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Abstract

The paper investigates theoretical issues in applying ttieetsal swarming technique to efficient
content distribution. In a swarming session, a file is distied to all the receivers by having all the nodes
in the session exchange file chunks. By universal swarmiagpnly all the nodes in the session, but
also some nodes outside the session may participate in thek@xchange to improve the distribution
performance. We present a universal swarming model wherehthnks are distributed along different
Steiner trees rooted at the source and covering all thevexseiWe assume chunks arrive dynamically
at the sources and focus on finding stable universal swarggrithms. To achieve the throughput
region, universal swarming usually involves a tree-s@eacsubproblem of finding a min-cost Steiner
tree, which is NP-hard. We propose a universal swarmingmehthat employs an approximate tree-
selection algorithm. We show that it achieves network $itglfior a reduced throughput region, where
the reduction ratio is no more than the approximation ratithe tree-selection algorithm. We propose
a second universal swarming scheme that employs a randorrize-selection algorithm. It achieves
the throughput region, but with a weaker stability resuhieTproposed schemes and their variants are
expected to be useful for infrastructure-based conterttilalision networks with massive content and
relatively stable network environment.

Index Terms

Communication Networks, Multicast, Stability, Queueilgndomized Algorithm, Content Distri-
bution

. INTRODUCTION

The Internet is being used to transfer content on a more armé massive scale. A recent
innovation for efficient content distribution is a technéggkinown asswarming In a swarming
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session, the file to be distributed is broken into many chuatkhe original source, which are
then spread out across the receivers. Subsequently, thiegecexchange the chunks with each
other to speed up the distribution process. Many differemtsaof swarming have been proposed,
such as FastReplica [1], Bullet [2], Chunkcast [3], BitBatr [4], and CoBlitz [5].

The swarming technique was originally introduced by the-esekr communities for peer-to-
peer (P2P) file sharing. The subject of this paper is how tdyagygarming to infrastructure-based
content distribution, where files are to be distributed aghocontent servers in a content delivery
network. The content servers are usually connected witekbaigh-speed links and, as a result,
the bandwidth bottleneck may no longer be at the access. lihkas been shown that content
delivery traffic has made capacity shortage in the backb@tearks a genuine possibility [6].
The size of such a content distribution network is usualhakkntonsisting of up to hundreds
of network nodes and up to thousands of servers. Unlike theric end-user file-sharing
situations, infrastructure networks and content servegsuaually centrally managed, generally
well-behaved and relatively static (however, the traffio still be dynamic). In this setting, it
is beneficial to view swarming as distribution over multiphellticast trees, each spanning the
content servers. This view allows us to pose the questionoaf to optimally distribute the
content (see [7]). Furthermore, it is often easier to firstettgp sophisticated algorithms under
this tree-based view, and then, adapt them to practicahtttus where the tree-based view
is only partially adequate. Hence, in this paper, swarmsigyinonymous to distribution over
multiple multicast trees.

This paper concerns a class of improved swarming technjdumesvn asuniversal swarming
We associate with each file to be distributedession which consists of the source of a file
and the receivers who are interested in downloading the Ifilgraditional swarming, chunk
exchange is restricted to the nodes of the session. Howevemniversal swarmingmultiple
sessions are combined into a single “super session” on &dharerlay network. Universal
swarming takes advantages of the heterogenous resouraeittepof different sessions, such as
the source upload bandwidth, receiver download bandwatthggregate upload bandwidth, and
allows the sessions to share each other’s resources. Tihle isethat the distribution efficiency
of the resource-poor sessions can improve greatly withigibtg impact on the resource-rich
sessions (see [8]).

In universal swarming, if we focus on a particular file, notyotme source and all the receivers
participate in the chunk exchange process, some other noldesare not interested in the file
may also participate. We call the latter out-of-sessioresodo illustrate the essence of universal



swarming, as well as the main issues, consider the toy exaimflig.[1. The numbers associated
with the links are their capacities. Let us consider a paldicfile for which the source is node
1 and the receivers are nodes 2 and 3. Node 4 is out of the se¢sibus focus on a fixed
chunk and consider how it can be distributed to the receiwdith some thoughts, it can be
seen that the chunk propagates on a tree rooted at the sowdasoaering both receivers. All
possible distribution trees are shown in Hiy. 2. We notiee ¢hdistribution tree may or may not
include the out-of-session node, 4. Thus, a distributiee tn general is &teinertree rooted
at the source covering all the receivers, where the oues$isn nodes (e.g., node 4) are the
Steiner nodes.

With this model of multi-tree multicast, one of the main quess is how to assign the chunks
to different distribution trees so as to optimize certairf@@nance objective, such as maximizing
the sum of the utility functions of the sessions, or minimgthe distribution time of the slowest
session. This is eate allocation problenon the multicast trees. One such question was addressed
in [7] in the context of non-universal swarming, where eagssfon’s multicast trees are spanning
trees instead of Steiner trees. For universal swarminggtiestion was addressed in [8].

This paper addresses th&bility problem The main question is: Given a set of data rates from
the sources (which are possibly the solutions to the afonéioreed rate allocation problem), how
do we get a universal swarming algorithm so that the netwardugs will be stable? For the
example in Fig[ L, a source rate of 2 is the largest distiiputate that can be supported by
the network if everything is deterministic. To achieve gtgbunder random arrivals, it usually
requires that the data arrival rate is strictly less thana2 & justification, consider a single-
gueue system). Hence, when the file chunks arrive at (or gi@teby) the source node 1 at a
mean rate2 — 2¢, where( < ¢ < 1, we can place chunks on the first and the second tree in
Fig.[2 at a mean raté — ¢ each. For this example, the solution actually stabilizesrtetwork.
But, this conclusion requires technical conditions andasgenerally true for more complicated
situations.

In this paper, we develop a universal swarming scheme thptogisian approximation algo-
rithm to the tree selectioma(k.a. scheduling) problem, which achieves a rate re@iequal to
the throughput region reduced by a constant fagtor > 1. We show thaty is no more than
the approximation ratio of the tree scheduling algorithine Bcheme requires network signaling
and source traffic regulation. We propose a second univergatming scheme that utilizes a

'Subsequently, when we say an algorithm achieves or stebitizregion, we mean the interior of the region.
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Fig. 1. Node 1 sends the file to nodes 2 and 3.
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Fig. 2. All possible distribution trees for the example irg Fil.

randomized tree selection algorithm, which achieves theesthroughput region, but with a
weaker stability property.

The difference between our problem and the wireless scimggpioblems is substantial. Most
previous papers that consider multi-hop traffic are eithethe unicast setting or in a multicast
setting with a few fixed multicast trees per multicast sessMe must consider multi-hop,
multicast communications, and, to have the largest passibbughput region, we allow each
multicast session to usany multicast trees for the session. The combination of theseeth
features makes our problem both unique and very hard. Orfeeahtiin challenges is that there
is no obvious way to specify the packet forwarding behavidheut per-tree queueing (i.e.,
having a separate queue for each multicast tree) wheredkeather hand, per-tree queueing is
impractical due to the exceedingly large number of trees. $oiution to resolve this difficulty,
on the algorithm side, is to use the techniques of signalim\artual queueing. The techniques
allow us to have very small numbers of queues and at the saneestiow stability guarantee.

Having avoided per-tree queueing, however, the performantalysis is still difficult. In



particular, there is no easy way to prove the stability ofréad queues. Our analytical approach is
to first prove the stability of the virtual queues. The praaofthis step are relatively conventional,

using the techniques of Lyapunov drift analysis. The seated is to make connections between
the virtual queues and the real queues, and use the stabgimjts for the virtual queues to prove

that the real queues are also stable.

