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Robustness of Complex Networks

with Implications for Consensus and Contagion

Haotian Zhang, Elaheh Fata and Shreyas Sundaram

Abstract

We study a graph-theoretic property known as robustnedshvghays a key role in certain classes of
dynamics on networks (such as resilient consensus, comagid bootstrap percolation). This property
is stronger than other graph properties such as conngctwitl minimum degree in that one can
construct graphs with high connectivity and minimum degdvat low robustness. However, we show
that the notions of connectivity and robustness coincidemnmon random graph models for complex
networks (Erdés-Rényi, geometric random, and prefeakattachment graphs). More specifically, the
properties share the same threshold function in the ER#s/ model, and have the same values in
one-dimensional geometric graphs and preferential attaclh networks. This indicates that a variety of
purely local diffusion dynamics will be effective at spré@zglinformation in such networks. Although
graphs generated according to the above constructionsnhegently robust, we also show that it is

coNP-complete to determine whether any given graph is robustdpegified extent.

Index Terms

Random graphs, robustness, complex networks, matching-cu

I. INTRODUCTION

The emergence of collective dynamics in large networks taracting agents has inspired the

study of complex networks; classical examples of such ndsvabound in both the natural world
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(e.g., ecological systems, biological systems, and ssg&tems), and in engineered applications
(e.g., the Internet, the power grid, large-scale sensavorks). Due to their prevalence, a topic of
particular interest has been thebustnes®f such networks to disruptions, both in the structure
and in the dynamics that are occurring on the network. Ssudfestructural robustness have
characterized the ability of different networks to withwslathe loss of nodes, either due to
accidental failure or to targeted attack [2]] [€]] [7], witthe connectivity of the network being
of primary interest. Studies of the robustness of dynamicsthe other hand, focus on the
ability of the nodes in the network to achieve certain olyest even when some nodes deviate
from expected behavior. For instance, various dynamicsirffarmation diffusion have been
studied in the context of synchronization (or consendud), [fhformation cascades$ [13], [20],
and broadcasting [14]. In such cases, a fundamental clyallisrto identify topological properties
that allow legitimate information to propagate throughtiig network, while limiting the effects
of illegitimate actions. In the case of distributed conssns computer networks, algorithms
have been proposed to overcome adversaries when all nodestka network topology and the
connectivityof the network is sufficiently high [19]/ [21][.[26]. Howevet was shown in[[18],
[30] that connectivity is no longer sufficient to guarantesilient consensus when the nodes
use a natural class of algorithms that only require each modaow its own neighborhood.
Instead, [[30] introduced a definition of network robustnassleal with such dynamics and
showed that resilient consensus can be reached withoutriregyglobal information in graphs
that are sufficiently robust. This notion of robustnessrigrgjer than other topological properties
such as connectivity (in that highly robust graphs requigh ltonnectivity) and as we describe
later, also plays a role in the study of contagion and baagspercolation in networks.
Motivated by the role that this notion of robustness playth@mabove dynamics, in this paper
we study this property in three common random graph modelsdmplex networks: Erdos-
Rényi graphs, geometric random graphs, and preferertiathanent graphs. In Erdés-Rényi
graphs, it was established in [12] that the properties ohectivity and minimum degree share
the same threshold function; we show that robustness ats@slithis threshold. This is perhaps
surprising, given the existence of pathological graphsresmebustness and connectivity are far
apart (as shown later in this paper), and indicates that thghg gain a richer structure at this
threshold than simply being-connected. For the other two models, we show that robustnes

and connectivity are equivalent in one-dimensional gedmgtaphs and in certain preferential



attachment models. Our results reveal that a variety obiglifih dynamics (that are agnostic of
the network structure) will be effective at spreading imfiation in such networks. Finally, as a
counterpoint to the random graph analysis above, we pravidegative result for determining
whether anygivengraph isr-robust, showing that this problem éeNP-complete for any- > 2.
The rest of this paper is organized as follows. In Seclibnwi, provide the definition of
robustness that we consider in this paper and give motiyatpplications. In Sectioris [ 1V,
and[M, we study the robustness of Erdés-Rényi graphs,donensional geometric graphs, and
preferential attachment graphs, respectively. In Se@brwe provide the complexity analysis

of the robustness problem in general graphs, and conclu&edtion VII.

