
ar
X

iv
:1

30
6.

03
34

v1
 [

cs
.N

I]
 3

 J
un

 2
01

3
1

Algorithms and Stability Analysis for Content

Distribution over Multiple Multicast Trees

Xiaoying Zheng, Chunglae Cho, and Ye Xia

Abstract

The paper investigates theoretical issues in applying the universal swarming technique to efficient

content distribution. In a swarming session, a file is distributed to all the receivers by having all the nodes

in the session exchange file chunks. By universal swarming, not only all the nodes in the session, but

also some nodes outside the session may participate in the chunk exchange to improve the distribution

performance. We present a universal swarming model where the chunks are distributed along different

Steiner trees rooted at the source and covering all the receivers. We assume chunks arrive dynamically

at the sources and focus on finding stable universal swarmingalgorithms. To achieve the throughput

region, universal swarming usually involves a tree-selection subproblem of finding a min-cost Steiner

tree, which is NP-hard. We propose a universal swarming scheme that employs an approximate tree-

selection algorithm. We show that it achieves network stability for a reduced throughput region, where

the reduction ratio is no more than the approximation ratio of the tree-selection algorithm. We propose

a second universal swarming scheme that employs a randomized tree-selection algorithm. It achieves

the throughput region, but with a weaker stability result. The proposed schemes and their variants are

expected to be useful for infrastructure-based content distribution networks with massive content and

relatively stable network environment.

Index Terms

Communication Networks, Multicast, Stability, Queueing,Randomized Algorithm, Content Distri-

bution

I. INTRODUCTION

The Internet is being used to transfer content on a more and more massive scale. A recent

innovation for efficient content distribution is a technique known asswarming. In a swarming

X. Zheng is with Shanghai Advanced Research Institute, Chinese Academy of Sciences and Shanghai Research Center for

Wireless Communications, China. E-mail: zhengxy@sari.ac.cn.

C. Cho and Y. Xia are with the Department of Computer and Information Science and Engineering, University of Florida,

Gainesville, FL 32611. E-mail:{ccho, yx1}@cise.ufl.edu.

November 11, 2018 DRAFT

http://arxiv.org/abs/1306.0334v1

2

session, the file to be distributed is broken into many chunksat the original source, which are

then spread out across the receivers. Subsequently, the receivers exchange the chunks with each

other to speed up the distribution process. Many different ways of swarming have been proposed,

such as FastReplica [1], Bullet [2], Chunkcast [3], BitTorrent [4], and CoBlitz [5].

The swarming technique was originally introduced by the end-user communities for peer-to-

peer (P2P) file sharing. The subject of this paper is how to apply swarming to infrastructure-based

content distribution, where files are to be distributed among content servers in a content delivery

network. The content servers are usually connected with leased high-speed links and, as a result,

the bandwidth bottleneck may no longer be at the access links. It has been shown that content

delivery traffic has made capacity shortage in the backbone networks a genuine possibility [6].

The size of such a content distribution network is usually small, consisting of up to hundreds

of network nodes and up to thousands of servers. Unlike the dynamic end-user file-sharing

situations, infrastructure networks and content servers are usually centrally managed, generally

well-behaved and relatively static (however, the traffic can still be dynamic). In this setting, it

is beneficial to view swarming as distribution over multiplemulticast trees, each spanning the

content servers. This view allows us to pose the question of how to optimally distribute the

content (see [7]). Furthermore, it is often easier to first develop sophisticated algorithms under

this tree-based view, and then, adapt them to practical situations where the tree-based view

is only partially adequate. Hence, in this paper, swarming is synonymous to distribution over

multiple multicast trees.

This paper concerns a class of improved swarming techniques, known asuniversal swarming.

We associate with each file to be distributed asession, which consists of the source of a file

and the receivers who are interested in downloading the file.In traditional swarming, chunk

exchange is restricted to the nodes of the session. However,in universal swarming, multiple

sessions are combined into a single “super session” on a shared overlay network. Universal

swarming takes advantages of the heterogenous resource capacities of different sessions, such as

the source upload bandwidth, receiver download bandwidth,or aggregate upload bandwidth, and

allows the sessions to share each other’s resources. The result is that the distribution efficiency

of the resource-poor sessions can improve greatly with negligible impact on the resource-rich

sessions (see [8]).

In universal swarming, if we focus on a particular file, not only the source and all the receivers

participate in the chunk exchange process, some other nodeswho are not interested in the file

may also participate. We call the latter out-of-session nodes. To illustrate the essence of universal

3

swarming, as well as the main issues, consider the toy example in Fig. 1. The numbers associated

with the links are their capacities. Let us consider a particular file for which the source is node

1 and the receivers are nodes 2 and 3. Node 4 is out of the session. Let us focus on a fixed

chunk and consider how it can be distributed to the receivers. With some thoughts, it can be

seen that the chunk propagates on a tree rooted at the source and covering both receivers. All

possible distribution trees are shown in Fig. 2. We notice that a distribution tree may or may not

include the out-of-session node, 4. Thus, a distribution tree in general is aSteinertree rooted

at the source covering all the receivers, where the out-of-session nodes (e.g., node 4) are the

Steiner nodes.

With this model of multi-tree multicast, one of the main questions is how to assign the chunks

to different distribution trees so as to optimize certain performance objective, such as maximizing

the sum of the utility functions of the sessions, or minimizing the distribution time of the slowest

session. This is arate allocation problemon the multicast trees. One such question was addressed

in [7] in the context of non-universal swarming, where each session’s multicast trees are spanning

trees instead of Steiner trees. For universal swarming, thequestion was addressed in [8].

This paper addresses thestability problem. The main question is: Given a set of data rates from

the sources (which are possibly the solutions to the aforementioned rate allocation problem), how

do we get a universal swarming algorithm so that the network queues will be stable? For the

example in Fig. 1, a source rate of 2 is the largest distribution rate that can be supported by

the network if everything is deterministic. To achieve stability under random arrivals, it usually

requires that the data arrival rate is strictly less than 2 (for a justification, consider a single-

queue system). Hence, when the file chunks arrive at (or generated by) the source node 1 at a

mean rate2 − 2ǫ, where0 < ǫ < 1, we can place chunks on the first and the second tree in

Fig. 2 at a mean rate1− ǫ each. For this example, the solution actually stabilizes the network.

But, this conclusion requires technical conditions and is not generally true for more complicated

situations.

In this paper, we develop a universal swarming scheme that employs an approximation algo-

rithm to the tree selection (a.k.a. scheduling) problem, which achieves a rate region1 equal to

the throughput region reduced by a constant factorγ, γ ≥ 1. We show thatγ is no more than

the approximation ratio of the tree scheduling algorithm. The scheme requires network signaling

and source traffic regulation. We propose a second universalswarming scheme that utilizes a

1Subsequently, when we say an algorithm achieves or stabilizes a region, we mean the interior of the region.

4

1

42 32 2

1 1 1

2-2ǫ

Fig. 1. Node 1 sends the file to nodes 2 and 3.

4 32

1

4 32

1

4 32

1

4 32

1 1-ǫ1-ǫ

Fig. 2. All possible distribution trees for the example in Fig. 1.

randomized tree selection algorithm, which achieves the entire throughput region, but with a

weaker stability property.

The difference between our problem and the wireless scheduling problems is substantial. Most

previous papers that consider multi-hop traffic are either in the unicast setting or in a multicast

setting with a few fixed multicast trees per multicast session. We must consider multi-hop,

multicast communications, and, to have the largest possible throughput region, we allow each

multicast session to useany multicast trees for the session. The combination of these three

features makes our problem both unique and very hard. One of the main challenges is that there

is no obvious way to specify the packet forwarding behavior without per-tree queueing (i.e.,

having a separate queue for each multicast tree) whereas, onthe other hand, per-tree queueing is

impractical due to the exceedingly large number of trees. Our solution to resolve this difficulty,

on the algorithm side, is to use the techniques of signaling and virtual queueing. The techniques

allow us to have very small numbers of queues and at the same time show stability guarantee.

Having avoided per-tree queueing, however, the performance analysis is still difficult. In

5

particular, there is no easy way to prove the stability of thereal queues. Our analytical approach is

to first prove the stability of the virtual queues. The proofsin this step are relatively conventional,

using the techniques of Lyapunov drift analysis. The secondstep is to make connections between

the virtual queues and the real queues, and use the stabilityresults for the virtual queues to prove

that the real queues are also stable.

The tree selection subproblem is inherent to the problem formulated in the paper and it remains

difficult. As a remedy, our algorithms can work with low-costtrees as opposed to the min-cost

trees; finding low-cost trees can be much easier. The stability results are applicable to classes of

algorithms by allowing different tree selection sub-algorithms. Hence, the research for finding

simpler, more practical algorithms can continue.

The rest of the paper is organized as follows. The models and the problem description are given

in Section II. The first universal swarming scheme and the analysis are presented in Section III.

The second universal swarming scheme and the analysis are presented in Section IV. In Section

VI, we discuss additional related work. The conclusion is inSection VII.

II. PROBLEM DESCRIPTION

We consider a time-slotted system where each time slot has a duration of one time unit. Let

the network be represented by a directed graphG = (V,E), whereV is the set of nodes and

E is the set of links. For each linke ∈ E, let ce denote its capacity (e.g., in the number of

file chunks it can transmit per time slot), wherece > 0. We assume that each session, which

distributes a distinct file, has one source, and hence, thereis a one-to-one mapping between a

session and a source.2 Let S denote the set of sources (sessions). For eachs ∈ S, let Vs ⊆ V

be the set of receivers associated with the source (session)s.

