
Indirect Training of a Spiking Neural Network for Flight Control via
Spike-Timing-Dependent Synaptic Plasticity

Greg Foderaro, Craig Henriquez, and Silvia Ferrari

Abstract— Recently, spiking neural networks (SNNs) have
been shown capable of approximating the dynamics of biolog-
ical neuronal networks, and of being trainable by biologically-
plausible learning mechanisms, such as spike-timing-dependent
synaptic plasticity. Numerical simulations also support the pos-
sibility that they may possess universal function approximation
abilities. However the effectiveness of training algorithms to
date is far inferior to those of other artificial neural networks.
Moreover, they rely on directly manipulating the SNN weights,
which may not be feasible in a number of their potential appli-
cations. This paper presents a novel indirect training approach
to modulate spike-timing-dependent plasticity (STDP) in an
action SNN that serves as a flight controller without directly
manipulating its weights. A critic SNN is directly trained with
a reward-based Hebbian approach to send spike trains to the
action SNN, which in turn controls the aircraft and learns via
STDP. The approach is demonstrated by training the action
SNN to act as a flight controller for stability augmentation.
Its performance and dynamics are analyzed before and after
training through numerical simulations and Poincaré maps.

I. INTRODUCTION AND MOTIVATION

Spiking neural networks (SNNs), such as integrate-and-fire

(IF) models [1], and the biophysical Hodgkin-Huxley (HH)

model [2], are computational models of biological neurons

that consist of systems of differential equations which can

reproduce spike dynamics and learning mechanisms observed

in real neuronal networks. Although recently SNNs have

been shown capable of simulating sigmoidal artificial neural

networks (ANNs) [3], the effectiveness of SNN training

algorithms is still far removed from that of ANN algorithms

such as backpropagation. SNNs offer several advantages over

sigmoidal ANNs. Not only are they biologically plausible,

but through temporal coding/decoding they can potentially

reproduce the computational speeds observed in biological

brains. For example, it has been shown that biological neu-

ronal networks can carry out visual pattern analysis with ten-

layer neuronal networks in only 100 ms [4], [5]. Moreover,

SNNs can be used to build computational models of cortical

regions, as shown in [6], because they can simulate the ability

of biological neuronal networks to use the precise timing of

single spikes to encode information [7], [8].

In an effort to achieve the effectiveness of ANN backprop-

agation training algorithms and use SNNs for solving com-

plex problems and tasks, SNN backpropagation algorithms

Greg Foderaro and Silvia Ferrari are with the Laboratory for Intelligent
Systems and Control (LISC), Department of Mechanical Engineering, Duke
University, Durham, NC 27708-0005, {greg.foderaro, sferrari}@duke.edu

Craig Henriquez is with the Department of BiomedicalEngineering, Duke
University, Durham, NC 27708-0005, ch@duke.edu

have been proposed in [9]. One of the main difficulties to

overcome in this research approach is that the signals and

errors produced by SNNs are piece-wise continuous, whereas

gradient-descent methods typically are not applicable to

objective functions that are not continuously differentiable.

More importantly, despite numerous research efforts to this

date, there is no experimental evidence supporting the exis-

tence of biological mechanisms based on the propagation of

errors. The work presented in this paper follows an alternate

line of research which involves the development of training

algorithms that modify the synaptic efficacies through bio-

logically inspired methods including spike-timing-dependent

plasticity (STDP) and Hebbian synaptic plasticity. These

algorithms have been used to train SNNs to solve simple

nonlinear function approximation problems, such as approx-

imating the XOR gate in [10]–[15]. This paper presents

a novel supporting training approach that may be used to

indirectly train a randomly connected network to serve as a

flight controller.