[I. ROBUSTNESS OFANETWORKS

Consider a network modeled by thwdirectedgraphG = {V, €}, whereV = {1,...,n} is
the set of nodes anfl C V x V is the set of edges in the network. An edgej) € £ indicates
that nodes andj; can communicate with each other. The seneighborsof node: is defined
asV;, = {j € V: (i,j) € &£}, thedegreeof node: is denoted by, = |V;|, and theminimum
degreeof the network ismin;cy d;. The connectivityof the network is the largest integer
such that every pair of nodes has at leagiairwise node-disjoint paths between them; this is a
fundamental metric in networks and captures informaticlunelancy across the network through
independent paths. By Menger's theorem! [28], the conniectif a network is also equal to the
smallest number of nodes that have to be removed in orderstmuinect the graph. A graph
is r-connected if its connectivity is at least In order to capture another form of information
redundancy, the following topological properties werepmsed in [[30].

Definition 1 ¢-Reachable Set)For a graphG and a subseS of nodes ofG, S is anr-
reachable set if 3i € S such that)V; \ S| > r, wherer € Z ]

Definition 2 ¢-Robust Graph):A graphg is r-robust if for every pair of nonempty, disjoint
subsets of), at least one of the subsetsriseachable, where € Z,. O

In words, a setS is r-reachable if it contains a node that has at leaskighbors outside
that set. Intuitively, the-reachability property captures the idea that some nodddrtibe set is

influenced by a sufficiently large number of nodes from owsi¥hile r-connectedness implies

'Note thatZs, represents the set of integers bigger than or equal to



Fig. 1. Example of a graph that has minimum degéeend connectivitys, but is only 1-robust. Set§; and Sz induce

complete graphs off nodes, and the edges between the sets form a perfect matching

that given any two disjoint sets, the nodes in at least onbekets collectively haveneighbors
outside,r-robustness indicates that there is at least one node infaihe gets thaby itselfhas

r neighbors outside. Since all graphs are trividllyobust, we will primarily focus on the cases
wherer > 1 in the rest of the paper.

We will be using the following important properties from J1#® relate robustness with the
concepts of connectivity and minimum degree (the resulfLlB] ppplies to directed graphs and
encompasses undirected graphs as a special case).

Lemma 1 ([[18]): For anyr € Zx,, if G is r-robust, theng is at leastr-connected and has
minimum degree at least

Lemma 2 ([[18]): A graphg is 1-robust if and only if it is 1-connected.

The above results show thatrobustness is a stronger property thanonnectivity (except
for the case where = 1 and the trivial case where = 0). In fact, there exist graphs that are
very highly connected but have very low robustness. For @kantonsider the network shown
in Figure[1l. SetsS; and S, have§ nodes (suppose is even), and induce complete subgraphs
(i.e., each node in each set is connected to all other nodés set). Each node has exactly one
neighbor from the other set. This graphgisconnected and has minimum degrgéut is only
1-robust since botks; and S, are only 1-reachable.

In the rest of this section, we will motivate the study of tealole sets and robustness with
several specific examples of diffusion dynamics (resiliembsensus, contagion and bootstrap

percolation).

A. Resilient Consensus Using Only Local Information

Consider a setting where each node in the network holds saraeinformation (an opinion,

a measurement, etc.). The network operates synchronamslyat each time-step, each normally



operating node updates its value (information) as a wethjateerage of its neighbors’ values
and its own value. However, there may exist misbehaving sieddch do not follow this pre-
specified rule. Under certain fault models (which define tisridution and behavior of the
misbehaving nodes), an algorithm is said to achi@stlient asymptotic consensiighe values
held by all normal nodes asymptotically converge to the saalee, for any choice of initial
values.

As mentioned in the Introduction, tle®nnectivityof the network has traditionally been viewed
as the key metric with regard to resilience of consensusrigigos (and information diffusion
algorithms in general). If the connectivity of the netwosiF’ or less (wherel” € Z-,), then
there exists at least one set bfcoordinated misbehaving nodes that can prevent the network
from reaching consensus on certain functions of the invi@dliesregardlessof the mechanism
that is used to achieve consendus [14]] [19]. On the othed,hfthe connectivity i2F + 1 or
higher, various algorithms have been proposed to overcoiskeemaving nodes under the local
broadcast model of communication (i.e., where each mistedpanode is restricted to send the
same value to all of its neighbors at each time-step) [19]], [26].