For each sources ∈ S, suppose constant-sized data packets (i.e., file chunks)3 arrive at the

2The case of multiple sources makes the most sense when the sources each possess a copy of a common file, which will be

distributed to a common group of receivers. We can extend thenetwork graph by adding a virtual node and virtual edges. Each

virtual edge connects the virtual node to one of the sources,and it is given an infinite capacity. In the expanded graph, the

virtual node will be considered the source of the multicast session. In the dynamic case where chunks of a common file arrive

at the sources following stochastic processes, it is difficult to parsimoniously specify the relationship among the filechunks

to different sources. Without that information, we will identify each source as a separate session (which has the same set of

receivers).

3Since our algorithms can be deployed more easily at the application level, in this paper, we use the termdata packet(or

real packet) to mean an application-level data unit and we regard it as being synonymous to a chunk. When the context is clear,

we usually call a data/real packet a packet. A data packet canbe fairly large, such as 256 KB, and may need to be carried

by multiple network-level packets. Our algorithms also usesignaling/control packets, which are much smaller, e.g., under 400

bytes.

6

source according to a random process, which will be distributed over the network to all the

receivers,Vs. The motivation for using a source model with dynamic arrivals is to account for

the end-system bottleneck and timing variations in readingand transmitting locally stored data.

In some cases, the content may not be a static file or stored locally. The model is general enough

to cover realtime content, streaming video with time-varying rate, or non-locally stored static

data. Even if the entire file is static and stored at the source, this source model can still be

useful. For instance, the data packets can be injected into the source node at a constant rate,

which corresponds to a deterministic arrival process with aconstant arrival rate. LetAs(k) be the

number of packet arrivals on time slotk. Let us make the following assumption on the arrival

processes{A(k)} throughout the paper, unless mentioned otherwise. Additional assumptions

may be added as needed.

AS 1. For each sources ∈ S, E[As(k)|x(k)] = λs, and E[(As(k))
2|x(k)] < K1 for some

0 < K1 < ∞, for all time k, wherex(k) represents the system state at timek.

The following are some remarks about Assumption AS 1.

• The system state,x(k), will depend on the specific settings of the two algorithms considered

in this paper and will become clear later. It usually includes all the queue sizes at timek, and

possibly some additional auxiliary variables. If the arrival process is independent of the past

for each sources, assumption AS 1 can be stated without conditioning onx(k). However,

some non-IID arrival processes can lead to dependence between the current arrivals and the

current queue sizes, in which case the statement with conditioning is more general than one

without conditioning.

• If the arrival process is independent of the past for each source s, assumption AS 1 can be

stated without the conditioning.

• (λs)s∈S could be the solution of a rate allocation problem (see the discussion about the rate

allocation and stability problems in Section I).

In this paper, we will present stable universal swarming algorithms to distribute the packets

to all the receivers. For eachs ∈ S, the packets will be transmitted along various multicast

distribution trees rooted ats to the receivers inVs. A multicast tree in the multicast case

corresponds to a path between a sender and a receiver in the unicast case. Hence, using multiple

multicast trees for a multicast session is analogous to datadelivery using multiple paths between

a sender and a receiver in the unicast case.

We will take Neely’s definition of stability ([9]; [10], chapter 2) unless mentioned otherwise.

7

For a single-queue process{q(k)}, let us define the overflow function:

g(M) = lim sup
K→∞

1

K

K
∑

k=1

P{q(k) > M}. (1)

Roughly speaking, the overflow functiong(M) in (1) defines the long-time average fraction of

time when the queue sizeq(k) is more than a chosen thresholdM . In the stationary and ergodic

case, it coincides with the stationary (and limiting) probability that the queue size exceedsM .

Definition 1. The single-queue process{q(k)} is stableif g(M) → 0 as M → ∞. A network

of queues is stable if every queue is stable.

With this definition of network stability, a sufficient condition for network stability is: Some

Lyapunov function of the queues has a negative drift when anyof the queues becomes large

enough [9] [10] [11] [12]. If with additional assumptions, the network queues form an ergodic

Markov chain, the same drift condition implies the chain is positive recurrent, or equivalently,

has a stationary distribution.

A. Throughput Region

For each sources ∈ S, let the set of candidate distribution trees be denoted byTs. Throughout

this paper,Ts contains all possible distribution trees rooted at the source s unless specified

otherwise. LetT = ∪s∈STs. The trees can be enumerated in an arbitrary order ast1, t2, · · · , t|T |,

where| · | denote the cardinality of a set. Although|T | is finite, it might be very large.

The throughput regionis defined as

Λ = {λ ≥ 0 : ∃α ≥ 0 such that
∑

t∈Ts

αt = 1, ∀s ∈ S and
∑

s∈S

∑

{t∈Ts|e∈t}

αtλs ≤ ce, ∀e ∈ E}. (2)

Here,α represents how the traffic from the sources is split among thedistribution trees. The

definition ofΛ says that a source rate vectorλ is in Λ if there exists a set of tree rates for each

multicast session such that the resulting total link data rate is no more than the link capacity for

any link. Obviously,Λ contains the stability region, i.e., allλ that can be stabilized by some

algorithms. This is so because, for any non-negative mean rate vectorλ 6∈ Λ, no matter how the

traffic is split among the distribution trees, there exists alink e such that the total arrival rate

to e is strictly greater than its service rate. Furthermore, this definition of the throughput region

allows the bandwidth bottleneck to be anywhere in the network, at the access links or at the

core.

8

We also define aγ-reduced throughput regionas 1
γ
Λ, whereγ ≥ 1. By saying that the arrival

rate vectorλ is strictly inside the region1
γ
Λ, we mean that there exist someǫ0 > 0 and a vector

α ≥ 0 such that
∑

t∈Ts
αt = 1, ∀s ∈ S and

∑

s∈S

∑

{t∈Ts |e∈t}
αtλs ≤

1
γ
ce − ǫ0, ∀e ∈ E. This is

equivalent to

ce ≥ γ(ǫ0 +
∑

s∈S

∑

{t∈Ts|e∈t}

αtλs), ∀e ∈ E. (3)

Note that the region of rate vectors that are strictly insidethe region 1
γ
Λ contains the interior

of 1
γ
Λ. In Section III, we will show that the interior ofΛ is stabilizable. That is, for any rate

vectorλ strictly inside the regionΛ, there exists a scheduling algorithm such that the queues in

the network are stable under the algorithm.

B. The Class of Algorithms: Time Sharing of Trees

Each source has at least two possible approaches to use the multicast trees. In one approach,

the traffic from each sources may be split according to some weights(αt)t∈Ts
and transmitted

simultaneously over the trees on every time slot. Alternatively, the distribution can be done by

time-sharing of the trees. The algorithms in this paper follow the time-sharing approach. On

each time slotk, the sources selects one distribution tree from the setTs, denoted byts(k),

according to some tree-scheduling (tree-selection) scheme, and transmits packets only over this

tree on time slotk. The time-sharing approach can emulate the first approach inthe sense that,

when done properly, the fraction of time each distribution tree is used over a long period of time

can approximate any weight vector(αt)t∈Ts
.

In addition to selecting the distribution treets(k) at each time slot, an algorithm also needs

to decide how many packets are released to the tree. We will present two algorithms in the

following sections. The key question is what portion of the rate region is stabilizable by each

algorithm.

III. SIGNALING , SOURCE TRAFFIC REGULATION AND γ-APPROXIMATION M IN-COST TREE

SCHEDULING

A. Signaling Approach

Stability analysis of a multi-hop network is often difficultbecause the packets travel through

the network hop-by-hop, instead of being imposed directly to all links that they will traverse. As

a result, the arrival process to each internal link can be difficult to describe. The frequently-used

technique of network signaling can be helpful. In our case, on each time slotk, each source

9

s sends one signaling packet to each node on the currently selected treets(k). A signaling

packet is one of the two types of control packets in the paper.It has two main functions. The

first is to set up the multicast treets(k). A signaling packet contains a list of link IDs, which

describe to the receiving node which of its outgoing links are part of the multicast tree. The

second function is to inform the receiving node the intendedsource transmission rate on time

slot k, i.e., the number of packets to be transmitted on time slotk. To make the proofs for the

main results easier, we make the following assumptions about all control packets, including the

forward signaling packets and the feedback packets: The control packets are never lost and they

arrive at their intended destinations within the same time slot on which they are first transmitted.

Note that these assumptions are not crucial for either the theory or practice4. We do not make

any assumptions on the data packets.

We will see that the rate information contained in a signaling packet is a very tight upper

bound on the number of real packets released by the source on that time slot. To mark the the

slight discrepancy, we use the termvirtual packetsand call the rate contained in the signaling

packet therate of virtual packetsor the virtual source rate. Consider a particular time slotk

and a particular internal linke on the selected distribution tree. The real packets issued by the

source on time slotk will in general be delayed or buffered at upstream hops and will not arrive

at link e until later. However, via signaling, linke knows how many virtual packets are injected

by the source and arrive at linke on time slotk. The cumulative number of arrived real packets

at link e must be no more than the cumulative number of arrived virtualpackets (via signaling

packets).

One question is how many real packets are to be released to thenetwork on a time slot. One

possibility is that each sources releases all the packets that arrive during time slotk, i.e.,As(k).

4 In actual operation, the two algorithms in the paper need notenforce these assumptions. The control packets can be lost or

delayed. With straightforward minor modifications, such asusing old information or postponing the algorithm execution until

new information is available, the algorithms can cope with these conditions and are expected to be robust. They can achieve

stability and throughput optimality as indicated by the theory. For better performance with respect to other metrics (e.g., data

queue size, data delay, convergence speed), the algorithmscan implement the following policy: The control packets aregiven

higher priority at all the nodes than the data packets so thatthey experience minimal delay; the time slot size is chosen to be

greater than the worst-case round-trip propagation time. With such a policy, the assumptions are expected to be satisfied most

of the time. In our simulation experiments (see Section V), the control packet delays are included. The algorithms converge

fast and to the right values. On the theory side, there are good reasons to believe that the stability results in this paperstill

hold under the significantly relaxed assumptions: The network delays of the control packets are bounded and the number of

consecutive control-packet losses is bounded. The boundedness assumptions make the conditions of Corollary 1 in [11] satisfied.

