of 
 up to and including position ! � at which

the system switches the automaton and Φ holds at position

!�. In addition, since Ψ� satisfies the progress property �(� ∈
�−1(���)) where ��� ≺��

��, Ψ� ensures that eventually

the system reaches the state �� ∈ �−1(��) where �� ≺��

��. According to the receding horizon scheme, the system

switches the automaton at this state, i.e., �� is the state of

the system at position !� of 
. Since �� ∈ �−1(��) and ��
satisfies Φ, 
 satisfies the formula to the left of =⇒ in (6).

Using the previous argument, we get that Ψ� ensures that

the safety property �	 holds at every position of 
 starting

from position !� up to and including position !� at which the

system switches the automaton and Φ holds at position !� .

By repeating this proof, we get that �	 holds at every position

of 
 and due to the finiteness of the set {�0, . . . ,��} and

its partial order, eventually the automaton !0 is executed

which ensures that 
 satisfies the progress property ���.

Remark 4: The propositional formula Φ (which can be

viewed as an invariant of the system) adds a constraint on the

initial state of the system assumed by each of the automata

so that Ψ� is realizable. One way to determine Φ is to start

with Φ = True and check the realizability of the resulting

Ψ�. If for any � ∈ {0, . . . , !}, Ψ� is realizable, we are done.

Otherwise, the synthesis process provides the initial state of

the system starting from which there exists a set of moves

of the environment such that the system cannot satisfy Ψ �.

This information provides guidelines for constructing Φ.

Remark 5: The partial order ({�0, . . . ,��},⪯��
) essen-

tially provides a measure of “closeness” to the goal (i.e.

the set of the final states). Since each specification Ψ� in

(6) asserts that the system eventually reaches a state that is

smaller in the partial order, it essentially ensures that each

automaton !� brings the system “closer” to the goal.

VI. EXAMPLE

We consider a point-mass omnidirectional vehicle navi-

gating a straight road while avoiding obstacles and obeying

certain traffic laws. It was shown in [22] that the nondimen-

sional equations of motion of the vehicle are given by
⎡

⎣

�̈

#̈

$̈

⎤

⎦+

⎡

⎣

�̇

#̇
2��2

�
$̇

⎤

⎦ =

⎡

⎣

%�
%�
%�

⎤

⎦ , (7)

with the following constraints on the control efforts:

∀�, %2�(�) + %2�(�) ≤
(

3− ∣%�(�)∣
2

)2

and ∣%�(�)∣ ≤ 3. (8)

Conservatively, we can set ∣%�(�)∣ ≤
√
0.5, ∣%�(�)∣ ≤

√
0.5

and ∣%�(�)∣ ≤ 1 so that the constraints (8) are decoupled.

In this section, we are only interested in the translational

(� and #) components of the vehicle state. Discretizing the

dynamics (7) with time step 0.1, we obtain the following

discrete-time linear time-invariant state space model
[

&[�+ 1]
�� [�+ 1]

]

=

[

1 0.0952
0 0.9048

] [

&[�]
��[�]

]

+

[

0.0048
0.0952

]

%� (9)

where & represents either � or # and �� represents the rate

of change in &. Let �� be the domain of the vehicle state

projected onto the (&, ��) coordinates. We restrict the domain

�� to [&'��, &'(�] × [−1, 1] and partition �� as �� =
∪

�∈{����+1,...,����} ��,� where ��,� = [� − 1, �] × [−1, 1]
as shown in Figure 2. Throughout the section, we call this

partition the original partition of the domain �� .

Fig. 2. The original partition of the domain ��

We consider a road with 2 lanes, each of width 1, so we

set #'�� = 0 and #'(� = 2. Since the vehicle dynamics

are translationally invariant, without loss of generality we set

�'�� = 0 and �'(� = ) where ) is the length of the road.