The training approach presented in this paper is motivated

by potential SNN applications such as neuroprosthetic de-

vices implanted in the brain to substitute a motor, sensory,

or cognitive modality damaged by an injury or disease, and

in-vitro light-sensitive biological neuronal networks utilized

for basic neuroscience research. In these applications, the

objective is to stimulate in-vivo or in-vitro biological neurons

to perform a complex function such as processing an auditory

signal, or restoring a cognitive function. In neuroprosthetic

applications, the artificial device may consist of a micro-

electrode array or integrated circuit that stimulates biological

neurons via spike trains, but the devices are not capable of

directly modifying the neurons’ synaptic efficacies, as many

SNN training algorithms do. With in-vitro neuronal networks,

an artificial SNN on a computer can be used to provide input

signals to the culture by optically stimulating the neurons

with controlled blue light in an attempt to induce plasticity.

The resulting network response can be continuously recorded

and processed in real time with high spatial and temporal

resolution by spike detection and sorting software [16], for

the purpose of verifying models and mechanisms by which

biological neuronal networks execute the control and storage

of information via temporal coding.

In-vitro neuronal networks with random connectivity are

produced with a method known as ”Banker Cultures”, which

grows neurons on top of a monolayer of astrocytes [16],

[17]. In these networks and in in-vivo networks, the actual

connectivity and synaptic plasticities are typically unknown

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

U.S. Government work not protected by
U.S. copyright

911

and may change over time as a result of brain plasticity.

Therefore, the training approach presented in this paper

aims to induce changes in the synaptic efficacies of a ran-

domly connected action SNN by modulating STDP through

input spike trains produced by a critic SNN. The critic

SNN is trained directly by adjusting its weights through

a biologically-plausible algorithm, while the action SNN

attempts to control a simulated aircraft with poor short-period

flying qualities. Since the action SNN’s synaptic strengths

cannot be adjusted directly, the critic SNN must learn how

to induce the desired plasticity in the action SNN by means

of a reward-modulated Hebbian learning algorithm which

computes the reward based on the errors between the action

SNN output and an optimal control law. Since the SNNs’

weights are adjusted online, the approach can be used for

adaptive control via SNN.

The novel adaptive control architecture and algorithm are

presented in Section III and applied to the SNN architecture

described in II. Section V shows the results of the algorithm

and includes analysis on the stability and dynamic behavior

of the system, and it is demonstrated that the network

is capable of learning the aircraft controller computations

presented in Section IV.

II. SPIKING NEURAL NETWORK MODEL

Spiking neural networks seek to provide complete and

accurate dynamic models for biological neurons, including

support for action potential generation, refractory periods,

and post-synaptic potential shaping. When the membrane

potential of neuron i, denoted by vi, exceeds a threshold

θ, a spike or action potential in the network occurs and a

brief electrical pulse travels unchanged down the axon of the

firing neuron to other receiving neurons. If the spike raises

the membrane potential of the receiving neuron above its

threshold, it too will generate a spike. A neuron will produce

spikes that are all of the same form with an amplitude of

about 100 mV and a duration of 1 to 2 ms. Because of the

similarities between spikes, the information carried on the

signals is dependent on the timing and patterns of the spikes,

or spike trains. The spikes can then be represented by the

Dirac delta function δ(t − tki), with a singularity at t = tki ,

where i and k are the neuron and spike indices respectively.

�w

(tpre � tpost)

Fig. 1. STDP term as a function of the time delay between the last spike
of postsynaptic neuron, and presynaptic neuron.

Early spiking neuron models were vastly simplified and

not able to accurately approximate neuron dynamics or

reproduce biological learning mechanisms. In this paper, the

SNN neurons are modeled according to the Hodgkin-Huxley

(HH) formalism with fast sodium and potassium ion channels

for the generation of action potentials [2]. HH neurons

are a popular choice for SNNs and have been shown to

closely represent biological neuron dynamics. The membrane

potential, vm, is governed by

cm
vm
Δt

=
Em − Vm

Rm
−

Nc∑

c=1

gc(t)(Vm − Ec
rev) (1)