The stability results would follow.

10

However, the uncontrolled randomness ofAs(k) causes difficulty in the stability analysis, as we

will see later. In our algorithm, each sources sets the number of real packets to be released at

the constant valueλs+ ǫ1 on every time slotk, if that number of real packets is available. Every

signaling packet from sources contains the constant virtual packet rateλs + ǫ1. Here, ǫ1 is a

sufficiently small constant such that0 < |S|ǫ1 < ǫ0. This guarantees the stability of the source

regulators, as we will see.

In the algorithm, each linke updates a virtual queue, denoted byqe(k).

qe(k + 1) = [qe(k) +
∑

s∈S:e∈ts(k)

(λs + ǫ1)− ce]+. (4)

[·]+ is the projection operation onto the non-negative domain. Note that the second term on the

right hand side of (4) is the aggregate virtual data arrival rate from all the trees containing link

e, which means the link capacities are shared by different trees. Tree scheduling is based on the

virtual queues instead of the real queues.

B. Source Traffic Regulation

A regulator is placed at each sources to ensure that on each time slot, sources transmits no

more thanλs+ ǫ1 real packets. A regulator is a traffic shaping device. All thepackets arriving at

sources first enter a regulator queue. They will be released to the network later in a controlled

fashion. On each time slotk, let Ds(k) denote the number of real packets released from the

regulator to the distribution treets(k), and letps(k) be the regulator queue size at sources. The

evolution of the regulator queue is given by

ps(k + 1) = ps(k) + As(k)−Ds(k), (5)

where

Ds(k) =

{

λs + ǫ1 if ps(k) ≥ λs + ǫ1;

ps(k) otherwise.
(6)

Expressions (6) ensures that at mostλs+ǫ1 real packets are released on each time slot. Since this

departure rate is higher than the mean packet arrival rate, stability of the regulator is guaranteed5.

We will provide more details in the stability analysis. Notethat the traffic regulators are required

only at the sources and they can be implemented at the end-systems, i.e., the content servers.

5 A packet may experience some delay at the regulator before itis released to the network. The performance analysis shows

that this delay is bounded (in expectation) since all regulator queues are bounded. Our simulation results show that thedelay

and queue sizes can be made small even for very smallǫ1.

11

C. γ-Approximation Min-Cost Tree Scheduling

We can interpret the virtual queue sizeqe as the cost of linke. Then, the cost of a treet is
∑

e∈t qe. We propose theγ-approximation min-cost tree schedulingscheme: On each time slot

k and for each sources, the selected treets(k) satisfies
∑

e∈ts(k)

qe(k) ≤ γmin
t∈Ts

∑

e∈t

qe(k), (7)

whereγ ≥ 1. If there are multiple trees satisfying (7), the tie is broken arbitrarily.

The rationale for this tree-scheduling scheme is straightforward. Whenγ = 1, the tree-

scheduling scheme solves the min-cost Steiner tree problem, which is NP-hard. But, the min-

cost Steiner tree problem has approximation solutions, which we can use. In [13], a family of

approximation algorithms for the directed Steiner tree problem is proposed, which achieves an

O(log2N) approximation ratio in quasi-polynomial time, whereN is the number of receivers.

It will be proven in the following stability analysis that, if we are able to find the minimum-

cost Steiner tree on each time slot, we can stabilize the network for the interior of the entire

throughput region,Λ; if we adopt theγ-approximated min-cost tree scheduling, we can stabilize

the network for the interior of1
γ
Λ.

The link costs (i.e., the virtual queue sizes) are carried tothe multicast sources by the second

type of control packets - the feedback packets. On each time slot, a network node sends to each

source one feedback packet, which contains the costs of the node’s outgoing links.

D. Stability Analysis

The stability analysis is based on the drift analysis of Lyapunov functions.

1) Stability of the Regulators:Define a Lyapunov function of the regulator queuesp as

L1(p) =
∑

s∈S

p2s. (8)

Lemma 1. There exists some positive constant0 < M1 < ∞ such that for every time slotk and

the regulator backlog vectorp(k), the Lyapunov drift satisfies

E[L1(p(k + 1))− L1(p(k))|p(k)] ≤ −ǫ1
∑

s∈S

ps(k), (9)

if
∑

s∈S ps(k) ≥
M1

ǫ1
.

Proof: This is because the mean arrival rate is strictly less than the mean service rate

provided the regulator has sufficient packets. The proof is standard and we omit the details.

12

2) Stability of the Virtual Queues:Define a Lyapunov function of the virtual queue backlog

vectorq as

L2(q) =
∑

e∈E

q2e . (10)

Let t(k) = (ts(k))s∈S be the vector of the chosen distribution trees at timek. We allow

randomness in determiningt(k). For instance, when there are multiple trees satisfying (7), the

tie can be broken randomly.

Lemma 2. If the mean arrival rate vectorλ is strictly inside the region1
γ
Λ, then, there exist

some positive constants0 < M2 < ∞ and ǫ for all sample paths of{t(k)}k such that, for every

time slotk and virtual queue backlog vectorq(k), the Lyapunov drift satisfies

L2(q(k + 1))− L2(q(k)) ≤ M2 − 2ǫ
∑

e∈E

qe(k), (11)

whereǫ = γǫ0 − |S|ǫ1 > 0.

Proof: Under any sample path of the process{t(k)}k, (11) holds due to the tree-selection

algorithm (7) and the definition of theγ-reduced throughput region (3). The detailed proof is

omitted for brevity.

Hence, when
∑

e∈E qe(k) ≥
M2

ǫ
, the Lyapunov function has a negative drift under all sample

paths of{t(k)}k.

L2(q(k + 1))− L2(q(k)) ≤ −ǫ
∑

e∈E

qe(k). (12)

Corollary 3. For each link e, there exists a sufficiently large constantMe < ∞ such that

qe(k) ≤ Me.

Proof: From Lemma 2, under any sample path of{t(k)}k, qe(k) is uniformly bounded

from above. Hence, there exists a sufficiently large constant Me < ∞ such thatqe(k) ≤ Me.

Remark: The chosen deterministic release rates of the virtual packets guarantee that the virtual

queues are bounded. This is an important fact for proving thestability of the real queues. If the

sources signal the actual numbers of real packet arrivals oneach time slot, which are random,

the virtual queues may be stable but are not guaranteed to be bounded.

3) Stability of the Real Queues:For convenience, let us assume each real packet remembers

its distribution tree. This way, the nodes on the tree know when to duplicate the packet. Moreover,

each packet at any link also has an unambiguoushop count, which is the hop count on its tree

13

path from the source to the current link. With this setup, we can assume to use the following

queueing discipline for the real queues.

AS 2. At each linke, a packet with a smaller hop count has priority over any packet with a

larger hop count.

First, we will show some properties of the real packet arrival rates to the intermediate links.

Define an indicator functionI(e, t), wheree is a link andt is a tree.

I(e, t) =

{

1 if e ∈ t;

0 otherwise.

Lemma 4. For any link e ∈ E, there exists a constant0 < Me < ∞ such that for anyk0 and

k with k0 ≤ k,
k

∑

u=k0

∑

s∈S

Ds(u)I(e, ts(u)) ≤ (k − k0 + 1)ce +Me. (13)

Proof: According to (4),

qe(k + 1) ≥ qe(k) +
∑

s∈S

(λs + ǫ1)I(e, ts(k))− ce, ∀e ∈ E. (14)

By summing (14) over time slots, the proof is straightforward and is omitted.

Let Qe(k) denote the real queue backlog of linke at time slotk. We can show by induction

that under the prioritized queueing strategy in AS 2, the real queue backlogs are bounded. The

proof is adapted from [14].

Theorem 5. With the additional assumption AS 2, if the mean arrival ratevectorλ is strictly

inside the region1
γ
Λ, the real queue backlogs are bounded. I.e., there exists some constant

0 < M ′ < ∞ such that

Qe(k) ≤ M ′, ∀k, ∀e ∈ E. (15)

Proof: See Appendix A.

Theorem 6. With the additional assumption AS 2, if the mean arrival ratevectorλ is strictly

inside the region1
γ
Λ, γ ≥ 1, theγ-approximation min-cost tree scheduling scheme stabilizes the

network.

Proof: From Lemma 1, Lemma 2 (or Corollary 3) and Theorem 5, the regulator queues

have negative drifts, the virtual queues and the real queuesin the network are all bounded.

14

The reduction factor1/γ in Theorem 6 is a lower bound for the worst case. In practice, the

actual reduction factor for a given network and a specific tree-scheduling scheme may be much

larger. For instance, we use a sub-optimal tree-schedulingscheme and some ISP networks for

the simulation results in Section V, and the algorithm can achieve nearly the full throughput

region.

IV. RANDOMIZED TREE SCHEDULING

Theorem 6 implies that the interior of the throughput regionΛ can be stabilized, provided

one can solve the hard min-cost Steiner tree problem. If approximation algorithms are used

for the Steiner tree problem, Theorem 6 says that a reduced rate region is stabilizable. In this

section, we will continue to cope with the hard Steiner tree problem. Instead of approximation

algorithms, we will consider an algorithm that randomly samples the trees at each time slot.

Selecting trees by random sampling is attractive in practice since the algorithms for doing this

tend to be simple and fast. Some practical systems such as BitTorrent [4] already use variants

of random sampling.

Our main concern is whether the tree-sampling approach has any performance guarantee with

respect to stability. We conjecture it does. We will show important steps that may eventually lead

to the conclusion that, in contrast to the case with approximation algorithms, the entire interior

of Λ is stabilizable. The development and analysis of the algorithm are in part based on [15].