The tree selection subproblem is inherent to the problemditated in the paper and it remains
difficult. As a remedy, our algorithms can work with low-castes as opposed to the min-cost
trees; finding low-cost trees can be much easier. The dialBsults are applicable to classes of
algorithms by allowing different tree selection sub-altons. Hence, the research for finding
simpler, more practical algorithms can continue.

The rest of the paper is organized as follows. The modelstangroblem description are given
in Sectior1l. The first universal swarming scheme and thdyaisare presented in Sectibnl Ill.
The second universal swarming scheme and the analysiseserped in Sectidn 1V. In Section
VI] we discuss additional related work. The conclusion iSection[VI].

II. PROBLEM DESCRIPTION

We consider a time-slotted system where each time slot hasaiah of one time unit. Let
the network be represented by a directed grépk (V, E), whereV is the set of nodes and
E is the set of links. For each link € FE, let ¢, denote its capacity (e.g., in the number of
file chunks it can transmit per time slot), where > 0. We assume that each session, which
distributes a distinct file, has one source, and hence, iBesieone-to-one mapping between a
session and a sourBeLet S denote the set of sources (sessions). For eaghS, let V, C V
be the set of receivers associated with the source (session)

For each source € S, suppose constant-sized data packets (i.e., file cfﬁjlaks'ye at the

2The case of multiple sources makes the most sense when trees@ach possess a copy of a common file, which will be
distributed to a common group of receivers. We can extenchéieork graph by adding a virtual node and virtual edgeshEac
virtual edge connects the virtual node to one of the souraed, it is given an infinite capacity. In the expanded graph, th
virtual node will be considered the source of the multicassgon. In the dynamic case where chunks of a common fileearriv
at the sources following stochastic processes, it is dlffitu parsimoniously specify the relationship among the @heinks
to different sources. Without that information, we will iy each source as a separate session (which has the sarok se
receivers).

3Since our algorithms can be deployed more easily at the agijan level, in this paper, we use the tedata packet(or
real packel to mean an application-level data unit and we regard it &sgb&/nonymous to a chunk. When the context is clear,
we usually call a data/real packet a packet. A data packetbeafairly large, such as 256 KB, and may need to be carried
by multiple network-level packets. Our algorithms also sgmaling/control packets, which are much smaller, e.qdeu 400
bytes.



source according to a random process, which will be digietbwover the network to all the
receivers,V,. The motivation for using a source model with dynamic atsva to account for
the end-system bottleneck and timing variations in reading transmitting locally stored data.
In some cases, the content may not be a static file or storalljo€he model is general enough
to cover realtime content, streaming video with time-vagyrate, or non-locally stored static
data. Even if the entire file is static and stored at the squtie source model can still be
useful. For instance, the data packets can be injected tsdurce node at a constant rate,
which corresponds to a deterministic arrival process witbmstant arrival rate. Let, (k) be the
number of packet arrivals on time slbt Let us make the following assumption on the arrival
processes A(k)} throughout the paper, unless mentioned otherwise. Additiassumptions
may be added as needed.

AS 1. For each sources € S, E[A,(k)|x(k)] = A, and E[(A(k))*|z(k)] < K, for some
0 < K; < oo, for all time k, wherexz(k) represents the system state at tilne

The following are some remarks about Assumption[AS 1.

. The system state;(k), will depend on the specific settings of the two algorithmssidered
in this paper and will become clear later. It usually inclsiddl the queue sizes at tinke and
possibly some additional auxiliary variables. If the aatiprocess is independent of the past
for each source, assumption A$]1 can be stated without conditioningr6h). However,
some non-1ID arrival processes can lead to dependence &ettie current arrivals and the
current queue sizes, in which case the statement with ¢onahg is more general than one
without conditioning.

. If the arrival process is independent of the past for eachcgoy assumption AS11 can be
stated without the conditioning.

« (As)ses could be the solution of a rate allocation problem (see teeutdision about the rate
allocation and stability problems in Sectigin I).

In this paper, we will present stable universal swarmingpalgms to distribute the packets
to all the receivers. For each € S, the packets will be transmitted along various multicast
distribution trees rooted at to the receivers inV;. A multicast tree in the multicast case
corresponds to a path between a sender and a receiver initastucase. Hence, using multiple
multicast trees for a multicast session is analogous todieery using multiple paths between
a sender and a receiver in the unicast case.

We will take Neely’s definition of stability ( [9]; [10], chder 2) unless mentioned otherwise.



For a single-queue proce$s(k)}, let us define the overflow function:

K

) 1

g(M) = h;{n SUp — ZP{q(k‘) > M}. (1)
— 00 k—1

Roughly speaking, the overflow functigri}/) in (@) defines the long-time average fraction of

time when the queue sizgk) is more than a chosen threshdld. In the stationary and ergodic

case, it coincides with the stationary (and limiting) prioitity that the queue size exceeds.

Definition 1. The single-queue procegg(k)} is stableif g(M) — 0 as M — oo. A network
of queues is stable if every queue is stable.

With this definition of network stability, a sufficient conidin for network stability is: Some
Lyapunov function of the queues has a negative drift when @nthe queues becomes large
enough [9] [10] [11] [12]. If with additional assumption$iet network queues form an ergodic
Markov chain, the same drift condition implies the chain @sifive recurrent, or equivalently,
has a stationary distribution.

A. Throughput Region

For each source € S, let the set of candidate distribution trees be denoted,byhroughout
this paper,7, contains all possible distribution trees rooted at the s®urunless specified
otherwise. Letl’ = U,csT;. The trees can be enumerated in an arbitrary ordey,as - - - , t7,
where| - | denote the cardinality of a set. Althoud| is finite, it might be very large.

The throughput regionis defined as
A={A>0:3Ja>0suchthaty a,=1VseSand) > A <c,VecE} (2

teTs s€S  {teTslect}
Here, o represents how the traffic from the sources is split amongdistibution trees. The
definition of A says that a source rate vectors in A if there exists a set of tree rates for each
multicast session such that the resulting total link data imno more than the link capacity for
any link. Obviously,A contains the stability region, i.e., all that can be stabilized by some
algorithms. This is so because, for any non-negative mearnvextor\ ¢ A, no matter how the
traffic is split among the distribution trees, there existnk e such that the total arrival rate
to e is strictly greater than its service rate. Furthermores thefinition of the throughput region
allows the bandwidth bottleneck to be anywhere in the nédtwat the access links or at the
core.



We also define &-reduced throughput regioas%A, where~ > 1. By saying that the arrival
rate vector)\ is strictly inside the region};A, we mean that there exist somg> 0 and a vector
a>0such thatys, ., oy =1,¥s € Sand . ¢ > rer e @As < ¢ — €, Ve € E. This is
equivalent to

ce > (€0 + Z Z as), Ve € E. 3

s€S {teTslect}
Note that the region of rate vectors that are strictly ingiue region%A contains the interior
of %A. In Section[1ll, we will show that the interior ok is stabilizable. That is, for any rate
vector \ strictly inside the region\, there exists a scheduling algorithm such that the queues in
the network are stable under the algorithm.

B. The Class of Algorithms: Time Sharing of Trees

Each source has at least two possible approaches to use ttieasiurees. In one approach,
the traffic from each source may be split according to some weigltts; )7, and transmitted
simultaneously over the trees on every time slot. Altewadyj the distribution can be done by
time-sharing of the trees. The algorithms in this paperofelthe time-sharing approach. On
each time slotk, the sources selects one distribution tree from the get denoted byt (k),
according to some tree-scheduling (tree-selection) sehamd transmits packets only over this
tree on time slot. The time-sharing approach can emulate the first approatteisense that,
when done properly, the fraction of time each distributi@etis used over a long period of time
can approximate any weight vectas, );cr., .

In addition to selecting the distribution tregk) at each time slot, an algorithm also needs
to decide how many packets are released to the tree. We vedlept two algorithms in the
following sections. The key question is what portion of tla¢erregion is stabilizable by each
algorithm.