+

Ns∑

s=1

Is(t) + Iinject

where the membrane capacity is cm, the reversal potential

of the leak currents is Em, the membrane resistance is Rm,

the number of channels is Nc, the current conductance of

channel c is gc(t), the reversal potential of channel c is

Ec
rev , the number of incoming synapses is Ns, the current

supplied by synapse s is Is(t), and the injected current is

Iinject [18]. The membrane potential is found by solving

(2), and when vm exceeds the threshold potential, Vthresh,

the neuron produces a spike and has vm reset to a value,

vreset, and locked in place during a refractory period, Tref .
In addition to the above deterministic properties, there

are also prevalent stochastic qualities in biological neural

networks caused by effects such as thermal noise and random

variations in neurotransmitters. For this reason, the SNN

model includes a zero mean random noise term, Inoise, with

a variance of 20 nA. Inoise is injected into the neuron which

causes disturbances in the resting potential. This noise causes

a neuron to have a baseline spiking frequency of 8 Hz even

when it has no synaptic connections. Biological neurons also

display a persistent learning mechanism known as spike-

timing-dependent synaptic plasticity, which works to modify

the synaptic strengths between neurons. These changes are

driven by relationships between adjacently connected neu-

rons where the directions and magnitudes of the changes

are dependent on the relative timings of the presynaptic

spike arrivals and postsynaptic firings. In the network that

undergoes STDP using the method presented, all changes

in synaptic strengths occur solely as a result of the STDP

mechanism. For each set of neighboring spikes, the weight

adjustment is given by

Δw = Ae[(tpre−tpost)τ] (2)

As a result, the connection weight increases when the

postsynaptic spike follows the presynaptic spike, and the

weight decreases when the opposite occurs. The amplitude

of the adjustment Δw lessens as the time between the spikes

becomes larger, as is illustrated by plotting (2) in Fig. 1.

III. ADAPTIVE CONTROL ARCHITECTURE AND

ALGORITHM

Many approaches have been proposed to train SNNs

directly with reward signals or by reward-driven Hebbian

912

learning and modulation of STDP [10], [14]. However, these

methods are not suited to those SNN applications that involve

training biological neuronal networks, because biological

synaptic efficacies cannot be adjusted directly. This paper

presents an approach for controlling a randomly connected

action SNN through input signals provided by a critic SNN

to modulate biologically-occurring STDP mechanisms, and

alter the synaptic efficacies of the action SNN. Let NNa

represent the action SNN of randomly connected SNN of

HH neurons, and NNc denote the critic SNN of feedforward

fully-connected HH neurons. In this architecture, schema-

tized in Figure 2, NNa is treated as a biological network,

and NNc is treated as an artificial network implemented on

a computer or integrated circuit. Thus, the synaptic weights

of NNc, defined as wij , are directly adjustable, while the

synaptic efficacies of NNa can only be modified through

a simulated STDP mechanism which is modulated by the

input spikes from NNc. The algorithm presented in this

section trains the network by changing the values of wij

inside NNc, which are assumed to be bounded by a positive

constant wmax such that −wmax ≤ wij ≤ wmax, ∀i, j.

It is assumed that the desired response of NNa can be

specified by a known target function y = h(x), where, in

this paper, y ∈ �m represents the optimal control output for

the flight controller, and x ∈ �n is the target input state. In

each SNN, there are n input neurons that correspond to each

input state. The NNa network has m output neurons which

relate to the control output variables. As is the case with

biological neural networks, SNNs use information coded as

spike trains, and therefore the output control signal must be

decoded into usable values. Biological neural networks are

capable of carrying information based on either firing rates

or individual spike timing. In this paper, spike frequencies

are used to code continuous signals, and the leaky integrator

ŷ = α
∑

tk∈Si(T)

eβ(tk−t)H(t− tk)− γ (3)

is used to decode spike trains and convert them into continu-

ous signals, where, α, β, and γ are user-specified constants,

and H(·) is the Heaviside function. Decoding by a leaky

integrator is advantageous for use with the flight controller

because it is effective in filtering inevitable noise while still

allowing the continuous value to change with sufficient speed

to match the target function.