A. Signaling

In this algorithm, the sources still signal the links about the incoming traffic, but they are not

regulated. Specifically, the number of virtual packets signaled by sources on every time slotk

is As(k) instead ofλs + ǫ1. For eache ∈ E, the evolution of the virtual queue,qe(k), is

qe(k + 1) = [qe(k) +
∑

s∈S:e∈ts(k)

As(k)− (ce − ǫ2)]+, (16)

where0 < ǫ2 < ǫ0. From (16), the virtual queue is serviced at less than the full service capacity.

We will see the reason in the stability analysis (see Corollary 14 and the remark after it).

B. Randomized Tree Scheduling

Let τs(q) denote the min-cost tree for sources with respect to the link cost vectorq. We

have,
∑

e∈τs(q)

qe = min
t∈Ts

∑

e∈t

qe. (17)

15

If multiple min-cost trees exist, an arbitrary one is chosen.

The algorithm has two stages:pick and compare. In the pick stage, each source uses some

randomized algorithm to pick a tree, with the requirement that there is a positive probability

to pick a min-cost tree. More specifically, lett̂(k) = (t̂s(k))s∈S be the trees picked by the

randomized algorithm on time slotk. The following condition is satisfied for someδ > 0,

P{
∑

e∈t̂s(k)

qe(k) =
∑

e∈τs(q(k))

qe(k), ∀s ∈ S} ≥ δ. (18)

In the compare stage, the cost of the tree just picked is compared with the cost of the selected

tree on the previous time slot, with respect to the current link cost vector. The picked tree is

selected only if it has a lower cost. This ensures that the tree that ends up being selected is

better than the previously selected tree. Recall thatts(k) is the scheduled tree at timek. The

compare stage yields a selected tree that satisfies the following: For any sources ∈ S,

ts(k) =

{

t̂s(k) if
∑

e∈t̂s(k)
qe(k) ≤

∑

e∈ts(k−1) qe(k);

ts(k − 1) otherwise.
(19)

There are many possible randomized selection algorithms that satisfy (18) and (19). For

instance, one algorithm might be to modify the current tree by randomly adding or deleting

edges until a new multicast tree is found. The selection of the edges can be biased toward

lower-cost ones for addition and higher-cost ones for deletion. In this paper, we will not dwell

on finding specific algorithms but will focus on the stabilityissue of the whole algorithm class.

C. Stability Analysis

We will show that, if the mean arrival rate vectorλ is strictly inside the throughput regionΛ,

the randomized tree-scheduling scheme is able to stabilizeall the virtual queues. With additional

assumptions, the cumulative arrival of the real packets by any time slot is strictly less than the

accumulation of the link service rate for every link.

1) Stability of the Virtual Queues:The virtual queue sizesq(k) are considered as the link

costs. Lett(k) be the vector of chosen trees. Define a Lyapunov function ofx = (q, t):

L(x) = L1(x) + L2(x),

where

L1(x) =
∑

e∈E

q2e , L2(x) = (
∑

s∈S

λs(
∑

e∈ts

qe −
∑

e∈τs(q)

qe))
2.

The proofs for the following three main lemmas parallel the development in [15], although

the details are different and technical. We omit them for brevity.

16

Lemma 7. If the mean arrival rate vectorλ is strictly inside the throughput regionΛ, there

exist some positive constantsM1 and ǫ such that

E[L1(x(k + 1))− L1(x(k))|x(k)] ≤ M1 + 2
√

L2(x(k))− 2ǫ
∑

e∈E

qe(k). (20)

Lemma 8. If the arrival rate vectorλ is strictly inside the throughput regionΛ, there exist some

positive constantsM2 andM3 such that

E[L2(x(k + 1))− L2(x(k))|x(k)] ≤ M2 +M3

√

L2(x(k))− δL2(x(k)). (21)

Lemma 9. If the arrival rate vectorλ is strictly inside the throughput regionΛ, there exist some

positive constantsM < ∞ and ǫ such that, ifL(x(k)) ≥ M ,

E[L(x(k + 1))− L(x(k))|x(k)] ≤ −ǫ
√

L1(x(k)). (22)

Theorem 10. If the mean arrival rate vectorλ is strictly inside the throughput regionΛ, the

randomized tree scheduling scheme stabilizes the virtual queues.

Proof: This is a corollary from Lemma 9.

2) Stability of the Real Queues:We have partial results about the stability of the real queues

under additional conditions. We assume the following in this subsection.

AS 3. The processes{As(k)}k for differents are independent from each other. For eachs ∈ S,

{As(k)}k is IID. At every timek, there is a nonzero probability that no packet arrives at the

sources, i.e., P{As(k) = 0, ∀s ∈ S} > 0.

We will show that for any linke, its average traffic intensity (load),ρe, satisfiesρe < 1,

whereρe is the ratio of the average packet arrival rate and the link rate. First, stronger stability

conclusions can be said about the virtual queues.

Theorem 11.Suppose the mean arrival rate vectorλ is strictly inside the throughput regionΛ,

and assumptions AS 1 and AS 3 hold.

• The process{q(k), t(k)}∞k=0 is an aperiodic and irreducible Markov chain with a stationary

distribution. Moreover, let̂q be the virtual queues under the stationary distribution. Then,

E[q̂e] < ∞.

• The strong law of large numbers holds: For each initial condition, and for all e ∈ E,

lim
k→∞

∑k

u=0 qe(u)

k + 1
= E[q̂e], almost surely. (23)

17

• The mean ergodic theorem holds: For each initial condition,and for all e ∈ E,

lim
k→∞

E[qe(k)] = E[q̂e]. (24)

Proof: See Appendix A.

Theorem 12. For any link e ∈ E,

lim sup
k→∞

1

k + 1

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u)) ≤ ce − ǫ2, (25)

lim sup
k→∞

E[
1

k + 1

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u))] ≤ ce − ǫ2. (26)

Proof: See Appendix A.

Recall thatQe(k) denotes the real queue backlog of linke at time slotk. Next, we show that

the process{Qe(k)} is rate stablefor all links, where the defintion of rate stability is given as

in [12].

Corollary 13. Suppose the mean arrival rate vectorλ is strictly inside the throughput regionΛ,

and assumptions AS 1 and AS 3 hold. For any linke ∈ E, the process{Qe(k)} is rate stable,

i.e.,

lim
k→∞

Qe(k)

k
= 0 with probability 1.

Proof: See Appendix A.

Rate stability implies that the long-term average rates of arrivals and departures are identical for

each queue, and is weaker than the stability definition of thequeue backlog being bounded.

Corollary 14. For any link e ∈ E, the average traffic intensity (or load)ρe < 1, whereρe is

defined as

ρe = lim sup
k→∞

∑k

u=0 ae(u)

(k + 1)ce
,

whereae(u) is the number of real packets arriving at linke at timeu.

Proof: For any time slotk, the number of cumulative arrivals at the real queue is no more

than the number of cumulative arrivals at the virtual queue,i.e.,

k
∑

u=0

ae(u) ≤

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u)).

Then,ρe < 1 follows from Theorem 12.

18

Remark: The service rate of the virtual queue of linke, which is ce − ǫ2, guaranteesρe < 1.

Under the randomized tree scheduling scheme, the virtual queues are stable, the real queue

processes{Qe(k)} are rate stable, and the real traffic intensity satisfiesρe < 1 for every link e.

But, we do not know whether the real queues are stable in the sense of Definition 1. We expect

that in practice, they are almost always stable. We suspect that under more assumptions on the

traffic arrival processes and the queueing discipline, the real queues can be proven to be stable.

V. SIMULATION RESULTS AND EVALUATIONS

In this section, we present illustrative examples from simulation experiments that support the

stability analysis of the algorithms. We will also evaluatethe control overhead of the algorithms.

Since the algorithms are based exclusively on the information contained in the control packets

(including the forward signaling and reverse feedback packets), we trace the behavior of the

control packets carefully with event-driven simulation atthe packet level. Link propagation delays

and transmission delays for the control packets are included in the simulation. The control packets

are routed on the shortest path, measured by the hop count. Ateach link, the control packets are

transmitted at a higher priority than the data packets and, if needed, are stored in a high-priority

queue. When a control packet arrives at its intended destination, an event will be triggered to

update the virtual queues or the network costs, depending onwhether it is a forward signaling

or a feedback packet. The rest of the algorithm operations take place on time slot boundaries.

On each time slot, a source sends one signaling packet to eachnode on the currently selected

multicast tree to set up the tree and to inform the virtual source rate; it transmits data to the tree

in the amount decided by the algorithms; it also computes a new tree according to the network

costs that it currently knows, and the new tree will be set up and used on the next time slot.

On each time slot, a network node sends at most one set of link costs (of its outgoing links) to

each of the multicast sources.

To evaluate the stability of the real queues, we also need to track the sizes of the real data

queues. In the interest of reducing simulation time, we trace the real data at the burst level

instead of the packet level. Specifically, for each link, thesimulator computes the amount of

data it can transmit in the time slot, which is the differenceof the link capacity and the amount

of control packets transmitted during that time slot. Then,the burst of data is pushed to the next

hop. Although there is a slight degree of inaccuracy in the simulated queue sizes, the outcome

of whether or not the queues are stable is not altered by the burst-level simulation for data.

We simulate our algorithms over two commercial ISP network topologies obtained from the

Rocketfuel project [16]. The first one consists of41 nodes and136 links; the second one consists

19

of 295 nodes and1086 links. For each network, we assume the link capacities are exclusively

allocated to the content distribution service. We assume there is a single distribution session.

On the smaller network with41 nodes and136 links, we select one node as the source and20

nodes as the receivers. All other out-of-session nodes may be used as helper nodes. We assign

1 Gbps link capacity to all the links except some critical links. By critical links, we mean the

links that become bottleneck easily if they do not have sufficient capacity. We assign5 Gbps

link capacity to each of the critical links. There are exogenous random arrivals of packets to the

source. We assume that the number of packet arrivals on each time slot is a Poisson random

variable and that the arrivals on different time slots are IID. The size of each data packet (chunk)

is chosen to be256 KB. Since the time slot size is equal to1 second, the mean of the Poisson

distribution is equal toλs/(256× 8 × 1000) and the unit is in packets. As an example, for the

source arrival rateλs = 1990 Mbps, the mean number of arrivals is about972 packets. The

standard deviation is about31.2 packets. The Poisson distribution is widely used to capturethe

total effect of many small disturbances when the outcome is non-negative and integer-valued.