[1l. SIGNALING, SOURCE TRAFFIC REGULATION AND y-APPROXIMATION MIN-COST TREE
SCHEDULING

A. Signaling Approach

Stability analysis of a multi-hop network is often difficidecause the packets travel through
the network hop-by-hop, instead of being imposed directlglt links that they will traverse. As
a result, the arrival process to each internal link can biecdlf to describe. The frequently-used
technique of network signaling can be helpful. In our casegeach time slot, each source



s sends one signaling packet to each node on the currentlgtedl¢reet (k). A signaling
packet is one of the two types of control packets in the pdpéas two main functions. The
first is to set up the multicast treg(k). A signaling packet contains a list of link IDs, which
describe to the receiving node which of its outgoing linke part of the multicast tree. The
second function is to inform the receiving node the intendedrce transmission rate on time
slot %, i.e., the number of packets to be transmitted on time /sldgto make the proofs for the
main results easier, we make the following assumptionstadbgontrol packets, including the
forward signaling packets and the feedback packets: Theaiqgrackets are never lost and they
arrive at their intended destinations within the same titaean which they are first transmitted.
Note that these assumptions are not crucial for either theryhor practice We do not make
any assumptions on the data packets.

We will see that the rate information contained in a sigrialpacket is a very tight upper
bound on the number of real packets released by the sourdeabtirhe slot. To mark the the
slight discrepancy, we use the tenintual packetsand call the rate contained in the signaling
packet therate of virtual packetsor the virtual source rate Consider a particular time sldt
and a particular internal link on the selected distribution tree. The real packets issyeithdd
source on time slot will in general be delayed or buffered at upstream hops atichai arrive
at link e until later. However, via signaling, link knows how many virtual packets are injected
by the source and arrive at linkon time slotk. The cumulative number of arrived real packets
at link e must be no more than the cumulative number of arrived vimpagkets (via signaling
packets).

One question is how many real packets are to be released teetherk on a time slot. One
possibility is that each sourcereleases all the packets that arrive during time &late., A;(k).

4 In actual operation, the two algorithms in the paper needenfirce these assumptions. The control packets can berlost o
delayed. With straightforward minor modifications, suchuagg old information or postponing the algorithm executimtil
new information is available, the algorithms can cope witbse conditions and are expected to be robust. They canvachie
stability and throughput optimality as indicated by theattye For better performance with respect to other metricg. (€lata
queue size, data delay, convergence speed), the algordéhmsnplement the following policy: The control packets gieen
higher priority at all the nodes than the data packets sothegt experience minimal delay; the time slot size is chosebet
greater than the worst-case round-trip propagation timigh Bich a policy, the assumptions are expected to be sdtisfoest
of the time. In our simulation experiments (see Seclidn W tontrol packet delays are included. The algorithms ageve
fast and to the right values. On the theory side, there are geasons to believe that the stability results in this pagpr
hold under the significantly relaxed assumptions: The netvadelays of the control packets are bounded and the number of
consecutive control-packet losses is bounded. The bomedscassumptions make the conditions of Corollary 1 in [afi$fed.
The stability results would follow.
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However, the uncontrolled randomnessAf( k) causes difficulty in the stability analysis, as we
will see later. In our algorithm, each sourgesets the number of real packets to be released at
the constant valug, +¢; on every time slok, if that number of real packets is available. Every
signaling packet from source contains the constant virtual packet rate+ ¢;. Here,¢; is a
sufficiently small constant such that< |S|e; < . This guarantees the stability of the source
regulators, as we will see.
In the algorithm, each link updates a virtual queue, denoted qyk).
gk +1) =[g(k)+ > (Atea)—cly. 4)
seS:ects(k)

[-]+ is the projection operation onto the non-negative domawteNhat the second term on the
right hand side of[(4) is the aggregate virtual data arriaé from all the trees containing link
e, which means the link capacities are shared by differeestréree scheduling is based on the
virtual queues instead of the real queues.

B. Source Traffic Regulation

A regulator is placed at each soured¢o ensure that on each time slot, souscgansmits no
more than\, + ¢; real packets. A regulator is a traffic shaping device. All plagkets arriving at
sources first enter a regulator queue. They will be released to thevarétlater in a controlled
fashion. On each time sldt, let D,(k) denote the number of real packets released from the
regulator to the distribution treie(k), and letp,(k) be the regulator queue size at souscdhe
evolution of the regulator queue is given by

ps<k+1) :ps<k>+As<k> _Ds(k)v (5)

where

Du(k) = { As +e1 if ps(k) > A+ €5 ©)

ps(k)  otherwise
Expressiond (6) ensures that at mbst-¢, real packets are released on each time slot. Since this
departure rate is higher than the mean packet arrival rateilisy of the regulator is guarant&d
We will provide more details in the stability analysis. Nobat the traffic regulators are required
only at the sources and they can be implemented at the etehsysi.e., the content servers.

5 A packet may experience some delay at the regulator befiseréleased to the network. The performance analysis shows
that this delay is bounded (in expectation) since all regulgueues are bounded. Our simulation results show thadleay
and queue sizes can be made small even for very small
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C. ~-Approximation Min-Cost Tree Scheduling

We can interpret the virtual queue sigzeas the cost of linke. Then, the cost of a treeis
> et Ge- We propose the-approximation min-cost tree schedulisgheme: On each time slot
k and for each source, the selected treg (k) satisfies

) <
;:k) 7 min ze; ge(k )
where~ > 1. If there are multiple trees satisfyingl (7), the tie is brokabitrarily.

The rationale for this tree-scheduling scheme is straigivird. Wheny = 1, the tree-
scheduling scheme solves the min-cost Steiner tree probdmch is NP-hard. But, the min-
cost Steiner tree problem has approximation solutionschvianie can use. In [13], a family of
approximation algorithms for the directed Steiner treebf@m is proposed, which achieves an
O(log® N) approximation ratio in quasi-polynomial time, wheie is the number of receivers.
It will be proven in the following stability analysis thaff, we are able to find the minimum-
cost Steiner tree on each time slot, we can stabilize thearktvor the interior of the entire
throughput region)\; if we adopt they-approximated min-cost tree scheduling, we can stabilize
the network for the interior of;A.

The link costs (i.e., the virtual queue sizes) are carriethéomulticast sources by the second
type of control packets - the feedback packets. On each tiobeasnetwork node sends to each
source one feedback packet, which contains the costs ofdtie’sroutgoing links.

D. Stability Analysis
The stability analysis is based on the drift analysis of Lyagv functions.
1) Stability of the RegulatorsDefine a Lyapunov function of the regulator quewess
=> 8)
ses
Lemma 1. There exists some positive constant M, < oo such that for every time sldt and
the regulator backlog vectaw(k), the Lyapunov drift satisfies

E[Li(p(k +1)) = Li(p(k)) p(k)] < —e1 Y ps(k), (9)

ses

if Y g pa(k) = 20

Proof: This is because the mean arrival rate is strictly less thanntlean service rate
provided the regulator has sufficient packets. The proofasdard and we omit the detalils.
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2) Stability of the Virtual QueuesbDefine a Lyapunov function of the virtual queue backlog
vectorg as

Ly(q) =) g (10)

ecE
Let t(k) = (ts(k))ses be the vector of the chosen distribution trees at tilméNe allow
randomness in determiningk). For instance, when there are multiple trees satisfyiihg tt@
tie can be broken randomly.

Lemma 2. If the mean arrival rate vecton is strictly inside the regior%A, then, there exist
some positive constanis< M, < co ande for all sample paths oft(k)}, such that, for every
time slotk and virtual queue backlog vectark), the Lyapunov drift satisfies

Lo(q(k +1)) = La(q(k)) < My — 2¢ > qe(k), (11)

eeE

wheree = veg — |S|e; > 0.