While the above connectivity bounds provide fundamentaitétions on the resilience of
networks to misbehaving nodes, the mechanisms proposedetocame misbehavior typically
make the assumption that all nodes know the entire netwgdagy (which is unrealistic in large
networks). To remedy this, under thiélocal model (where there are at mogt misbehaving
nodes in each normal node’s neighborhood and there is nictest on their behavior), consider
the followingWeighted-Mean-Subsequence-Reduced (W-MIgR)ithm: at each time-step, each
normal node disregards the largest and smallestodes in its neighborhood (breaking ties
arbitrarily) and updates its state to be a weighted averdgiheoremaining values.To see
why connectivity is no longer an appropriate metric for sind such an algorithm, consider
again the network in Figurld 1 and suppose that node$; iand S, have initial values: andb,
respectively. Whem # b, by using the W-MSR algorithm, each node will throw away tladue
of its neighbor from the opposite set and thus its own valderemain unchanged, even when
there are no misbehaving nodes. Thus, consensus will nadahed in this network, indicating

that even networks with a large degree or connectivity atesuafficient to guarantee consensus

2We refer to [10], [[17], [[18], [[27],[[30] for a more complete sieiption of this and other similar algorithms.



under such algorithms.

Taking a closer look at Figullg 1, we see that the reason fofdih@e of consensus in this
graph is that no node in either of the two sets receives enmigimation fromoutsideits own
set. However, if a graph is-robust (for sufficiently large’), new information will penetrate at
least one out of any two subsets of nodes, preventing stédsntd this form. The following
result from [18] formalizes this property.

Theorem 1 ([[1B]): Under theF'-local model, the W-MSR algorithm achieves resilient asymp

totic consensus if the network {8 F" + 1)-robust. O

B. Contagion and Bootstrap Percolation

Consider another class of diffusion dynamics, where a sulifseodes wish to spread their
‘status’ through the whole network. Specifically, assuna #ach node in the network can be in
one of two states: infected (e.g., with an idea or innovatarruninfected. Starting with an initial
set of infected nodes (which can be chosen deterministicallandomly), the infection spreads
(or cascades) in discrete steps according to the followutey each node becomes infected if at
leastr of its neighbors have been infected and once infected, stégsted forevermore. Here,
r is called thethresholdfor cascading. This class of dynamics appears in the studpmtagion
[11], bootstrap percolatiori [4][ [16], best response dyigcann strategic complements games
[15], and resilient broadcasting [30].

For somem < n (wheren is the number of nodes in the network), we say thereoistagion
from anym nodes[15] (or equivalently,bootstrap percolation succeeds from any node$
if any set of initially infected nodes with sizex causes the whole network to be eventually
infected. Note that for cascading with thresheldmn > r is necessary to facilitate contagion;
otherwise, no nodes will be infected besides the nodes innikial set. Further note that the
minimum degree of the network is a fundamental limitation fiee emergence of contagion,
i.e., if the minimum degree is less thanthere always exists an initial set of size < n such
that cascading with threshotdfails to cause contagion. However, minimum degree by itself
not sufficiently useful to capture these dynamics. Considgin the network in Figurd 1. Even
though the network has large minimum degree, we can choosgtiah set with 7 nodes (either
81 or &y) such that cascading with any threshold bigger than 1 failgroduce contagion. The
following result from [11], [15] (cast in the language of cbable sets) provides the condition



for contagion to succegzl.
Theorem 2:For cascading with threshold contagion from anyn nodes occurs if and only
if every subset ol with size up ton — m is r-reachable, where:, > r. O
Given the fundamental role of the notions of reachable sedsrabustness in the applications
discussed above, we will start by studying the robustnetseé common random graph models:
Erd6s-Rényi graphs, geometric random graphs, and griat attachment graphs. After that,
we will analyze the computational complexity of determihe extent to which a given graph

is robust.

[Il. ROBUSTNESS OFERDOS-RENYI RANDOM GRAPHS

Erd6s-Rényi random graphsl [5], [12] are one of the most mom models for large-scale
networks. The version we study here is denoted,as it consists ofn nodes and each possible
(undirected) edge between two nodes is present indepéndeitih probability p (which may
be a function ofn), and absent with probability = 1 — p. Let the probability of an event be
denoted byP(-). Recall that egraph propertycan be regarded as a class of graphs that is closed
under isomorphism. A key feature of tlgg , model is that we can explore properties that are
shared byalmost allgraphs, a notion that is defined as follows.