The maximum achievable session rate is2 Gbps, which is obtained by running the subgradient

algorithm introduced in [8]. The control packet size is under 400 bytes for our experiments.

The time slot duration is 1 second. We have done experiments with different link propagation

delays:20 ms, 50 ms, 80 ms, and100 ms. These cases have similar performance results. The

1-second time slot size is the relevant delay that determines the algorithm performance. Hence,

we will only present the results for the case of100 ms propagation delay at each link. We vary

the mean arrival rateλs to see whether the algorithms can achieve network stabilityif the rate

is below the maximum achievable session rate.

We also conducted experiments with other traffic models, such as truncated Pareto distribu-

tions, which have very large variances, and other distributions with very small variances. In

addition, we conducted experiments where multiple multicast sessions exist simultaneously in

the network. The results for these cases do not show much moreinsight than what we will

subsequently present, and for brevity, they are not reported in the paper.

A. Algorithm Using Source Traffic Regulation and Approximate Min-Cost Tree Scheduling

In this subsection, we show the performance of the algorithmintroduced in Section III. For

the approximate tree selection algorithm, we use the algorithm by Charikaret. al with tree level

2, as proposed in [13]. A regulator queue is maintained only atthe source. In the simulation,

we setǫ1 = 1 packet per second or2.048 Mbps. Our main concern is whether the regulator and

20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10000 20000 30000 40000

R
eg

u
la

to
r

S
iz

e
(G

B
)

Time (second)

λs = 1800Mbps
λs = 1990Mbps
λs = 2005Mbps

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000

A
g
g
re

g
at

e
R

ea
l

Q
u
eu

e
S

iz
e

(G
B

)

Time (second)

λs = 1800Mbps
λs = 1990Mbps
λs = 2005Mbps

(b)

Fig. 3. Peformance of the first algorithm; (a) regulator queue size whenǫ1 = 1 packet per second (or2.048 Mbps); (b)

aggregate real queue sizes.

real queues are bounded if the mean arrival rate to the sourceis below the maximum achievable

session rate.

Fig. 3 shows that the network queues remain stable ifλs is below the maximum achievable

session rate (2 Gbps) even whenλs is quite close to the maximum session rate. whenλs exceeds

the maximum achievable session rate, the total network queue size grows without a bound, which

means some of the queues are unstable.

Fig. 3 (a) shows that the regulator queue size is bounded and is less than500 MB even

whenλs is greater than the maximum achievable session rate. The reason is that the regulator

queue is a simple single-server queue with a deterministic service rate and the algorithm sets

the service rate to be slightly greater thanλs, by ǫ1 as given in (6). In the experiments here,

ǫ1 is very small relative to the traffic arrival rate and the traffic load is extremely heavy. For

instance, whenλs = 1990 Mbps, the traffic load (intensity) to the regulator queue is0.999. Even

under such heavy load, the regulator queue size is not very large. It can be made much smaller

when ǫ1 is increased. Fig. 3 (b) shows that, eventually, the aggregate real queue size over all

the queues in the network is under11 GB when the arrival rate (λs = 1990 Mbps) is slightly

below the maximum achievable rate; that yields an average queue size of 80.9 MB at each link.

The largest queue size at a link is about625 MB under that arrival rate6. The queue sizes can

be much smaller when the arrival rate is lower. These queue size values can be compared with

6In this section, the maximum queue sizes are what we observedduring a long simulation run.

21

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

A
g
g
re

g
at

e
R

ea
l

q
u
eu

e
si

ze
 (

G
B

)

Time (second)

λs = 1800Mbps
λs = 1990Mbps

Fig. 4. Aggregate real queue sizes of the first algorithm on time slots0 to 1000.

the bandwidth-delay product, which is625 MB for a critical link and125 MB for a non-critical

link. Hence, using a1 GB buffer at each link is more than sufficient for this test case. Since the

source sends data packets at a rate of1990 Mbps and the packets need to be duplicated to20

receivers, about5 GB data must flow through the network every second. The11 GB data stored

in all the queues is about twice of that amount. Hence, the amount of queued data is reasonably

small.

It is important to point out that the eventual queue sizes shown in Fig. 3 are mostly determined

by the transient phase of the algorithm, which is the phase atthe beginning of the algorithm

operation before the time-average rates approach the optimum. The queues build up at this phase

because the algorithm hasn’t found the right transmission rates yet. Once the time-average rates

approach the optimum, the queues stop growing but oscillatearound some values (see Fig. 4,

which shows the aggregate queue sizes on time slots0 to 1000). The oscillation is due to a

feature of the algorithm, which is that the multicast session hops among different multicast trees

even in the steady state. A consequence is that some of the links can be temporarily overloaded.

From the simulation results, we see that the magnitude of theoscillation can be much smaller

than the queue size itself. The oscillation of the aggregatequeue size is less than3 GB when

λs = 1990 Mbps, which yields an average of22.1 MB per link. When the multicast sessions

are long-lasting and the network topology and link bandwidth are unchanging, it is enough to

decide the buffer sizes based on the steady-state queue behavior. In the cases of Fig. 3, we see

that the buffer requirement is much smaller than the bandwidth-delay products.

The good queue-size performance can be explained by two observations. First, by using

22

multiple multicast trees, the excess packets are spread outand queued all over the networks.

Second, the algorithm converges reasonably fast. Fig. 6 (a)shows that, for each experiment

where the arrival rate is below the maximum achievable session rate, the average data receiving

rate per receiver reaches more than 90% of the arrival rate ataround100 to 200 seconds, and

it reaches nearly 100% of the arrival rate after1000 seconds. The average receiving rate is

also a time average, which has long-time memory. Judging by Fig. 4, the queues of the system

approach the steady state very quickly, within50 time slots. The instantaneous receiving rates

must have reached the arrival rate within the same time frame.

B. Algorithm Using Randomized Tree Scheduling

In this subsection, we show the stability of the algorithm introduced in Section IV. For the

randomized tree selection algorithm, we let each link be selected as an edge on the random tree

with a probability inversely proportional to its virtual queue size. The idea is to reduce the chance

of selecting links with large virtual queues. Once a link is selected to be on the tree, all links that

will lead to a loop with the selected links are removed from the candidate list. The candidate links

are scanned repeatedly in a breadth-first order, starting from the source, until all the receivers

are connected. How the random tree is selected will not affect the stability result as long as the

condition in (18) is satisfied. However, the choice of the tree affects other aspects of performance,

such as the queue sizes. When the queue sizes are considered in addition to throughput, what can

be considered as good choices for the random tree remains an open question. Interested readers

may refer to related literature in randomized link scheduling algorithms for wireless networks

[17]–[20].

Fig. 5 shows that both the network virtual queues and the realqueues remain stable ifλs is

below the maximum achievable session rate. Whenλs = 1990 Mbps, the aggregate real queue

size of all the network queues is under25 GB, which is about the amount of data flowing

through the network in a5-second interval. Under the same arrival rate, the average queue size

per link is 183.8 MB and the largest real queue size at a link is1.8 GB, which is2.88 times of

the bandwidth-delay product of a critical link. Forλs = 1800 Mbps, the aggregate queue size

is under15 GB, the average queue size per link is under110.3 MB, and the maximum queue

size at a link is under1 GB. Hence, the queue sizes can be made much smaller with a slightly

reduced arrival rate. Compared with the first algorithm, a larger buffer is required at each link.

Whenλs exceeds the maximum achievable session rate, both the aggregate virtual queue size

and the aggregate real queue size grow indefinitely; the network is unstable. After reaching the

23

 0

 50

 100

 150

 200

 250

 300

 0 10000 20000 30000 40000

A
g
g
re

g
at

e
V

ir
tu

al
 Q

u
eu

e
S

iz
e

(G
B

)

Time (second)

λs = 1800Mbps
λs = 1990Mbps
λs = 2005Mbps

(a)

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000

A
g
g
re

g
at

e
R

ea
l

Q
u
eu

e
S

iz
e

(G
B

)

Time (second)

λs = 1800Mbps
λs = 1990Mbps
λs = 2005Mbps

(b)

Fig. 5. The stability of the second algorithm; (a) aggregatevirtual queue sizes; (b) aggregate real queue sizes.

 1500

 1600

 1700

 1800

 1900

 2000

 0 500 1000 1500 2000 2500 3000R
ec

ei
v

in
g

 D
at

a
R

at
e

p
er

 R
ec

ei
v

er
 (

M
b

p
s)

Time (second)

λs = 1800Mbps
λs = 1990Mbps
λs = 2005Mbps

(a)

 1500

 1600

 1700

 1800

 1900

 2000

 0 500 1000 1500 2000 2500 3000R
ec

ei
v

in
g

 D
at

a
R

at
e

p
er

 R
ec

ei
v

er
 (

M
b

p
s)

Time (second)

λs = 1800Mbps
λs = 1990Mbps
λs = 2005Mbps

(b)

Fig. 6. Convergence of the two algorithms; (a) the first algorithm; (b) the second algorithm.

steady state, the real queue process exhibits more oscillation than that in the first algorithm. This

is in part because the randomly selected tree on each time slot is not necessarily the min-cost

tree. The aggregate queue size oscillates within a10-GB range and the average oscillation is

73.5 MB at each link. Fig. 6 (b) shows that the average receiving rate converges reasonably fast

to the arrival rate when the arrival rate is below the maximumachievable session rate.