The goal of the proposed approach is to induce changes

in the synaptic efficacies of NNa through STDP such that

the control output will closely match y for all x. Since the

weights within NNa cannot be adjusted directly, they are

manipulated with training signals from NNc. Connections

are made between q pairs of training neurons which serve as

outputs in NNc and inputs for NNa. To provide feedback

signals to the critic, connections are also created between r
pairs of neurons from NNa to NNc. The information flow

through the networks is illustrated in Figure 2. Since it is

not known what training signals will produce the desired

results in NNa, the critic must also be trained to match an

optimal output signal. However, since the synaptic weights

Fig. 2. Adaptive control architecture with critic network NNc train-
ing/controlling action network NNA to control a simulated aircraft.

of the critic may be adjusted manually, a reward-modulated

Hebbian approach can be implemented. Because the target

function y is known for all values of x, the controller output

error is also known and can be used as a feedback to the

critic in the form of an imitated chemical reward, r(t), that

decays over time with time constant τc. The reward is given

by the function

r(t) = [b(ŷ, y) + r(t−Δt)] · e−(t−t̂i)/τc (4)

where b(ŷ, y) = sgn(y − ŷ), which is chosen such that it

is positive when the control output is too low and negative

when it is too high. The reward is used to determine the

incremental weight change according to the rule

Δwij(t) = μ · r(t) · f(t̂i, t̂j) · g[wij(t)] (5)

The learning rate, μ, is a constant bounded by O(wmax).

The STDP term, f(t̂i, t̂j), exhibits similar behavior to that

of the STDP mechanism acting on the action network, and

it is defined as

f(t̂i, t̂j) = sgn(t̂i − t̂j) · e−|t̂i−t̂j |/τd (6)

The shape of f(t̂i, t̂j) is illustrated in Figure 1. When

the time delay between neighboring spikes is small, the

change of the synaptic strength between the two neurons

is great. If the presynaptic neuron is the first to fire, the

weight increases, while if the postsynaptic neuron fires first,

the weight decreases. The synapses’ eligibility, g[wij(t)], is

reproduced by the function,

g[wij(t)] = 1− c1 · e−c2·|wij(t)|/wmax (7)

The eligibility models a phenomenon in biological neural

networks where synapses with higher efficacies tend to

experience greater changes in weights. The parameters c1

913

and c2 are positive constants.
With this rule, the training of the networks is implemented

by discretizing a time period [0, Ttrain] by fixed intervals of

length Δt, and updating the weights at each timestep such

that,

wij(t+Δt) = wij(t) + Δwij(t) (8)

The weights are changed starting with the output layer

and working backwards through the hidden layers and to

the input layer. As the synaptic strengths in the critic are

modified, the training signals will evolve such that the effects

of STDP will alter the connections in the action network

and cause the control output to increasingly match the target

function. The learning algorithm is written in pseudocode

and is as shown in Algorithm 1.

Algorithm 1 SNN Learning algorithm

for t = Δt to Ttrain do
for i = N,N − 1, . . . , 1 do

for every pair (j, i) do
if in action network then
Δwij(t) = Ae[(tpre−tpost)τ]

else
Δwij(t) = μ · r(t) · f(t̂i, t̂j) · g[wij(t)]

end if
wij(t+Δt) = wij(t) + Δwij(t)

end for
end for
t = t+Δt

end for

IV. AIRCRAFT MODEL AND CONTROL

The adaptive controller presented in this paper is trained

and tested using a dynamic aircraft model with poor short-

period flying qualities taken from [19, p. 369]. For simplicity,

the aircraft is assumed to be restricted to longitudinal motion

and is described by two state variables, x = [α q]T ,

representing the aircraft angle of attack and pitch rate,

respectively. The aircraft dynamics are modeled by two linear

and coupled differential equations

α̇ = −0.334α+ q − 0.027u

q̇ = −2.52α− 0.387q − 2.6u (9)

where u is a scalar control input provided by the elevator

deflection. As shown in Figure 3, the above aircraft model

suffers from poor short-period flying qualities, as the os-

cillations in angle-of-attack following an initial disturbance,

α(t = 0) = 5 deg, take many seconds to decay [19, p.