Definition 3: AssumeP is a graph property and = p(n) is a function ofn. We say that
amost all G € G, , have propertyP if P(G,, € P) — 1 asn — oo, andalmost no G € G, ,
has propertyP if P(G,, € P) — 0 asn — . O

One important feature @, ,, which was demonstrated by Erd6s and Rényi, is that thesinod
exhibits phase transitionsMore precisely, we define thareshold functioras follows.

Definition 4 (Threshold Function)Consider a functiort(n) of the form L:) whereg(n) —

oo asn — oo, and a functionr = o(g(n)) satisfyingz — oo asn — oo. We sayt(n) is a
threshold function for a graph propertyP if p(n) = W implies that almost alt7 € G, ,
have propertyP andp(n) = W implies that almost nd@~ € G,,,, has propertyP. O

3The work in [11], [15] considers a slightly different sceisawhere the cascading threshold is based onfthetion of a

node’s neighbors that are infected, but the extension taliselute threshold case is trivial.



All of the properties we are going to study in this section éndlireshold functions of the
above fornH Loosely speaking, if the probability of adding an edge isg&’ thant(n) in
the sense indicated by Definitigh 4, then almost@lE G, , will have propertyP, and if the
probability is ‘smaller’ thart(n), almost noG € G, , will have this property.

Definition 5: For G € G, , and constant € Z-,, define the properties dfeing r-connected,
r-robust and having minimum degree r by K,, R, and D,, respectively. O

Lemma 3 ([[12]): For any constant € Zs,, t(n) = 2tr=DInhn js 5 threshold function for
property K,. It is also a threshold function for property,.

The following is one of our main results: it establishes thatabove threshold function for
connectivity (and minimum degre is alsoa threshold function for-robustness in Erdds-Rényi

random graphs.

Inn+(r—1)Inlnn
n

Theorem 3:For any constant € Zs, t(n) = is a threshold function for
property R,.. O
From Lemmasg]3 arld 2, the above theorem is immediately true foit sincel-connectedness
and1-robustness are equivalent. To prove the theorem for2, we will first need the following
lemma showing that all subsets of nodes up to a certain silebwir-reachable when the
probability is above the given threshold.
Lemma 4:Let « = «(n) be a positive function satisfyingup,, «(n) < 1 andInlnn =

o(alnn). For any constant € Z1, let S!~ be the property that every subset)fwith size

Inn+(r—1)Inlnn+z
n

up to | (1 — a)n] is r-reachable. Ifp(n) = , Wherez = z(n) is some function
satisfyingz = o(lnlnn) andz — oo asn — oo, then almost allG € G(n,p) have property
Sl-a,

Proof: Let P, be the probability that some set of cardinality uprto= [(1 — a)n]| is

Inn+(r—1)Inlnn+z
n

. Denote the

not r-reachable. We need to prove tHat = o(1) whenp(n) =
probability that some sef C V with cardinality & (i.e.,
the union bound, we know th&, < >}, P,. For fixedS of cardinality k, the probability that

S| = k) is notr-reachable a®,. By

n—k
7

a nodev € S has less tham neighbors outside ig;;& ( )q""f"'pi, and the probability that

S is notr-reachable i§>"7") (") ¢"*~'p')¥, whereq = 1 —p. Since there ar¢’) such setss,

)

“There are also various other definitions of threshold famstj but they are typically more conservative than the one we
consider here[]5].



we know thatP,, < (7)(3°0-, (";%)¢"*~"p')k. In the rest of the proof, we focus on the cases

wherek < n.. Using the fact tha(}) < (2)* and (}) < n*, we obtain the following upper

bound forP:

er  n(np) (1 —p)"\"*
L=p=" k(1 —p)t )

_ (cm(np)’"‘l(l —p)")k

- k(1 —p)* '
In the last step above; is some constant upper bound far_;’)‘T satisfying0 < ¢; < 2er

for sufficiently largen. By saying that a property holds for sufficiently large we mean that
there exists some, € Z>, such that this property holds for all > n,. The notion of “for
sufficiently largen” will be implicitly used throughout the proof. Note that— p < e 7 and

recall thatp(n) = 2otlr=bnnte 1hq

n

r—1 —lnn—(r—l)lnlnn—m)k

(

< k
_ <C1 (lnn +(r —ml?)llnlnn + 93) k;(16jp)k>

(7



Note that2rt=Dinlnte 9 for sufficiently largen and thus) < ¢, < ¢;2"~1. Next, note that

In(1—p)=—3,2 for pe[0,1), and thus,
coe™" P’
P, < ( - exp{k:;7}>
—x -2 k
Coe
= ( Qk exp{kp + kp® ) pz. }> 1)
=2

k k
- s e~ rekp cpe”%etP
Co€ =
=\ k k

Note that in[(1), since_;~, P2 Yo, pT? = ﬁ and kp? < np* = o(1), 0 < ¢ < 1 for

2

sufficiently largen. Further note that, = c,e® and thus) < ¢, < re?2".