24

C. Results for the Larger Network

We have conducted more experiments on the larger ISP networkwith 295 nodes and1086

links. We assign5 Gbps link capacity to each of the critical links and1 Gbps to each of the

other links, and we set up one multicast session with39 receivers. The experiments suggest that

the maximum session rate is around2 Gbps, although we do not know the exact value. Fig. 7

(a) shows that the network is stable when the source rateλs is 2 Gbps and the real queues build

up indefinitely when the source rate is2.1 Gbps. For the case ofλs = 2 Gbps, the aggregate

queue size is under60 GB or 80 GB for the first or second algorithms, respectively; the average

queue size per link is under55.2 MB or 73.7 MB, respectively. The oscillation of the aggregate

queue size in the steady state is under15 GB for both algorithms; after divided by the number of

links, the average is under13.8 MB per link. The largest queue size observed at a link is3 GB

for the first algorithm and21 GB for the second algorithm. Evidently, tree selection in the first

algorithm is better at avoiding congested links. In the second algorithm, a link coming out of the

source has the largest queue size for much of the simulation duration. Better tree selection should

help the second algorithm to reduce the largest queue size. Overall, these are promising results

for buffer requirements, particularly considering the fact there are more receivers in this set of

experiments. Fig. 7 (b) shows that, in each stable case whereλs = 2 Gbps, the average receiving

rate per receiver ramps up to1.8 Gbps in under300 time slots, which is90% of the arrival rate.

Again, this receiving rate is a time average as well. The convergence speed of the instantaneous

receiving rate can be inferred from Fig. 7 (a). There, we see that the queues become steady in

less than500 or 1000 time slots for the first and second algorithm, respectively.We can deduce

that convergence to greater than99% of the final value has been achieved within those time

slots. We conclude that the algorithms converge fairly fast.

D. Control Overhead

We will briefly describe a simple design of the signaling/control protocol and show that the

control overhead is small. On each time slot, a source sends one signaling packet to each node on

the multicast tree selected by the algorithm. The signalingpacket directed toward a node contains

a list of link IDs (32 bits each), which designate the node’s outgoing links on the multicast tree.

The packet also contains a 32-bit virtual source rate and a 32-bit multicast session ID (which

can use the source ID). The second type of control packets hasthe function of carrying the

costs of the links (i.e., links’ virtual queue sizes) back tothe sources of the multicast sessions.

On each time slot, a node sends one feedback packet to each source. The packet contains the

25

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000

A
g
g
re

g
at

e
R

ea
l

Q
u
eu

e
S

iz
e

(G
B

)

Time (second)

(i)
(ii)

(iii)
(iv)

(a)

 1800

 1850

 1900

 1950

 2000

 0 500 1000 1500 2000 2500 3000R
ec

ei
v
in

g
 D

at
a

R
at

e
p
er

 R
ec

ei
v
er

 (
M

b
p
s)

Time (second)

(i)
(ii)

(iii)
(iv)

(b)

Fig. 7. The experiments on a network with 295 nodes and 1086 links; (a) aggregate real queue sizes; (b) average receiving

rate per receiver. Legends: (i) the first algorithm withλs = 2 Gbps, (ii) the first algorithm withλs = 2.1 Gbps, (iii) the second

algorithm withλs = 2 Gbps, (iv) the second algorithm withλs = 2.1 Gbps.

IDs and costs (32 bits each) of the node’s outgoing links and the 32-bit node ID. Every control

packet has an additional 20-byte header containing miscellaneous information. The size of each

control packet is well under1000 bytes in typical cases.

For a network withn nodes andm links, the total size of all the signaling packets from a

source is at most(20× 8+32+32)n+32m bits on each time slot. Consider a fairly aggressive

example where the network has300 nodes and3000 links and the time slot size is0.5 seconds.

On each time slot, the total size of the forward signaling packets is163, 200 bits, which means

the control traffic rate from the source is326.4 Kbps. If the source data rate is100 Mbps, the

forward signaling overhead is only0.3264%. Furthermore, the control traffic rate is independent

of the source data rate. As technology progresses to1 Gbps or10 Gbps source rates, the overhead

becomes0.03264% or 0.003264%, respectively. It is also sensible to define the signaling overhead

with respect thetotal data traffic rate for the multicast session. For a multicast session withr

receivers, the total data traffic rate entering the receivers is equal tor times of the source rate.

If a multicast session has100 receivers and the source rate is100 Mbps, the total data rate is

10 Gbps. The signaling traffic is0.003624% of 10 Gbps.

The second type of control packets has the function of carrying the costs of the links (i.e.,

links’ virtual queue sizes) back to the sources of the multicast sessions. On each time slot, each

node sends one feedback packet to every source. The packet contains the IDs and costs of the

node’s outgoing links, the node ID and a 20-byte header. Then, the total size of all the feedback

26

packets received by a source on each time slot is(20×8+32)n+(32+32)m bits. For a network

with 300 nodes and3000 links, the total size is249, 600 bits, which corresponds to a traffic rate

of 499.2 Kbps when the time slot size is 0.5 seconds. For100 Mbps,1 Gbps or10 Gbps source

rates, the overhead is0.4992%, 0.04992% or 0.004992%, respectively, when compared with the

source rate; it is0.004992%, 0.0004992% or 0.00004992%, respectively, when compared with

the total data rate for a session with100 receivers.

VI. RELATED WORK

Research on similar stability questions has been very active, but generally, in the context of

unicast (e.g. [9], [14], [21]–[26]), possibly with multiple paths per connection. The presence of

multicast puts our problem in a class of its own in that many earlier stable control algorithms,

such as the maximum backpressure-based algorithm [22], andtechniques for stability analysis are

not directly applicable. The main reason is that, unlike unicast, the flow conservation condition

no longer holds under multicast.

There are several papers on the stability analysis of multicast/broadcast [27]–[31]. Except

[27], most of these assume an access constrained network. In[28]–[30], various Bittorrent-like

algorithms are proposed and are proved to achieve the optimal performance in terms of the

distribution rate and/or delay, where the bandwidth bottleneck is at the upload links. In [27],

Massouliéet. al. present a simple local-control algorithm for broadcast in ageneral network,

which provably achieves the optimal broadcast rate. The algorithm only allows broadcast from

a single source and requires all nodes in the network to receive a complete copy of the data. In

[31], the stability of multiple-tree-based peer-to-peer live streaming is analyzed, where stability

is defined as the availability of data in the presence of node dynamics.

Another salient aspect of the universal swarming problem ismost related to the problem of

link scheduling in wireless networks subject to link interference constraints, which has attracted

much attention recently [9], [14], [15], [21], [26], [32]–[36]. In [21], Tassiulaset. al. showed

that the maximum-weight link schedule achieves (i.e., stabilizes) the interior of the throughput

region, where the weights are the queue size differences, orthe backpressure. However, finding

such a schedule is in general an NP-hard problem. The universal swarming problem usually

involves an NP-hard subproblem in order to achieve the entire throughput region, which is to

find a minimum-cost Steiner tree. This similarity makes manyof the concerns and investigative

approaches in the wireless link scheduling problem relevant to the universal swarming problem. In

[14], [37], Lin et. al.showed that approximation algorithms for the maximum-weight scheduling

27

problem can be used to stabilize a portion of the throughput region. Some researchers considered

maximal scheduling algorithms and studied what their stability regions are [25], [26], [34]–[36].

Other authors proposed randomized scheduling algorithms that achieve the entire throughput

region [15] [18].

VII. CONCLUSIONS AND DISCUSSIONS

In universal swarming, packets are distributed to the receivers along multiple multicast trees.

The paper focuses on analyzing the stability of the algorithms for sending dynamically arriving

packets onto the trees. To achieve the throughput region, weencounter a min-cost Steiner tree

problem, which is NP-hard. Multi-hop traffic is another difficulty for finding stable universal

swarming algorithms. We propose aγ-approximation min-cost tree scheduling algorithm with

network signaling and source regulators. It guarantees network stability in a reduced throughput

region, where the reduction ratio is no more than the approximation ratio of the algorithm for the

min-cost tree problem. We further develop a randomized tree-scheduling algorithm with network

signaling. It achieves the throughput region and stabilizes the virtual queues. Moreover, the real

queue processes are rate stable and the average traffic intensity at each link is strictly less than

one. However, whether or not the real queues are stable remains an open question.

In the worst case, even finding an approximate min-cost tree can be very time consuming.

However, the algorithms and results in this paper can still be practically relevant. First, our

algorithms do not require to find the true min-cost tree. In practice, there is a time budget (e.g.,

the time slot size) in the tree computation step. The tree that is found to have the least cost

during the budgeted time will be used by our algorithms. Second, there are several possibilities

that, in practice, the tree-computation time may not be prohibitively long. (i) In small networks

(less than 100 nodes and links), finding the min-cost tree canbe quite fast. (ii) For the intended

application, the network topology is a fixed one, not an arbitrary one. One may be able to find

specialized, fast algorithms for that particular topology. (iii) For a fixed topology, one may be

able to find a heuristic algorithm that has near optimal performance most of the time. (iv) In

many practical networks, such as the ones used in our simulation, it is sometimes quite clear

that a small number of links are the critical ones and they almost always experience large queue

sizes. It is not necessarily hard to find a min-cost (or nearlymin-cost) tree, if only these critical

links need to be inspected. Finally, the tree computation time can be reduced drastically at the

expense of a small reduction in the throughput. If the time budget for tree computation is chosen

to be very short, e.g., close to the round-trip propagation time, we may restrict each multicast

28

session to use a small number of precomputed trees (e.g., 4 – 100 trees); finding the min-cost tree

among them is trivial. Experiences have shown that the loss in throughput due to the restriction

on the trees is likely to be small (see [38] for the unicast case). The performance guarantees

found in the paper still apply if we modify the optimization problem by adding the constraints

about the allowed trees.