369]. In this paper, the action SNN is utilized as a state-

feedback controller that provides stability augmentation such

that the aircraft will return to steady-level flight with an

adequate short-period natural frequency and damping ratio.

Using a classical pole-placement approach and the desired

short-period flying qualities criteria, as shown in [19, p. 369],

the optimal control law,

u∗ = 2.03α+ 1.318q (10)

can be determined from (9). For each input state value chosen

from a discretized range of pitch rates and angles of attack,

the optimal control value, u∗, is computed from (10) and

used as a target in the SNN training algorithm presented in

Section III, as explained in the following section.

 Uncontrolled
 Optimally Controlled

�
(d

eg
)

q
(d

eg
/s

ec
)

Time (sec)

Fig. 3. Time history of aircraft angle of attack, α, and pitch rate q, with
and without a controller.

V. TRAINING SIMULATIONS AND RESULTS

The training architecture and algorithm presented in Sec-

tion III are implemented to train an action SNN to perform

adaptive control of aircraft. The objective is to demonstrate

that a so-called action SNN can be trained to solve a bench-

mark control problem by inducing STDP via a critic SNN,

without directly manipulating the SNN synaptic strengths.

As a result, the methods presented in this paper could some

day be applied to train biological networks via computational

or in-silico critic SNNs. The simulations are conducted in

MATLAB�, using the neural Circuit SIMulator (CSIM)

software [18], which utilizes an adaptive time-step Crank-

Nicolson integrator to simulate HH SNNs. The aircraft is

assumed to operate only under longitudinal flight conditions,

and NNa is used to compute the elevator deflection based

on perfect knowledge of the aircraft state x. The SNN

controller’s effectiveness is tested by giving the system an

initial disturbance in the aircraft’s angle of attack, and by

indirectly training NNa through NNc such that the aircraft

will return to steady-level flight.

The SNN architecture portrayed in Fig. 2 is implemented

in CSIM as follows. The action SNN, denoted by NNa,

is constructed using 50 randomly connected neurons with 2

state input neurons, 16 training input neurons, 6 feedback

output neurons, and 1 control output neuron. The critic

SNN, denoted by NNc, consists of 2 state input neurons,

6 feedback input neurons, 2 layers of 20 hidden neurons

each, and 16 training output neurons. This architecture can

be scaled larger and produce similar results, but if the size is

reduced, the performance will suffer. Each neuron is modeled

according to the HH dynamics described in Section II.

During the implementation of the controller, the signal flow

914

begins at the flight simulator where the aircraft state values

are converted into spike trains and passed to the state input

neurons. The critic network sends training signals in the form

of spike trains to the action network via the training neurons.

The action network returns feedback signals as spikes to the

critic network through the feedback neurons, and it outputs

a spike train representing the control output.

During the training period, the input state, x, passed to the

networks is chosen at random from a list of possible values

distributed evenly within a practical range. In this paper, the

list used is comprised of Nepoch = 64 state values, and a new

state is selected for each new epoch of ttrain = 1 second

until every combination of states has been used. During each

epoch, the state input is converted into a spike train that is

generated using a Poisson distribution,

P (n, t) = e−νt
(νt)n

n! , n = 0, 1, ... (11)

The time interval is the length of the epoch, ttrain, and the

Poisson rate, ν, and the number of spikes, n, are set ac-

cordingly for each average spike frequency. The state values

are mapped to frequencies with a simple linear relationship

where a slower spike rate corresponds to a lower state value

and a faster rate communicates a higher state value. The

ranges used for the state values and frequencies are [−7, 7]
for both q and α, and 10 Hz to 100 Hz respectively. The

reverse conversion is done when decoding the control signal

from the control output spike train. However instead of

using a simple linear function, a leaky integrator is utilized

which maps a baseline frequency (8 Hz) to -30 and a high

frequency (150 Hz) to 30, where the relationship between

spike frequencies and the resulting control value is linear

between this range. The leaky integrator allows the control

value to change smoothly and less erratically than with

simple rate coding, where the control value is proportional

to the average spike frequency over a preceding user-defined

time interval. A sample of the spike train structures is

illustrated in Figure 4, where the spikes are shown from

the action network’s state input, hidden, and control output

neurons over a time interval of 1 second.