Proof: Under any sample path of the procg$ék)}., (1) holds due to the tree-selection
algorithm [7) and the definition of the-reduced throughput regiofil (3). The detailed proof is
omitted for brevity.

Hence, wheny . q.(k) > % the Lyapunov function has a negative drift under all sample
paths of{t(k)}s.

Lo(q(k +1)) — La(q(k)) < —€ > qe(k). (12)

ecE
Corollary 3. For each linke, there exists a sufficiently large constahf. < oo such that
qe(k) < M..

Proof: From LemmdXR, under any sample path{ofk)},, ¢.(k) is uniformly bounded

from above. Hence, there exists a sufficiently large comstdn< oo such thatg. (k) < M..

Remark: The chosen deterministic release rates of the virtual gtackuarantee that the virtual
gueues are bounded. This is an important fact for provingstakility of the real queues. If the
sources signal the actual numbers of real packet arrivalsagch time slot, which are random,
the virtual queues may be stable but are not guaranteed touredbd.

3) Stability of the Real Queue$ior convenience, let us assume each real packet remembers

its distribution tree. This way, the nodes on the tree knownvo duplicate the packet. Moreover,
each packet at any link also has an unambiguoas count which is the hop count on its tree
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path from the source to the current link. With this setup, \aa assume to use the following
gueueing discipline for the real queues.

AS 2. At each linke, a packet with a smaller hop count has priority over any packith a
larger hop count.

First, we will show some properties of the real packet atnases to the intermediate links.
Define an indicator functiod (e, t), wheree is a link andt is a tree.

Ie.t) 1 ifeet;
67 = .
0 otherwise

Lemma 4. For any linke € E, there exists a constaft< M, < oo such that for anyk, and
k with kg < k,
k
> Di(w)I(e,to(u)) < (k— ko + 1)ce + M.. (13)
u=kgo s€S
Proof: According to [(4),
qe(k +1) > qe(k) + > (A + &) (e, ti(k)) — ce, Ve € E. (14)

ses
By summing [I4) over time slots, the proof is straightfordvand is omitted.
Let Q.(k) denote the real queue backlog of linkat time slotk. We can show by induction
that under the prioritized queueing strategy in [AS 2, thé geaue backlogs are bounded. The
proof is adapted from [14].

Theorem 5. With the additional assumption A$ 2, if the mean arrival re¢etor \ is strictly
inside the region%A, the real queue backlogs are bounded. l.e., there existe smmstant
0 < M’ < oo such that

Q.(k) < M', Vk, Vee€ E. (15)

Proof: See Appendix A.

Theorem 6. With the additional assumption AS$ 2, if the mean arrival re¢etor A is strictly
inside the region};A, ~v > 1, the y-approximation min-cost tree scheduling scheme stakilike
network.

Proof: From Lemmdll, Lemmgl 2 (or Corollafy 3) and Theorem 5, the e¢gulqueues
have negative drifts, the virtual queues and the real queutee network are all bounded.
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The reduction factoi /~ in Theoren(® is a lower bound for the worst case. In practice, t
actual reduction factor for a given network and a specifie-geheduling scheme may be much
larger. For instance, we use a sub-optimal tree-schedsithgme and some ISP networks for
the simulation results in Sectidn] V, and the algorithm cahie® nearly the full throughput
region.

IV. RANDOMIZED TREE SCHEDULING

Theorem[ 6 implies that the interior of the throughput regioran be stabilized, provided
one can solve the hard min-cost Steiner tree problem. If aqipiation algorithms are used
for the Steiner tree problem, Theorérn 6 says that a redutedegion is stabilizable. In this
section, we will continue to cope with the hard Steiner tregbfem. Instead of approximation
algorithms, we will consider an algorithm that randomly gées the trees at each time slot.
Selecting trees by random sampling is attractive in pracsioce the algorithms for doing this
tend to be simple and fast. Some practical systems such &sriiht [4] already use variants
of random sampling.

Our main concern is whether the tree-sampling approach maperformance guarantee with
respect to stability. We conjecture it does. We will show artpnt steps that may eventually lead
to the conclusion that, in contrast to the case with apprakion algorithms, the entire interior
of A is stabilizable. The development and analysis of the algaoriare in part based on [15].

A. Signaling
In this algorithm, the sources still signal the links abdwe tncoming traffic, but they are not
regulated. Specifically, the number of virtual packets algd by sources on every time slot:
is As(k) instead of)\, + ¢;. For eache € F, the evolution of the virtual queue,(k), is
QG(k + 1) - [QE(k) + Z As(k) - (Ce - EZ)]-H (16)

seS:ects(k)
where( < ¢, < ¢. From [16), the virtual queue is serviced at less than tHes@ulice capacity.
We will see the reason in the stability analysis (see Canplldl and the remark after it).

B. Randomized Tree Scheduling

Let 7,(¢) denote the min-cost tree for soureewith respect to the link cost vectar. We

Z e = ?61%} eze; Ge- (17)

e€Ts(q)

have,
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If multiple min-cost trees exist, an arbitrary one is chosen

The algorithm has two stagepick and compare In the pick stage, each source uses some
randomized algorithm to pick a tree, with the requiremeratt tinere is a positive probability
to pick a min-cost tree. More specifically, letk) = (t,(k)).cs be the trees picked by the
randomized algorithm on time slét The following condition is satisfied for some> 0,

P{>  qk)y= > qlk).VseS}=> (18)
ects(k) e€ts(q(k))

In the compare stage, the cost of the tree just picked is caedpaith the cost of the selected
tree on the previous time slot, with respect to the curremk tost vector. The picked tree is
selected only if it has a lower cost. This ensures that the that ends up being selected is
better than the previously selected tree. Recall th@dt) is the scheduled tree at timie The
compare stage yields a selected tree that satisfies theviofoFor any source € S,

(k) = { BRI Cer 0eK) € Dy, oo 4 (R); (19)
ts(k —1) otherwise

There are many possible randomized selection algorithrats ghtisfy [18) and[(19). For
instance, one algorithm might be to modify the current trgerdandomly adding or deleting
edges until a new multicast tree is found. The selection ef édges can be biased toward
lower-cost ones for addition and higher-cost ones for awletn this paper, we will not dwell
on finding specific algorithms but will focus on the stabilisgue of the whole algorithm class.

C. Stability Analysis

We will show that, if the mean arrival rate vectdris strictly inside the throughput regiah,
the randomized tree-scheduling scheme is able to stahilizke virtual queues. With additional
assumptions, the cumulative arrival of the real packetsriyyteme slot is strictly less than the
accumulation of the link service rate for every link.

1) Stability of the Virtual QueuesThe virtual queue sizeg(k) are considered as the link
costs. Lett(k) be the vector of chosen trees. Define a Lyapunov function ef(q, t):

L(x) = La(x) + La(x),

where

Li(x) =) a2 La(2) = QA _de— Y a))

eck ses e€ts e€Ts(q)
The proofs for the following three main lemmas parallel tlevelopment in [15], although
the details are different and technical. We omit them fowvitye
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Lemma 7. If the mean arrival rate vecton is strictly inside the throughput region, there
exist some positive constamt$; and ¢ such that
E[Ly(x(k + 1)) = Ly(w(k))|a(k)] < My +2y/Lo(x(k)) — 2¢ > qe(k) (20)
ecE
Lemma 8. If the arrival rate vector)\ is strictly inside the throughput regiof, there exist some
positive constantd/, and M5 such that

E[La(w(k + 1)) — Lo(x(k))|z(k)] < Ma + My\/La(2(k)) — 6 La(x (21)

Lemma 9. If the arrival rate vector)\ is strictly inside the throughput regiof, there exist some
positive constantd/ < oo and e such that, ifL(z(k)) > M,

E[L(z(k + 1)) = L(z(k))[x(k)] < —ev/L(x(k)). (22)

Theorem 10. If the mean arrival rate vecton is strictly inside the throughput region, the
randomized tree scheduling scheme stabilizes the virtuatigs.