We now briefly discuss how to adapt the algorithms to the case of small buffer sizes. This is

possible because, fundamentally, the algorithms use the virtual queue sizes for rate computation

and they will find the optimal rates regardless of the actual buffer sizes. The first idea is again to

use a small number of pre-computed trees for each multicast session, sayL trees. Since finding

the least-cost tree among theL trees is extremely easy, we can reduce the time slot size to

near the round-trip propagation time, and hence, reduce thebandwidth-delay product. Next, we

wish to reduce temporary overload in the steady state due to tree-hopping. The idea is to use

theL multicast treessimultaneouslywith the correct tree rates. In the modified algorithm, every

source computes the time average of the virtual source rates(for releasing virtual packets to

the network) that each of itsL trees sees; this yields the time averages of the virtual treerates

and these time-average rates converge to the optimal tree rates regardless of the buffer size7.

The computed average rates are used as targets for what the real tree rates (and hence, the real

source rate) should be. In a static network environment (i.e., one with fixed topology, constant

link bandwidth and long-lasting multicast sessions), the real tree rates can be set directly at

the time-average virtual tree rates when the latter have stabilized8. Then, the only remaining

possible cause for queue buildup is the randomness in the arrival process. A very small buffer

size is sufficient to absorb such traffic fluctuation and prevent packet losses (e.g.,10-100 packets).

Finally, we can further enhance the algorithms to reduce thetransient buildup of the queues so

that the algorithms can cope with macro-level dynamics, by which we mean changes in the

network topology and link bandwidth or the arrivals/departures of multicast sessions. The idea

is to have another level of adaptation by the real tree rates.For instance, a real tree rate can

rapidly increase to80% of the time average of the corresponding virtual tree rate; after that, it

increases gradually until packet losses occur, at which point, it drops to half of the time-average

virtual tree rate. This way, the real rates will not overshoot too much. Note that the adaptation

of the real rates and the computation of the time averages aredone concurrently; there is no

7Here, the optimal rate-allocation problem is a modified one.Compared with the original optimization problem, the only

modification is that it assumesL fixed trees per multicast session.

8The initial waiting time for the convergence of the time-average virtual rates is not a concern under the static assumption.

29

waiting for the convergence of the time-average rates.

APPENDIX A

PROOFS

A. Proof of Theorem 5

Recall that every packet at any link has a hop count from the source, which is the hop count on

its tree path to the link. If a packet has a hop counth when it arrives at a link, we say it belongs

to thehth-hop traffic. LetQe(k, h) denote the queue backlog at linke at timek contributed by

all first-hop throughhth-hop traffic. We assumeQe(k, 0) = 0 for ease of presentation.

For eache ∈ E, let h̄e ≤ |V |−1 be the largest hop count of any packet ine. Let h̄ = maxe∈E h̄e.

We claim that for allh = 1, · · · , h̄,

Qe(k, h) ≤ Mh, ∀k, ∀e ∈ E, (27)

where the constants satisfyM1 ≤ M2 ≤ · · · ≤ Mh̄ < ∞. We prove this claim by induction.

Base: When h = 1, note thatQe(k, 1) ≤ qe(k) and qe(k) ≤ Me by Corollary 3. LetM1 =

maxe∈E Me. Then, (27) holds forh = 1 and for allk.

Assume (27) holds for1, · · · , h− 1 and for allk.

Induction on h: Let xe(k, h) denote the number of packets arriving at linke on time slotk that

belong to the first-hop throughhth-hop traffic. Then, during any interval of time,k0 throughk, the

total number of arrivals is no more than the sum of the number of packets released by the sources

during this interval that travel through linke and all the backlogged, first-through-(h− 1)th-hop

packets in the network at timek0, i.e.,
k

∑

u=k0

xe(u, h) ≤
k

∑

u=k0

∑

s∈S

Ds(u)I(e, ts(u)) +
∑

e′∈E

Qe′(k0, h− 1)

≤

k
∑

u=k0

∑

s∈S

Ds(u)I(e, ts(u)) + |E| ·Mh−1. (28)

(28) holds due to the induction hypothesis.

Assume all the queues are empty at time 0. For allk,

Qe(k, h) = max
0≤k0≤k

{

k
∑

u=k0

xe(u, h)− ce(k − k0 + 1)} (29)

≤ max
0≤k0≤k

{

k
∑

u=k0

∑

s∈S

Ds(u)I(e, ts(u)) + |E| ·Mh−1 − ce(k − k0 + 1)} (30)

≤ Me + |E| ·Mh−1. (31)

30

(29) is by an elementary fact about the queue size. It is derived by expanding the one-step queue

update backward in time. It says that the queue size is the largest difference between the total

arrivals and the accumulated link capacity on any sub-interval ending at the current timek. (30)

is by using (28) in (29). (31) is by Lemma 4. We can defineMh = Me + |E| ·Mh−1.

Finally, note that the overall queue backlogQe(k) at link e is equal toQe(k, h̄e), where

h̄e ≤ h̄. Hence,Qe(k) ≤ Mh̄e
≤ Mh̄ for all k.

B. Proof of Theorem 11

The proof follows from Theorem 8.0.3 in [39]. Denote byX the state space of the Markov

process{x(k)} = {q(k), t(k)}. Define a finite subset of the state spaceX̂ = {x ∈ X :
∑

e∈E qe ≤
M
ǫ
}, for M and ǫ as specified in Lemma 9. Note that by assumption AS 3, the process{x(k)}

is an x∗-irreducible Markov chain withx∗ = (q∗, t∗), where q∗ = ~0 and t∗ is a fixed set of

minimum-cost trees under the link cost vectorq∗ = ~0;9 and it is also aperiodic on the countable

state spaceX . Assumption AS 3 says that on every time slot, there is some nonzero probability

that no new arrivals enter the sources. The system will emptyafter a finite number of such

successive “no arrival” slots, an event that has a positive probability. This implies the process

{x(k)} is an x∗-irreducible Markov chain (i.e.,
∑∞

k=0 P
k(x, x∗) > 0, x ∈ X̂). Aperiodicity

follows from P (x∗, x∗) = P{A(k) = 0} · P{t∗ is chosen} > 0.

By Lemma 9, the chain{x(k)} satisfies the Foster-Lyapunov drift conditions [39]. Now all

the conditions of Theorem 8.0.3 in [39] are met. Hence, Theorem 11 holds.

C. Proof of Theorem 12

According to (16),

qe(k + 1) ≥ qe(k) +
∑

s∈S

As(k)I(e, ts(k))− (ce − ǫ2), ∀e ∈ E.

Summing the above inequality from time slots0 to k, we have

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u)) ≤ (ce − ǫ2)(k + 1) + qe(k + 1)− qe(0)

≤ (ce − ǫ2)(k + 1) + qe(k + 1). (32)

9There might be multiple sets of the minimum-cost trees. Lett
∗ be an arbitrary one of them. Since the tie is broken uniformly

at random, there is a non-zero probability that we choose theset t∗.

31

Dividing both sides of (32) byk + 1 yields
∑k

u=0

∑

s∈S As(u)I(e, ts(u))

k + 1
≤ ce − ǫ2 +

qe(k + 1)

k + 1

= ce − ǫ2 +

∑k+1
u=0 qe(u)−

∑k

u=0 qe(u)

k + 1

= ce − ǫ2 +

∑k+1
u=0 qe(u)

k + 2
·
k + 2

k + 1
−

∑k

u=0 qe(u)

k + 1
.

Taking the limit on both sides of the above inequality ask goes to infinity, we get,

lim sup
k→∞

∑k

u=0

∑

s∈S As(u)I(e, ts(u))

k + 1
≤ ce − ǫ2 + lim

k→∞

∑k+1
u=0 qe(u)

k + 2
· lim
k→∞

k + 2

k + 1

− lim
k→∞

∑k

u=0 qe(u)

k + 1

= ce − ǫ2.

The last equality holds becauselimk→∞

∑
k+1

u=0
qe(u)

k+2
= limk→∞

∑
k

u=0 qe(u)

k+1
= E[q̂e] by Theorem 11.

Hence, (25) holds.

Now taking the expectation on the both sides of (32) yields

E[

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u))] ≤ (ce − ǫ2)(k + 1) + E[qe(k + 1)]

≤ (ce − ǫ2)(k + 1) +Me,

whereE[qe(k + 1)] ≤ Me < ∞. Because Theorem 11 says,limk→∞E[qe(k)] → E[q̂e] and

E[q̂e] < ∞, suchMe exists. Dividing both sides of the above inequality byk+1 and taking the

limit, we have,

lim sup
k→∞

E[
1

k + 1

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u))] ≤ ce − ǫ2 + lim
k→∞

Me

k + 1
= ce − ǫ2.

D. Proof of Corollary 13

For any time slotk, let {ae(k)} denote the real packet arrival process at linke. The real queue

dynamic equation can be written as

Qe(k + 1) = max[Qe(k)− ce, 0] + ae(k). (33)

Note that, for any time slotk, the number of cumulative arrivals at the real queue is no more

than the number of cumulative arrivals at the virtual queue,i.e.,
k

∑

u=0

ae(u) ≤
k

∑

u=0

∑

s∈S

As(u)I(e, ts(u)).

32

Then, by Theorem 12,

lim sup
k→∞

∑k

u=0 ae(u)

k
≤ lim sup

k→∞

∑k

u=0

∑

s∈S As(u)I(e, ts(u))

k
≤ ce − ǫ2 ≤ ce.

According to the Rate Stability Theorem in [12] (Theorem 2.4), Qe(k) is rate stable, i.e.,

lim
k→∞

Qe(k)

k
= 0 with probability 1.

REFERENCES

[1] J. Lee and G. de Veciana, “On application-level load balancing in FastReplica,”Computer Communications, vol. 30, no. 17,

pp. 3218–3231, November 2007.

[2] D. Kostić, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson, A. C. Snoeren, and A. Vahdat, “Maintaining high bandwidth

under dynamic network conditions,” inProceedings of USENIX Annual Technical Conference, 2005.