The two SNNs are trained by implementing the training

algorithm described in Section III until the performance of

NNa stops improving significantly or until it is within a

desired tolerance. In this paper, the networks have been run

through the randomized list of possible input states, which

has been varied between [−7, 7] for both q and α a total of

h = 30 times. The total simulated time of training for all runs

is Ttrain = ttrainNepochh(·). Figure 5 shows the cumulative

absolute error between u and u∗ over each training run, and it

can be seen that it decreases significantly over training. The

error continues to decrease if trained for a longer period,

thus h can be adjusted depending on the objectives and

requirements of the networks.

After training, the SNN controller is tested against the

behavior of the aircraft dynamics shown in Section IV

when subjected to an initial disturbance of α(t = 0) = 5
degrees. The network is not yet able to match the optimal

Fig. 4. Spike train sample from the state input, hidden, and control output
neurons of the action network over a 1 second time interval.

control output from (10), but it is improved significantly

with training. A comparison between the dynamic responses

of a trained and untrained network are plotted in Figure 6,

and it can be seen that the training lowers the amplitudes

of the aircraft pitch oscillations and increases the stability

compared to the untrained network. With this configuration,

the controller is prevented from improving beyond this level

of effectiveness because of the high degree of noise in the

networks. This is especially an issue with the randomly-

connected action network because it has many recurrent

connections. However even with this difficulty, it is observed

that the action network is controllable through the critic

network. The controller is also determined to not exhibit

highly chaotic behavior, as is shown in the Poincaré map in

Figure 7. Although the network noise causes the trajectories

to behave randomly, the state is seen to approach and remain

near an attractor regardless of its initial values.

Fig. 5. Cumulative absolute error over each training run

915

Fig. 6. Comparison of aircraft stability altered by a trained and untrained
SNN controller with previously described architecture.

Fig. 7. Poincaré map of aircraft dynamics modified by SNN con-
troller. The plot shows four separate runs with initial conditions, X =
[5, 0]and[−5, 0]

To fully understand the effect of the randomly-connected

action network on the controller behavior, it is useful to

compare it to a similar controller where the action network

is a fully-connected feedforward SNN, which has previously

been shown capable of approximating functions well [10].

Figure 8 illustrates the significant difference between the two

networks, where the feedforward SNN (with two layers of

20 hidden neurons) produces less noise and a more accurate

output. This implies that the architecture in Figure 2 may be

improved further. Future work will aim to achieve these im-

provements by optimizing parameters, reexamining the spike

train encoding and decoding methods, and investigating the

effects of small modifications to the controller architecture.

VI. CONCLUSION

A novel SNN training algorithm for indirectly teaching

a randomly connected network to approximate an optimal

flight controller is presented in this paper. The technique

Fig. 8. Comparison of aircraft stability controlled by a SNN architecture
with a randomly-connected action network, and a configuration with a fully-
connected feedforward action network.

is both biologically-plausible and experimentally viable. A

reward-based Hebbian approach is used to directly train

a critic SNN, which in turn sends training signals to an

action SNN. The reward function imitates a chemical reward

that is injected into the network and decays exponentially,

and this mechanism can also be implemented in vitro by

using dopaminergic, adrenergic, and cholinergic signaling

pathways. With guidance from the critic, the synaptic ef-

ficacies within the action network are modified by implicit

spike-timing-dependent plasticity mechanisms, resulting in

network training. By employing light-sensitive neurons and

controlled light patterns, the effects of the training signals

can be applied to biological neuronal networks in vitro. The

algorithm is demonstrated by training the network to mimic a

benchmark flight controller problem, and analysis is provided

regarding its dynamic behavior and possible improvements.