Proof: This is a corollary from Lemma] 9.
2) Stability of the Real QueuedVe have partial results about the stability of the real geeue
under additional conditions. We assume the following irs thubsection.

AS 3. The processe§A,(k)} for differents are independent from each other. For eack S,
{As(k)}r is IID. At every timek, there is a nonzero probability that no packet arrives at the
sources, i.e., PA,(k) =0,Vs € S} > 0.

We will show that for any linke, its average traffic intensity (load)., satisfiesp. < 1,
wherep, is the ratio of the average packet arrival rate and the limd. fairst, stronger stability
conclusions can be said about the virtual queues.

Theorem 11. Suppose the mean arrival rate vectbiis strictly inside the throughput regiof,
and assumptions AS 1 and BIS 3 hold.

. The procesgq(k),t(k)}2, is an aperiodic and irreducible Markov chain with a statiopa
distribution. Moreover, lefj be the virtual queues under the stationary distributionefh
E[g.] < o0

« The strong law of large numbers holds: For each initial cdiui, and for alle € F,

hm E]Z:O Qe (U)

= F[q.], almost surely. 23
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« The mean ergodic theorem holds: For each initial conditiand for all e € F,

Jim Elg. (k)] = E[ge]. (24)
Proof: See Appendix A.
Theorem 12.For any linke € E,

k
lim su su SCG_E ) 25
msup 7 Z (w)) 2 (25)

k
lim sup E Z Z u))] < ¢ — €. (26)

k—o0 —0 sesS

Proof: See Appendix A.
Recall thatQ). (k) denotes the real queue backlog of linlat time slotk. Next, we show that
the procesqQ.(k)} is rate stablefor all links, where the defintion of rate stability is gives a
in [12].

Corollary 13. Suppose the mean arrival rate vectoiis strictly inside the throughput regiof,
and assumptions AS 1 and AS 3 hold. For any link £, the procesqQ.(k)} is rate stable,
ie.,

lim

k QTU{) — 0 with probability 1.

Proof: See Appendix A.
Rate stability implies that the long-term average ratesrovals and departures are identical for
each queue, and is weaker than the stability definition ofgireue backlog being bounded.

Corollary 14. For any linke € FE, the average traffic intensity (or loag). < 1, wherep, is

defined as

. Ek—o ae(u)
e = limsup =“—=——=,
P k—)oop (k + 1)06

wherea,.(u) is the number of real packets arriving at linkat time u.

Proof: For any time slot, the number of cumulative arrivals at the real queue is ncemor
than the number of cumulative arrivals at the virtual queige,

D ac(u) <Y A (w)I (e ().

u=0 seS

Then, p. < 1 follows from Theoreni_12.
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Remark: The service rate of the virtual queue of liakwhich isc. — e;, guaranteeg,. < 1.
Under the randomized tree scheduling scheme, the virtuallegiare stable, the real queue
processed().(k)} are rate stable, and the real traffic intensity satisfies 1 for every linke.
But, we do not know whether the real queues are stable in theesef Definitior{ L. We expect
that in practice, they are almost always stable. We suspattunder more assumptions on the
traffic arrival processes and the queueing discipline, ¢a¢ queues can be proven to be stable.

V. SIMULATION RESULTS AND EVALUATIONS

In this section, we present illustrative examples from dation experiments that support the
stability analysis of the algorithms. We will also evalu#te control overhead of the algorithms.

Since the algorithms are based exclusively on the infoonatontained in the control packets
(including the forward signaling and reverse feedback pek we trace the behavior of the
control packets carefully with event-driven simulatioriteg packet level. Link propagation delays
and transmission delays for the control packets are indludéhe simulation. The control packets
are routed on the shortest path, measured by the hop couaadhtlink, the control packets are
transmitted at a higher priority than the data packets dntgaeded, are stored in a high-priority
gueue. When a control packet arrives at its intended detimaan event will be triggered to
update the virtual queues or the network costs, dependinghather it is a forward signaling
or a feedback packet. The rest of the algorithm operatiokes pgace on time slot boundaries.
On each time slot, a source sends one signaling packet toremighon the currently selected
multicast tree to set up the tree and to inform the virtuakseuate; it transmits data to the tree
in the amount decided by the algorithms; it also computesvatree according to the network
costs that it currently knows, and the new tree will be set ng ased on the next time slot.
On each time slot, a network node sends at most one set of disls ¢of its outgoing links) to
each of the multicast sources.

To evaluate the stability of the real queues, we also needatk the sizes of the real data
gueues. In the interest of reducing simulation time, weetrdte real data at the burst level
instead of the packet level. Specifically, for each link, giaulator computes the amount of
data it can transmit in the time slot, which is the differennéehe link capacity and the amount
of control packets transmitted during that time slot. Thée, burst of data is pushed to the next
hop. Although there is a slight degree of inaccuracy in timeutated queue sizes, the outcome
of whether or not the queues are stable is not altered by tre-lmvel simulation for data.

We simulate our algorithms over two commercial ISP netwantotogies obtained from the
Rocketfuel project [16]. The first one consistsidfnodes and 36 links; the second one consists
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of 295 nodes andl 086 links. For each network, we assume the link capacities ackusively
allocated to the content distribution service. We assureeetis a single distribution session.

On the smaller network with1 nodes and 36 links, we select one node as the source 2ihd
nodes as the receivers. All other out-of-session nodes raaysbd as helper nodes. We assign
1 Gbps link capacity to all the links except some critical BniBy critical links, we mean the
links that become bottleneck easily if they do not have Sefficcapacity. We assigh Gbps
link capacity to each of the critical links. There are exagehrandom arrivals of packets to the
source. We assume that the number of packet arrivals on @aehstot is a Poisson random
variable and that the arrivals on different time slots aBe The size of each data packet (chunk)
is chosen to b&56 KB. Since the time slot size is equal tosecond, the mean of the Poisson
distribution is equal to\,/(256 x 8 x 1000) and the unit is in packets. As an example, for the
source arrival rate\, = 1990 Mbps, the mean number of arrivals is ab®T2 packets. The
standard deviation is abo@t .2 packets. The Poisson distribution is widely used to captiuee
total effect of many small disturbances when the outcomeois-megative and integer-valued.
The maximum achievable session rate i&bps, which is obtained by running the subgradient
algorithm introduced in [8]. The control packet size is und@0 bytes for our experiments.
The time slot duration is 1 second. We have done experimeititsdifferent link propagation
delays:20 ms, 50 ms, 80 ms, and100 ms. These cases have similar performance results. The
1-second time slot size is the relevant delay that detesriine algorithm performance. Hence,
we will only present the results for the caseldof ms propagation delay at each link. We vary
the mean arrival rate, to see whether the algorithms can achieve network staliilitye rate
is below the maximum achievable session rate.

We also conducted experiments with other traffic modelsh sagtruncated Pareto distribu-
tions, which have very large variances, and other distiobst with very small variances. In
addition, we conducted experiments where multiple musticessions exist simultaneously in
the network. The results for these cases do not show much msight than what we will
subsequently present, and for brevity, they are not regorneéhe paper.

A. Algorithm Using Source Traffic Regulation and Approxienstin-Cost Tree Scheduling

In this subsection, we show the performance of the algorittinoduced in Sectiofill. For
the approximate tree selection algorithm, we use the dlgurby Charikaret. al with tree level
2, as proposed in [13]. A regulator queue is maintained onlthatsource. In the simulation,
we sete; = 1 packet per second @048 Mbps. Our main concern is whether the regulator and
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Fig. 3. Peformance of the first algorithm; (a) regulator queize whene; = 1 packet per second (dt.048 Mbps); (b)
aggregate real queue sizes.

real queues are bounded if the mean arrival rate to the s@itow the maximum achievable
session rate.