Let f(k) = < be a function ofk, wherek € R.,. Then & — <202-1 gince & < ¢ if

k<iandd >0if k> 1, f(k) < max{f(1),f(no)} for k € {1,2,...,n.}. We know that

f(ne) = Cpr:Cp} < Oxp({l(l_;‘;zl"p} = ﬁ exp{(1 —a)np—Inn} = ﬁ exp{—alnn+ (1 —a)(r—

1)Inlnn+ (1 —a)z}. Sincea(n) is positive, strictly bounded below andInInn = o(alnn),

we know thatf(n.) = o(1). Further note thaif(1) = e¢? > 1. Thus, for sufficiently large,
f(k) < f(1) <eandP;, < (c4el‘“’)k. We now have

e o0 11—z
Py < ZPkSZ(C4€ ) —m—0(1)7
k=1 k=1
sincex — oo asn — oo, completing the proof. [ |

This lemma immediately leads to a proof of Theorlem 3.
Proof of Theorem]3:For the first part of the proof, we show that for any constaatZ-,

if p(n) = motl=bhlinte “\where, — z(n) is some function satisfying: = o(Inlnn) and

n

x — 0o asn — oo, then almost allZ € G(n, p) arer-robust. Applying Lemmal4 withy = %

we immediately see that in almost @ll € G,, ,, any set of nodes with size up t¢] will be
r-reachable. Thus, for almost alf € G, ,, given any two disjoint and nonempty subsets of
nodes ofG:, at least one of them will be-reachable, and thuS will be r-robust.

For the second part of the proof, we need to show that for angtaatr € Z-,, if p(n) =

Inn+(r—1)Inlnn—=z
n

n — oo, then almost nd@> € G(n, p) is r-robust. The result is obtained by combining Lenima 1
and LemmadB. [

, Wherez = z(n) is some function satisfying = o(lnlnn) andz — oo as




Remark 1: The above theorem shows that Erd6s-Rényi graphs gairea dgal more structure
at the threshold(n) = w than simply being-connected (or having minimum degree
r). As argued earlier, whereasconnectedness implies that given any two disjoint and mqtg
sets, the nodes in at least one of the sets collectively hanaighbors outside, the above result
shows that there is (at least) one node in one of the setdbyhaselfhasr neighbors outside.
As an aside, note that the somewhat direct proof-odbustness given above immediately yields
a proof of r-connectedness of Erdés-Rényi graphs for connectiobgtitities above the given
threshold. O

A. Implications for Consensus and Contagion

We now show what the above result means for resilient asyinptonsensus and the emer-
gence of contagion in thg,, , model.
Definition 6: For G € G, , and constant’ € Z-,, define RACr to be the property that

resilient asymptotic consensus is reached undertiecal model using the W-MSR algorithm

for any initial values. ]
Corollary 1: For any constant” € Zs;, t(n) = nrt2lnlnn g g threshold function for
property RACE.

Proof: As discussed in Sectidn I[#A and Theoréin(2F + 1)-connectedness is necessary
and (2F + 1)-robust is sufficient, respectively, for the W-MSR algonitito achieve resilient
asymptotic consensus under thelocal model. Thus, by Lemnid 3 and Theoreim 3, the result
follows. u

Definition 7: For G € G, ,, constantr € Z;, and positive functiom = «(n) satisfying
sup, a(n) < 1 andlnlnn = o(alnn), defineC? to be the property that contagion from any
[an] nodes occurs when cascading with threshold

Corollary 2: For any constant € Z>, and positive functiomx = «(n) satisfyingsup,, a(n) <
1 andInlnn = o(alnn), t(n) = 2o Uhin s 5 threshold function for property?.