It has been determined that the action SNN does not exhibit

chaotic behavior and can be trained through a critic SNN,

but the effectiveness of the trained network as an adaptive

flight controller can be improved.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0925407.

REFERENCES

[1] J. J. B. Jack, D. Nobel, and R. Tsien, Electric Current Flow in
Excitable Cells, 1st ed. Oxford, UK: Oxford University Press, 1975.

[2] A. L. Hodgkin and A. F. Huxley, “A quantitative description of ion
currents and its applications to conductance and excitation in nerve
membranes,” Journal of Physiology, vol. 117, 1952.

[3] W. Maass, “Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons,” Advances in Neural
Information Processing Systems, vol. 9, 1997.

[4] D. I. Perrett, E. T. Rolls, and W. C. Caan, “Visual neurons responsive
to faces in the monkey temporal cortex,” Experimental Brain Research,
vol. 47, 1982.

[5] S. J. Thorpe and M. Imbert, “Biological constraints on connectionist
modelling,” in Connectionism in Perspective, R. Pfeifer, Z. Schreter,
F. Fogelman-Soulie, and L. Steels, Eds. Elsevier, 1989.

916

[6] G. S. Hugh, M. Laubach, M. A. L. Nicolelis, and C. S. Henriquez, “A
simulator for the analysis of neuronal ensemble activity: Application
to reaching tasks,” Neurocomputing, vol. 44, 2002.

[7] E. Salinas and T. J. Sejnowski, “Correlated neuronal activity and the
flow of neural information,” Nature Reviews - Neuroscience, vol. 2,
2001.

[8] Z. F. Mainen and T. J. Sejnowski, “Reliability of spike timing in
neocortical neurons,” Science, vol. 268, 1995.

[9] H. Burgsteiner, “Imitation learning with spiking neural networks and
real-world devices,” Engineering Applications of Artificial Intelli-
gence, vol. 19, no. 7, 2006.

[10] S. Ferrari, B. Mehta, G. D. Muro, A. M. VanDongen, and C. Hen-
riquez, “Biologically realizable reward-modulated hebbian training for
spiking neural networks,” Proc. International Joint Conference on
Neural Networks, Hong Kong, pp. 1781–1787, 2008.

[11] C. M. A. Pennartz, “Reinforcement learning by hebbian synapses with
adaptive thresholds,” Neuroscience, vol. 81, no. 2, 1997.

[12] R. Legenstein, C. Naeger, and W. Maass, “What can a neuron learn
with spike-timing-dependent plasticity?” Neural Computation, vol. 17,
2005.

[13] J. P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal
spike-timing-dependent plasticity for precise action potential firing in
supervised learning,” Neural Computation, vol. 18, 2006.

[14] R. V. Florian, “Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity,” Neural Computation, vol. 19,
no. 6, 2007.

[15] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Adaptive learning
procedure for a network of spiking neurons and visual pattern recog-
nition,” Advanced Concepts for Intelligent Vision Systems, ACIVS,
Antwerp, Lecture Notes in Computer Science, vol. 4179, 2006.

[16] A. M. VanDongen, “Vandongen laboratory,” in http://www.vandongen-
lab.com/.

[17] T. L. Fletcher, P. Cameron, P. D. Camilli, and G. Banker, “The
distribution of synapsin i and synaptophysin in hippocampal neurons
developing in culture,” Journal of Neuroscience, vol. 11, pp. 1617–
1626, 1991.

[18] “Neural microcircuits (nmc) software for matlab environment,”
http://www.lsm.tugraz.at/index.html.

[19] R. C. Nelson, Flight Stability and Automatic Control. McGraw-Hill,
1998.

917