Fig.[3 shows that the network queues remain stable ifs below the maximum achievable
session rate2(Gbps) even when, is quite close to the maximum session rate. whgexceeds
the maximum achievable session rate, the total networkegsize grows without a bound, which
means some of the queues are unstable.

Fig. @ (a) shows that the regulator queue size is bounded arness tharb00 MB even
when )\, is greater than the maximum achievable session rate. Tisemda that the regulator
gueue is a simple single-server queue with a deterministicice rate and the algorithm sets
the service rate to be slightly greater than by ¢, as given in[(6). In the experiments here,
e Is very small relative to the traffic arrival rate and the ficafoad is extremely heavy. For
instance, when, = 1990 Mbps, the traffic load (intensity) to the regulator queué.999. Even
under such heavy load, the regulator queue size is not vegg.l& can be made much smaller
when ¢, is increased. Fid.]3 (b) shows that, eventually, the aggeegsl queue size over all
the queues in the network is under GB when the arrival rate\; = 1990 Mbps) is slightly
below the maximum achievable rate; that yields an averageagize of 80.9 MB at each link.
The largest queue size at a link is ab6ad MB under that arrival ra& The queue sizes can
be much smaller when the arrival rate is lower. These queatee\glues can be compared with

®In this section, the maximum queue sizes are what we obsetwedg a long simulation run.
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Fig. 4. Aggregate real queue sizes of the first algorithm ore tslotsO to 1000.

the bandwidth-delay product, which 625 MB for a critical link and125 MB for a non-critical
link. Hence, using d GB buffer at each link is more than sufficient for this testecéSince the
source sends data packets at a raté 990 Mbps and the packets need to be duplicate@to
receivers, aboui GB data must flow through the network every second. Th&B data stored
in all the queues is about twice of that amount. Hence, theuatnaf queued data is reasonably
small.

It is important to point out that the eventual queue sizesvshia Fig.[3 are mostly determined
by the transient phase of the algorithm, which is the phasteabeginning of the algorithm
operation before the time-average rates approach the wptirihe queues build up at this phase
because the algorithm hasn’t found the right transmissatesryet. Once the time-average rates
approach the optimum, the queues stop growing but oscéledand some values (see Hg. 4,
which shows the aggregate queue sizes on time $ldts 1000). The oscillation is due to a
feature of the algorithm, which is that the multicast sas$iops among different multicast trees
even in the steady state. A consequence is that some of #sedan be temporarily overloaded.
From the simulation results, we see that the magnitude ob#uedlation can be much smaller
than the queue size itself. The oscillation of the aggregatue size is less thahGB when
As = 1990 Mbps, which yields an average @R.1 MB per link. When the multicast sessions
are long-lasting and the network topology and link bandiwidte unchanging, it is enough to
decide the buffer sizes based on the steady-state queueidrelha the cases of Fid.]3, we see
that the buffer requirement is much smaller than the bantthadeélay products.

The good queue-size performance can be explained by twonabiems. First, by using
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multiple multicast trees, the excess packets are spreadraligueued all over the networks.

Second, the algorithm converges reasonably fast. [Fig. &Hajvs that, for each experiment

where the arrival rate is below the maximum achievable sassite, the average data receiving
rate per receiver reaches more than 90% of the arrival raéecaind100 to 200 seconds, and

it reaches nearly 100% of the arrival rate aft&®00 seconds. The average receiving rate is
also a time average, which has long-time memory. Judgingitpy4; the queues of the system

approach the steady state very quickly, withihtime slots. The instantaneous receiving rates
must have reached the arrival rate within the same time frame

B. Algorithm Using Randomized Tree Scheduling

In this subsection, we show the stability of the algorithrtraduced in Sectiof IV. For the
randomized tree selection algorithm, we let each link bectetl as an edge on the random tree
with a probability inversely proportional to its virtual gue size. The idea is to reduce the chance
of selecting links with large virtual queues. Once a linkatested to be on the tree, all links that
will lead to a loop with the selected links are removed from ¢andidate list. The candidate links
are scanned repeatedly in a breadth-first order, startomg the source, until all the receivers
are connected. How the random tree is selected will not affexstability result as long as the
condition in [18) is satisfied. However, the choice of the @méfects other aspects of performance,
such as the queue sizes. When the queue sizes are considadatition to throughput, what can
be considered as good choices for the random tree remaingeanquestion. Interested readers
may refer to related literature in randomized link schaaylalgorithms for wireless networks
[17]-[20].

Fig.[B shows that both the network virtual queues and theqeales remain stable K, is
below the maximum achievable session rate. Whgre- 1990 Mbps, the aggregate real queue
size of all the network queues is undes GB, which is about the amount of data flowing
through the network in &-second interval. Under the same arrival rate, the averageejsize
per link is 183.8 MB and the largest real queue size at a link i8 GB, which is2.88 times of
the bandwidth-delay product of a critical link. Far = 1800 Mbps, the aggregate queue size
is under15 GB, the average queue size per link is undlé®.3 MB, and the maximum queue
size at a link is undet GB. Hence, the queue sizes can be made much smaller withhdlyglig
reduced arrival rate. Compared with the first algorithm,rgda buffer is required at each link.
When )\, exceeds the maximum achievable session rate, both thegaggreirtual queue size
and the aggregate real queue size grow indefinitely; thearktis unstable. After reaching the
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steady state, the real queue process exhibits more oxilkian that in the first algorithm. This

is in part because the randomly selected tree on each tinhésstmt necessarily the min-cost

tree. The aggregate queue size oscillates withi)-&B range and the average oscillation is
73.5 MB at each link. Fig[b (b) shows that the average receivitg canverges reasonably fast
to the arrival rate when the arrival rate is below the maximaghievable session rate.
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C. Results for the Larger Network

We have conducted more experiments on the larger ISP netwibink295 nodes andl 086
links. We assigrb Gbps link capacity to each of the critical links amdGbps to each of the
other links, and we set up one multicast session B4tmeceivers. The experiments suggest that
the maximum session rate is arouddsbps, although we do not know the exact value. Elg. 7
(a) shows that the network is stable when the sourceXate 2 Gbps and the real queues build
up indefinitely when the source rate 4sl Gbps. For the case of, = 2 Gbps, the aggregate
queue size is unde&i0 GB or 80 GB for the first or second algorithms, respectively; the ager
queue size per link is undéb.2 MB or 73.7 MB, respectively. The oscillation of the aggregate
gueue size in the steady state is untleGB for both algorithms; after divided by the number of
links, the average is undéB.8 MB per link. The largest queue size observed at a link GB
for the first algorithm an®1 GB for the second algorithm. Evidently, tree selection ie finst
algorithm is better at avoiding congested links. In the sdcalgorithm, a link coming out of the
source has the largest queue size for much of the simulaticatidn. Better tree selection should
help the second algorithm to reduce the largest queue simrall) these are promising results
for buffer requirements, particularly considering thetfttere are more receivers in this set of
experiments. Fid.l7 (b) shows that, in each stable case whete2 Gbps, the average receiving
rate per receiver ramps up ta® Gbps in undeB00 time slots, which i90% of the arrival rate.
Again, this receiving rate is a time average as well. The eayence speed of the instantaneous
receiving rate can be inferred from F[d. 7 (a). There, we kee the queues become steady in
less tharb00 or 1000 time slots for the first and second algorithm, respectivalg. can deduce
that convergence to greater than’% of the final value has been achieved within those time
slots. We conclude that the algorithms converge fairly.fast

D. Control Overhead

We will briefly describe a simple design of the signalingAktohprotocol and show that the
control overhead is small. On each time slot, a source samelsignaling packet to each node on
the multicast tree selected by the algorithm. The signglaucket directed toward a node contains
a list of link IDs (32 bits each), which designate the nodeiggoing links on the multicast tree.
The packet also contains a 32-bit virtual source rate and-bit32ulticast session ID (which
can use the source ID). The second type of control packetgheatunction of carrying the
costs of the links (i.e., links’ virtual queue sizes) backhe sources of the multicast sessions.
On each time slot, a node sends one feedback packet to eaate.sdhe packet contains the
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IDs and costs (32 bits each) of the node’s outgoing links &ed3R-bit node ID. Every control
packet has an additional 20-byte header containing me&uedlus information. The size of each
control packet is well under000 bytes in typical cases.