[3] B.-G. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz, “ChunkCast: An anycast service for large content distribution,”

in Proceedings of the International Workshop on Peer-to-PeerSystems (IPTPS), 2006.

[4] BitTorrent Website, http://www.bittorrent.com/.

[5] K. Park and V. S. Pai, “Scale and performance in the CoBlitz large-file distribution service,” inProceedings of the 3rd

USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI), 2006.

[6] K. Cho, K. Fukuda, H. Esaki, and A. Kato, “The impact and implications of the growth in residential user-to-user traffic,”

in Proceedings of the ACM SIGCOMM, 2006.

[7] X. Zheng, C. Cho, and Y. Xia, “Optimal peer-to-peer technique for massive content distribution,” inProceedings of the

IEEE INFOCOM, 2008.

[8] ——, “Content distribution by multiple multicast trees and intersession cooperation: Optimal algorithms and approxima-

tions,” in Proceedings of the 48th IEEE Conference on Decision and Control (CDC), 2009.

[9] M. J. Neely, “Energy optimal control for time varying wireless networks,”IEEE Transactions on Information Theory,

vol. 52, no. 7, pp. 2915–2934, July 2006.

[10] ——, “Dynamic power allocation and routing for satellite and wireless networks with time varying channels,” Ph.D.

dissertation, Massachusetts Institute of Technology, 2003.

[11] M. J. Neely, E. Modiano, and C. P. Li, “Fairness and optimal stochastic control for heterogeneous networks,”IEEE/ACM

Transactions on Networking, vol. 16, no. 2, pp. 396–409, 2008.

[12] M. J. Neely,Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan and

Claypool, 2010.

[13] M. Charikar and C. Chekuri, “Approximation algorithmsfor directed Steiner problems,”Journal of Algorithms, vol. 33,

no. 1, pp. 73–91, 1999.

[14] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-layer rate control in wireless networks,”IEEE/ACM

Transactions on Networking, vol. 14, no. 2, pp. 302–315, April 2006.

[15] L. Tassiulas, “Linear complexity algorithms for maximum throughput in radio networks and input queued switches,”in

Proceedings of the IEEE INFOCOM, 1998.

[16] Rocketfuel: An ISP Topology Mapping Engine, University of Washington, http://www.cs.washington.edu/research/networking/rocketfuel/.

[17] X. Lin and S. B. Rasool, “Constant-time distributed scheduling policies for ad hoc wireless networks,” inProceedings of

the IEEE CDC, 2006.

[18] S. Rajagopalan, D. Shah, and J. Shin, “Network adiabatic theorem: an efficient randomized protocol for contention

resolution,” inProceedings of SIGMETRICS, 2009.

http://www.bittorrent.com/
http://www.cs.washington.edu/research/networking/rocketfuel/

33

[19] L. Jiang, M. Leconte, J. Ni, R. Srikant, and J. Walrand, “Fast mixing of parallel Glauber dynamics and low-delay CSMA

scheduling,”IEEE Transactions on Information Theory, vol. 58, no. 10, pp. 6541–6555, October 2012.

[20] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length based CSMA/CA algorithms for achieving maximum throughput

and low delay in wireless networks,” inProceedings of the IEEE INFOCOM, 2010.

[21] L. Tassiulas and A. Ephremides, “Stability propertiesof constrained queueing systems and scheduling policies for maximum

throughput in multihop radio networks,”IEEE Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948,

December 1992.

[22] L. Tassiulas, “Adaptive back-pressure congestion control based on local information,”IEEE Transactions on Automatic

Control, vol. 40, pp. 236–250, 1995.

[23] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks using queue-length based scheduling and

congestion control,” inProceedings of the IEEE INFOCOM, 2005.

[24] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resourceallocation and cross-layer control in wireless networks,”Foundations

and Trends in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[25] X. Wu, R. Srikant, and J. R. Perkins, “Scheduling efficiency of distributed greedy scheduling algorithms in wireless

networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 595–605, 2007.

[26] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region of the greedy maximal scheduling algorithm in

multi-hop wireless networks,” inProceedings of the IEEE INFOCOM, 2008.

[27] L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized decentralized broadcasting algorithms,” in

Proceedings of the IEEE INFOCOM, 2007.

[28] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg, “Epidemic live streaming: optimal performance trade-offs,”

in Proceedings of SIGMETRICS, 2008.

[29] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for P2P streaming systems,” inProceedings of the IEEE INFOCOM,

2007.

[30] S. Sanghavi, B. Hajek, and L. Massoulie, “Gossiping with multiple messages,” inProceedings of the IEEE INFOCOM,

2007.

[31] G. Dan, V. Fodor, and I. Chatzidrossos, “On the performance of multiple-tree-based peer-to-peer live streaming,”in

Proceedings of the IEEE INFOCOM, 2007.

[32] M. Johansson and L. Xiao, “Cross-layer optimization ofwireless networks using nonlinear column generation,”IEEE

Transactions on Wireless Communications, vol. 5, no. 2, pp. 435–445, Feb. 2006.

[33] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer congestion control, routing and scheduling design in ad

hoc wireless networks,” inProceedings of the IEEE INFOCOM, 2006.

[34] A. Dimakis and J. Walrand, “Sufficient conditions for stability of longest-queue-first scheduling: second-order properties

using fluid limits,” Advances in Applied Probability, vol. 38, no. 2, pp. 505–521, 2006.

[35] G. Sharma, N. B. Shroff, and R. R. Mazumdar, “Joint congestion control and distributed scheduling for throughput

guarantees in wireless networks,” inProceedings of the IEEE INFOCOM, 2007.

[36] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed scheduling algorithms for wireless networks,” inProceedings

of IEEE INFOCOM, 2007.

[37] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless networks,”IEEE Journal on

Selected Areas in Communications, vol. 24, no. 8, pp. 1452–1463, Aug. 2006.

[38] K. Rajah, S. Ranka, and Y. Xia, “Scheduling bulk file transfers with start and end times,”Computer Networks, vol. 52,

no. 5, pp. 1105–1122, April 2008.

[39] S. Meyn,Control Techniques For Complex Networks. Cambridge University Press, 2008.

34

PLACE

PHOTO

HERE

Xiaoying Zheng received the bachelor’s and master’s degrees in computer science and engineering

from Zhejiang University, P.R. China, in 2000 and 2003, respectively, and the PhD degree in computer

engineering from the University of Florida, Gainesville, in 2008. She is an assistantXiaoying Zheng

received the bachelors and masters degrees in computer science and engineering from Zhejiang University,

P.R. China, in 2000 and 2003, respectively, and the PhD degree in computer engineering from the

University of Florida, Gainesville in 2008. She was an assistant professor in Shanghai Research Center

of Wireless Communications, from March 2009 to October 2011. She then joined Shanghai Advanced

Research Institute, Chinese Academy of Sciences in 2012 as an associate professor. Her research interests include applications

of optimization theory in networks, distributed systems, performance evaluation of network protocols and algorithms, peer-

to-peer overlay networks, content distribution, and congestion control. professor at Shanghai Research Center for Wireless

Communications and Key Lab of Wireless Sensor Network and Communications, Chinese Academy of Sciences (CAS), China.

Her research interests include applications of optimization theory in networks, performance evaluation of network protocols and

algorithms, peer-to-peer overlay networks, wireless networks, content distribution and congestion control.

PLACE

PHOTO

HERE

Chunglae Cho received the B.S. and M.S. degrees in computer science from Pusan National Univer-

sity, Korea, in 1994 and 1996, respectively. He worked as a research staff member at Electronics and

Telecommunications Research Institute, Korea, between 2000 and 2005. He is currently working toward

a Ph.D. degree at the Computer and Information Science and Engineering department at the University

of Florida, Gainesville, FL. His research interests are in computer networks, including resource allocation

and optimization on peer-to-peer networks and wireless networks.

PLACE

PHOTO

HERE

Ye Xia is an associate professor at the Computer and Information Science and Engineering department at

the University of Florida, starting in August 2003. He has a PhD degree from the University of California,

Berkeley, in 2003, an MS degree in 1995 from Columbia University, and a BA degree in 1993 from Harvard

University, all in Electrical Engineering. Between June 1994 and August 1996, he was a member of the

technical staff at Bell Laboratories, Lucent Technologiesin New Jersey. His main research area is computer

networking, including performance evaluation of network protocols and algorithms, resource allocation,

wireless network scheduling, network optimization, and load balancing on peer-to-peer networks. He also

works on cache organization and performance evaluation forchip multiprocessors. He is interested in applying probabilistic

models to the study of computer systems.

	I Introduction
	II Problem Description
	II-A Throughput Region
	II-B The Class of Algorithms: Time Sharing of Trees

	III Signaling, Source Traffic Regulation and -approximation Min-Cost Tree Scheduling
	III-A Signaling Approach
	III-B Source Traffic Regulation
	III-C -Approximation Min-Cost Tree Scheduling
	III-D Stability Analysis
	III-D1 Stability of the Regulators
	III-D2 Stability of the Virtual Queues
	III-D3 Stability of the Real Queues

	IV Randomized Tree Scheduling
	IV-A Signaling
	IV-B Randomized Tree Scheduling
	IV-C Stability Analysis
	IV-C1 Stability of the Virtual Queues
	IV-C2 Stability of the Real Queues

	V Simulation Results and Evaluations
	V-A Algorithm Using Source Traffic Regulation and Approximate Min-Cost Tree Scheduling
	V-B Algorithm Using Randomized Tree Scheduling
	V-C Results for the Larger Network
	V-D Control Overhead

	VI Related Work
	VII Conclusions and Discussions
	Appendix A: Proofs
	A-A Proof of Theorem 5
	A-B Proof of Theorem 11
	A-C Proof of Theorem 12
	A-D Proof of Corollary 13

	References
	Biographies
	Xiaoying Zheng
	Chunglae Cho
	Ye Xia