For each � ∈ {1, . . . , )} and � ∈ {1, 2}, we define

a Boolean variable *�,� that is assigned the value True

if and only if an obstacle is detected at some position

(��, #�) ∈ [�−1, �]×[�−1, �]. The state of the system is there-

fore a tuple (�, ��, #, ��, *1,1, *1,2, . . . , *�,1, *�,2) where

(�, ��, #, ��) ∈ [0, )]× [−1, 1]× [0, 2]× [−1, 1] is the vehicle

state or the controlled state and (*1,1, *1,2, . . . , *�,2) ∈
{0, 1}2� is the environment state.

A. System Specification

We assume that at the initial configuration, the vehicle is

at least +��	 away from any obstacle and that the vehicle

starts in the right lane. That is, ����� in (5) is defined as: for

any � ∈ {1, . . . , )},
(

� ∈
�+����
∪

�=�−����

��,� =⇒ (¬*�,1 ∧ ¬*�,2)

)

∧ # ∈ ��,1

(10)

The following properties are assumed for the environment.

1) An obstacle is detected before the vehicle gets too close

to it. That is, there is a lower bound +����� ≥ 0 on the

distance from the vehicle for which obstacle is allowed

to instantly pop up. An LTL formula corresponding

to this assumption is a conjunction of the following

formula: for all � ∈ {1, . . . , )} and � ∈ {1, 2},

□

⎛

⎝

⎛

⎝� ∈
�+������

∪

�=�−������

��,� ∧ ¬*�,�

⎞

⎠ =⇒ □(¬*�,�)

⎞

⎠

(11)

2) Sensing range is limited. That is, the vehicle cannot

detect an obstacle that is away from it farther than

+	� > +����� ≥ 0. An LTL formula corresponding

to this assumption is a conjunction of the following

formula: for all � ∈ {1, . . . , )},

□

⎛

⎝� ∈ ��,� =⇒
⋀

�>�+��	

(¬*�,1 ∧ ¬*�,2)

⎞

⎠ (12)

3) The road is not blocked. That is, for any � ∈ {1, . . . , )},
□ (¬*�,1 ∨ ¬*�,2) (13)
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4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any � ∈ {1, . . . , )},

□

⎛

⎝

⎛

⎝� ∈
�+1
∪

�=�−1

��,� ∧ *�,1

⎞

⎠ =⇒ □(*�,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with �.

Next, we define the desired safety property, □�	, as the

conjunction of the following properties:

1) No collision, i.e., for any � ∈ {1, . . . , )} and � ∈ {1, 2},
□(*�,� =⇒ ¬(� ∈ ��,� ∧ # ∈ ��,�)) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any � ∈
{1, . . . , )},

□((¬*�,1 ∧ � ∈ ��,�) =⇒ (# ∈ ��,1)) (16)

Finally, we define �� = (� ∈ ��,�), i.e., we want to

ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the � and # components of the vehicle state are

decoupled, we apply the discretization algorithm presented

in Section IV for the � and # components separately for

the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all ��,�. The discretization algorithm with

horizon length � = 10 and Volmin = 0.1 yields a partition

with 11 cells {�1
�,�, �

2
�,�, . . . , �

11
�,�} for each ��,� as shown

in Fig. 3. For each � ∈ {&'�� + 1, . . . , &'(�} and � ∈
{1, . . . , 11}, we let $��,� be the state label of cell �

�
�,� and

let $�,� = {$1�,�, . . . , $11�,�}. A discrete state is therefore a

tuple (��, ��, *1,1, . . . , *�,2) where (��, ��) ∈ $�,�×$�,� is

the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i−1 i
−1

0

1

z

v z

Fig. 3. The partition of each cell ��,� in the original partition of
the domain ��

4Before performing the discretization, we partition each ��,� into
(

�+

�,� ∪ �−

�,�

)

where �+

�,� = [� − 1, �] × [0, 1] and �−

�,� = [� − 1, �] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × ) discrete vehicle states and

22×� discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×)×22×�

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as�� = {(��, ��, *1,1, . . . , *�,2) ∣ �� ∈
$�,�−�} and �� ≺��

�� for any � < �.

Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until

Ψ� as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ�. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property ���, we need to

assume that �� ∕∈ %������	 and �� ∕∈ &������	 where

'notrans is defined as: for any �� ∈ 'notrans , � ∈
{&'��+1, . . . , &'(�} and � ∈ {1, . . . , 11}, �� ∕⇝ $��,�
and ' represent either % or & .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose �� ∈ $�,�. To ensure no collision, if �� can

only transition to � ′
� ∈ $�,1, then either *�,1 or *�+1,1 is

False . Similarly, if �� can only transition to � ′
� ∈ $�,2,

then either *�,2 or *�+1,2 is False . Similar reasoning

can be derived for the case where �� ∈ $�,� such that

it can only transition to � ′
� ∈ $�,�+1 and for the case

where it can only transition to � ′
� ∈ $�,�.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (��, ��) ∈ $�,� × $�,1 which can

only transition to (� ′
�, �

′
�) ∈ $�,� × $�,2.

5) Suppose �� ∈ $�,� and *�+1,1 is False . To ensure that

the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that �� ∈ $�,1
which can only transition to � ′

� ∈ ��,2. In addition, it

is not the case that �� can only transition to � ′
� ∈ ��,�+1

and �� ∈ $�,2 which can only transition to � ′
� ∈ $�,2.

With +����� = 1 and the horizon length 2 (i.e. " � = �+2),

the specification (6) is realizable. In addition, if we let +��	

be greater than 1 and restrict the initial state of the system

such that �� ∕∈ %������	 and �� ∕∈ &������	, we get that

����� =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.
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A simulation result with the road length of 30 is shown in

Fig. 4. The polygons drawn in red are obstacles which are

not known a priori. Notice that when there is no obstacle

blocking the lane, the vehicle tries to stay as close to the

lane boundary (# = 1) as possible. This is expected since to

be able to avoid a pop up obstacle, due to the constraint on

the admissible control inputs, the vehicle needs to stay close

to the lane boundary to be able to change lane. To force the

vehicle to stay close to the center of the lane, we need a

finer partition of the road and extra LTL formula to ensure

this property needs to be added to the system specification.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

x

y

Fig. 4. Simulation result. The solid line is the trajectory of the
vehicle. The polygons are obstacles discovered during the execution
when the vehicle gets close enough to them.

VII. CONCLUSIONS AND FUTURE WORK

This paper illustrated how off-the-shelf tools from com-

puter science and control can be integrated to allow au-

tomatic synthesis of complex dynamical systems that are

guaranteed, by construction, to satisfy the desired properties

expressed in temporal logic even in the presence of adversary

(typically arising from changes in the environments). A

receding horizon scheme for executing finite state automata

was described that addresses the main limitation of the

synthesis tool, the state explosion problem, assuming that

the system has a certain partial order structure. The example

showed that without the receding horizon scheme, the synthe-

sis problem can be extremely computationally challenging.

Although the adversarial nature of the environment has

been incorporated in the synthesis, the effects of disturbances

and modeling errors have not yet been studied. To increase

the robustness of the system, we plan to impose more

conditions on the multi-parametric programming problem so

that the continuous control law can be executed in a closed

loop manner. In addition, the system specification needs to be

modified to allow the possibility that the system may deviate

from the plan due to disturbances and modeling errors.

Automatic or semi-automatic computation of an invariant

Φ in the receding horizon scheme based on the information

provided by the synthesis tool is also of interest. This

direction sounds promising since, as described in the paper,

Φ can be constructed by iteratively adding, until Ψ � is

realizable, a propositional formula to exclude the initial states

of the system starting from which there exists a set of moves

of the environment such that the system cannot satisfy Ψ �.
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