For a network withn nodes andn links, the total size of all the signaling packets from a
source is at mos20 x 8 + 32+ 32)n + 32m bits on each time slot. Consider a fairly aggressive
example where the network ha80 nodes and000 links and the time slot size 8.5 seconds.
On each time slot, the total size of the forward signalingkpgis163, 200 bits, which means
the control traffic rate from the source 386.4 Kbps. If the source data rate i90 Mbps, the
forward signaling overhead is onty3264%. Furthermore, the control traffic rate is independent
of the source data rate. As technology progressé<3bps orl0 Gbps source rates, the overhead
becomes$).03264% or 0.003264%, respectively. It is also sensible to define the signalingriogad
with respect theotal data traffic rate for the multicast session. For a multicassi®n withr
receivers, the total data traffic rate entering the recsil@equal tor times of the source rate.

If a multicast session hag)0 receivers and the source rateli® Mbps, the total data rate is
10 Gbps. The signaling traffic i8.003624% of 10 Gbps.

The second type of control packets has the function of aagryine costs of the links (i.e.,
links’ virtual queue sizes) back to the sources of the matticsessions. On each time slot, each
node sends one feedback packet to every source. The packatnsothe IDs and costs of the
node’s outgoing links, the node ID and a 20-byte header. Tthentotal size of all the feedback
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packets received by a source on each time sl(@(s< 8 +32)n + (32+32)m bits. For a network
with 300 nodes and000 links, the total size i249, 600 bits, which corresponds to a traffic rate
of 499.2 Kbps when the time slot size is 0.5 seconds. Rar Mbps, 1 Gbps or10 Gbps source
rates, the overhead 54992%, 0.04992% or 0.004992%, respectively, when compared with the
source rate; it i€.004992%, 0.0004992% or 0.00004992%, respectively, when compared with
the total data rate for a session with0 receivers.

VI. RELATED WORK

Research on similar stability questions has been veryegdtiut generally, in the context of
unicast (e.g. [9], [14], [21]-[26]), possibly with multglpaths per connection. The presence of
multicast puts our problem in a class of its own in that manyierastable control algorithms,
such as the maximum backpressure-based algorithm [22}eahdiques for stability analysis are
not directly applicable. The main reason is that, unlikecast, the flow conservation condition
no longer holds under multicast.

There are several papers on the stability analysis of nasitfbroadcast [27]—[31]. Except
[27], most of these assume an access constrained netwof&8JH30], various Bittorrent-like
algorithms are proposed and are proved to achieve the dpgeréormance in terms of the
distribution rate and/or delay, where the bandwidth bo#tk is at the upload links. In [27],
Massouliéet. al. present a simple local-control algorithm for broadcast igeaeral network,
which provably achieves the optimal broadcast rate. Therikgn only allows broadcast from
a single source and requires all nodes in the network towve@icomplete copy of the data. In
[31], the stability of multiple-tree-based peer-to-paee Istreaming is analyzed, where stability
is defined as the availability of data in the presence of nodehics.

Another salient aspect of the universal swarming problemmast related to the problem of
link scheduling in wireless networks subject to link ine¥dnce constraints, which has attracted
much attention recently [9], [14], [15], [21], [26], [32]36]. In [21], Tassiulaset. al. showed
that the maximum-weight link schedule achieves (i.e., ibt&s) the interior of the throughput
region, where the weights are the queue size difference$edbackpressure. However, finding
such a schedule is in general an NP-hard problem. The uaivevgarming problem usually
involves an NP-hard subproblem in order to achieve the eemiroughput region, which is to
find a minimum-cost Steiner tree. This similarity makes mahyhe concerns and investigative
approaches in the wireless link scheduling problem releieatiie universal swarming problem. In
[14], [37], Lin et. al. showed that approximation algorithms for the maximum-\weggzheduling
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problem can be used to stabilize a portion of the throughgion. Some researchers considered
maximal scheduling algorithms and studied what their §tglsegions are [25], [26], [34]-[36].
Other authors proposed randomized scheduling algorithvas d@chieve the entire throughput
region [15] [18].

VIlI. CONCLUSIONS ANDDISCUSSIONS

In universal swarming, packets are distributed to the wecsialong multiple multicast trees.
The paper focuses on analyzing the stability of the algor#tiior sending dynamically arriving
packets onto the trees. To achieve the throughput regiorengeunter a min-cost Steiner tree
problem, which is NP-hard. Multi-hop traffic is another ditfity for finding stable universal
swarming algorithms. We proposen~aapproximation min-cost tree scheduling algorithm with
network signaling and source regulators. It guaranteesarktstability in a reduced throughput
region, where the reduction ratio is no more than the appration ratio of the algorithm for the
min-cost tree problem. We further develop a randomizedsodeduling algorithm with network
signaling. It achieves the throughput region and stalslibe virtual queues. Moreover, the real
gueue processes are rate stable and the average traffisiipteneach link is strictly less than
one. However, whether or not the real queues are stable meraai open question.

In the worst case, even finding an approximate min-cost teeeb® very time consuming.
However, the algorithms and results in this paper can séllpbactically relevant. First, our
algorithms do not require to find the true min-cost tree. lactice, there is a time budget (e.qg.,
the time slot size) in the tree computation step. The tree ithéound to have the least cost
during the budgeted time will be used by our algorithms. 8d¢cthere are several possibilities
that, in practice, the tree-computation time may not be ipitotvely long. (i) In small networks
(less than 100 nodes and links), finding the min-cost treebeaquite fast. (ii) For the intended
application, the network topology is a fixed one, not an &byt one. One may be able to find
specialized, fast algorithms for that particular topolo@ly) For a fixed topology, one may be
able to find a heuristic algorithm that has near optimal parémce most of the time. (iv) In
many practical networks, such as the ones used in our simijat is sometimes quite clear
that a small number of links are the critical ones and theyoatralways experience large queue
sizes. It is not necessarily hard to find a min-cost (or neauily-cost) tree, if only these critical
links need to be inspected. Finally, the tree computatiore tcan be reduced drastically at the
expense of a small reduction in the throughput. If the timegau for tree computation is chosen
to be very short, e.g., close to the round-trip propagatime,twe may restrict each multicast
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session to use a small number of precomputed trees (e.g.0@ treles); finding the min-cost tree

among them is trivial. Experiences have shown that the lm$kroughput due to the restriction

on the trees is likely to be small (see [38] for the unicasiefaf¥he performance guarantees
found in the paper still apply if we modify the optimizatiomoplem by adding the constraints

about the allowed trees.

We now briefly discuss how to adapt the algorithms to the caseall buffer sizes. This is
possible because, fundamentally, the algorithms use thealiqueue sizes for rate computation
and they will find the optimal rates regardless of the actuéfieb sizes. The first idea is again to
use a small number of pre-computed trees for each multieasian, say. trees. Since finding
the least-cost tree among thlietrees is extremely easy, we can reduce the time slot size to
near the round-trip propagation time, and hence, reducédhdwidth-delay product. Next, we
wish to reduce temporary overload in the steady state duee@&hiopping. The idea is to use
the L multicast treesimultaneouslyvith the correct tree rates. In the modified algorithm, every
source computes the time average of the virtual source (&deseleasing virtual packets to
the network) that each of its trees sees; this yields the time averages of the virtualratss
and these time-average rates converge to the optimal tteg regardless of the buffer ste
The computed average rates are used as targets for whatathieee= rates (and hence, the real
source rate) should be. In a static network environment, @®ee with fixed topology, constant
link bandwidth and long-lasting multicast sessions), thal itree rates can be set directly at
the time-average virtual tree rates when the latter havaili . Then, the only remaining
possible cause for queue buildup is the randomness in thalgorocess. A very small buffer
size is sufficient to absorb such traffic fluctuation and pnépacket losses (e.g.0-100 packets).
Finally, we can further enhance the algorithms to reducerdnesient buildup of the queues so
that the algorithms can cope with macro-level dynamics, lyctwv we mean changes in the
network topology and link bandwidth or the arrivals/depeet of multicast sessions. The idea
is to have another level of adaptation by the real tree r&tes.instance, a real tree rate can
rapidly increase t&0% of the time average of the corresponding virtual tree rditer aéhat, it
increases gradually until packet losses occur, at whichtpiidrops to half of the time-average
virtual tree rate. This way, the real rates will not overdhto® much. Note that the adaptation
of the real rates and the computation of the time averagesi@me concurrently; there is no

"Here, the optimal rate-allocation problem is a modified dBempared with the original optimization problem, the only
modification is that it assumeb fixed trees per multicast session.

8The initial waiting time for the convergence of the time-age virtual rates is not a concern under the static assampti
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waiting for the convergence of the time-average rates.

APPENDIX A
PROOFs

A. Proof of Theorerll5

Recall that every packet at any link has a hop count from thiecep which is the hop count on
its tree path to the link. If a packet has a hop colunthen it arrives at a link, we say it belongs
to the h'"-hop traffic. LetQ.(k, h) denote the queue backlog at liakat time k& contributed by
all first-hop throughh»-hop traffic. We assumé@.(k,0) = 0 for ease of presentation.

For eache € E, leth, < |V|-1 be the largest hop count of any packetitet h = max.cp he.

We claim that for allh = 1,--- | h,
Qe(kv h) < th Vkv Ve € Ev (27)

where the constants satisfy; < M, < ... < Mj < oco. We prove this claim by induction.
Base When h = 1, note thatQ.(k,1) < ¢.(k) and ¢.(k) < M, by Corollary[3. LetM; =
max.cr M,.. Then, [27) holds foi, = 1 and for all k.

Assume|[(2F7) holds fot,--- ,h — 1 and for all%.
Induction on h: Let z.(k, h) denote the number of packets arriving at linkn time slotk that
belong to the first-hop througki"-hop traffic. Then, during any interval of timk, throughk, the
total number of arrivals is no more than the sum of the numbpaokets released by the sources
during this interval that travel through linkand all the backlogged, first-through-— 1)"*-hop

packets in the network at time, i.e.,
k

D we(u,h) <D Da(u)(e,t(w) + > Qe(ko, h— 1)

u=ko u=ko s€S e'ck
k
<33 Duw)Ien () + |E] - My (28)
u=ko s€S

(28) holds due to the induction hypothesis.

Assume all the queues are empty at time 0. Forkall
k

Qc(k, h) = O%axk{ Te(u, h) — ce(k — ko + 1)} (29)
<ko< i—Fo

< max ) Di(w)(e,t(w) + |E|- Myy — co(k — ko + 1)} (30)

< M, +|E|- M_. (31)
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(29) is by an elementary fact about the queue size. It is déiidy expanding the one-step queue
update backward in time. It says that the queue size is tigesadifference between the total
arrivals and the accumulated link capacity on any subsmateznding at the current time (30)
is by using [(2B) in[(29).L(31) is by Lemnia& 4. We can defilg = M, + |E|- M;_;.

Finally, note that the overall queue backlay (k) at link e is equal toQ.(k, h.), where
h. < h. Hence,Q.(k) < Mj;_ < M, for all k.

B. Proof of Theoreri 11

The proof follows from Theorem 8.0.3 in [39]. Denote By the state space of the Markov
process{z(k)} = {q(k), t(k)}. Define a finite subset of the state spacte- {z € X’ : Yoeer e <
M3}, for M ande as specified in Lemmia 9. Note that by assumptionlAS 3, the psdedk)}
is an z*-irreducible Markov chain withe* = (¢*,t*), whereq* = 0 andt* is a fixed set of
minimume-cost trees under the link cost vecttr= 5;@ and it is also aperiodic on the countable
state space&r’. Assumption AS B says that on every time slot, there is sonmeero probability
that no new arrivals enter the sources. The system will erafigr a finite nhumber of such
successive “no arrival” slots, an event that has a positredability. This implies the process
{z(k)} is an z*-irreducible Markov chain (i.e.>".~, P*(z,2*) > 0,z € X). Aperiodicity
follows from P(x*,2*) = P{A(k) = 0} - P{t* is choseh > 0.

By Lemmal9, the chaifxz(k)} satisfies the Foster-Lyapunov drift conditions [39]. Now al
the conditions of Theorem 8.0.3 in [39] are met. Hence, Tamdll holds.

C. Proof of Theorerhi 12
According to [16),

qe(k +1) > qo(k) + > A (k)I (e, t,(k)) — (cc — €2), Ve € E.

seS

Summing the above inequality from time sldtgo &, we have

Z ZAS(U)I(G,tS(U)) S (Ce - €2><k + 1) + Qe(k + 1) - Qe<0)

u=0 ses

IN

(ce — €)(k+ 1)+ qo(k + 1). (32)

“There might be multiple sets of the minimum-cost trees.t'die an arbitrary one of them. Since the tie is broken uniformly
at random, there is a non-zero probability that we chooses¢he”.
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Dividing both sides of[(32) by: + 1 yields

Dumo Laes AsI(e,ts(w) _ gkt 1)
k+1 SR T
D v T A D ST AC)
‘ k+1
e — e+ Ziitl) Ge(u) k+2 Zﬁ:o Ge(u)
< k+2  k+1 k+1
Taking the limit on both sides of the above inequalitykagoes to infinity, we get,
) S oD oes As(u)I (e, ty(u)) Y () . k42
— < — —=u=y *Fr 7, -
lim sup k1 S et im =E o im e
k
o hm Zu:O qe<U)
= Ce — €9.

St ae(w)
k+2

= limy_ oo Luode() _ Elg.] by Theoren 0.

The last equality holds becaulen;,_, s

Hence, [(2b) holds.
Now taking the expectation on the both sides[ofl (32) yields

EDy Y Adu)(e t(u)] < (cc = e2)(k +1) + Elge(k + 1)]

u=0 seSs

< (ce —€)(k+1)+ M.,

where Elg.(k + 1)] < M. < co. Because Theorefn 11 sayién, .. Flg.(k)] — E[q.] and
E[q.] < oo, suchM, exists. Dividing both sides of the above inequality by 1 and taking the
limit, we have,

k
. 1 ) M,
hﬁfip E[k:—H ugzo SEGS As(u)I(e,ts(u))] < ce — e+ 1}1_{20 prl G

D. Proof of Corollary[IB

For any time slok, let {a.(k)} denote the real packet arrival process at knkKhe real queue
dynamic equation can be written as

Qe(k + 1) = max[Q.(k) — c., 0] + a.(k). (33)

Note that, for any time slok, the number of cumulative arrivals at the real queue is noemor
than the number of cumulative arrivals at the virtual quege,

ac(u) <) As(u)I(e, ty(w)).

u=0 u=0 seSs
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Then, by Theoreri 12,

k k
AS I ) ts
hm sup M S hm sup Zu:() ESES (U) (6 (U))
[ k koo k
According to the Rate Stability Theorem in [12] (Theorem)2@. (k) is rate stable, i.e.,

lim Qe(k)

k—oo ]{,‘

< e — €2 < Ce

= 0 with probability 1.
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