Proof: Note that by Theorerfil 2, the properti€$—> (defined in Lemmadl4) and’® are
equivalent. Thus, the result follows by combining Lemipha 8mmal# and the discussions in
Section[-B. m

Inn+(r—1

The above corollary indicates that at the threshgld = - JInlnn £ rq6s-Renyi graphs

gain the ability to allow information initially held by any-fraction of nodes to cascade through



the network to all other nodes. The fractiarcan go to0 at a sufficiently slow rate; for example,
« can be some function iﬁ(ﬁ), 0 < e < 1, that satisfiesup,, a(n) < 1. Theoreni B (together
with Corollaries[ 1 and]2) implies that the ‘worst-case’ netks (such as in Figurg 1) will not
appear (with probability tending tb) in Erd6s-Rényi graphs.

Remark 2:Note that Corollanf 2 also applies to bootstrap percolafidume to the identical
dynamics under the two scenarios). In fact, more generalltsefor bootstrap percolation in
Erd6s-Rényi graphs can be found(in[16], where probahilihctions of the form(n) = @ are
also explored. Our approach explicitly highlights the uhdeg graph properties of reachability
and robustness and shows their relationship to connegctarid minimum degree in Erdés-
Rényi graphs, leading to a fairly direct proof of the phasasition at the given threshold, with

corresponding implications for consensus and contagiofdotstrap percolation). O

V. ROBUSTNESS OFGEOMETRIC RANDOM GRAPHS

Another widely used model for large networks is tf@ometric random graptwhich captures
edges between nodes that are in close (spatial) proximége¢t other. We consider the geometric
graphgg,p,l = {V, £}, which is an undirected graph generated by first placimpdes (according
to some mechanism) in a regidh, = [0,]¢, whered € Z-,. We denote the position of node
i € V with z(i) € Q4 Nodesi,j € V are connected by an edge if and only||if(:) —
z(j)]| < p for some thresholgh, where|| - || indicates an appropriate norm (often taken to be
the standard Euclidean norm). When the node positions arergied randomly (e.g., uniformly
and independently) in the region, one obtaingeametric random graphn the widely-studied
model g7 ,
andp — 0, leading to dense random networks|[23h the more general modél?

the parametet is fixed and graph properties are typically explored wher> oo
1» however,
the lengthl is also allowed to increase and the dengjtgan converge to some constant, making
it suitable for capturing both dense and sparse random mieswWa4].

In Section[Ill, we showed that the properties of connegtieihd robustness have the same
threshold function in Erdés-Rényi graphs. In this settiwe will prove similar results for one-
dimensional geometric random graphs (ie= 1). We start by providing a result showing that

connectivity and robustness cannot be very different indineensional geometric graphs, and

°Note that properties of networks with a finite number of nodase also been explored (e.g., see [9]).



are in fact equal when the nodes are sufficiently spread egafdless of how the node positions
are generated and the relationships betwgen and!). In the following, we assume that the
nodes are ordered such that,fi € V andi < j thenz(i) < x(j).

Theorem 4:In Q, = [0,1], if G, ,, is r-connected, then it is at leag} |-robust. Furthermore,

if x(n) —x(1) > 3p, then the graph is-connected if and only if it is*-robust. O
Proof: First, note that ifx(n) — x(1) < p then the graph is complete and therefone- 1)-

connected and? |-robust, and thus the claim holds. In the rest of the proof,assume that

x(n) —x(1) > p. In this case, if the graph is-connected, the following two properties hold.

1) Every interval of the forma,a + p| C (z(1),x(n)) must have at least nodes, because
otherwise, removing the nodes in that interval would diswm the nodes in the interval
[z(1), a] from those in the intervala + p, z(n)]. The same is true for every interval of the
form [a,a + p) C (x(1),z(n)), and thus for every closed interval of lengitcontained in
(2(1), 2(n)).

2) Consider any nonempty sé& C V. If there exists an intervala,a + p| C (2(1),z(n))
with no nodes fromS, then there must be a node frafhin the interval[z(1), a) or in the
interval (a + p, z(n)]. By symmetry, assume th& has nodes inz(1),a) and let: be the
node inS that is closest ta from this interval. Then the interval: (i), z(i) + p] contains
no nodes fromsS, but contains at least nodes, and thus$ is r-reachable.

Now consider any two disjoint and nonempty subsgtsS, C V, and any intervala, a+p|] C
(x(1),z(n)). If S; (resp.Ss) has no nodes ifu, a + p|, thenS; (resp.S,) is r-reachable. Thus,
suppose botls; and S, have nodes irfa,a + p|. If S; is not |7 |-reachable, there are fewer
than [ 7] nodes fromS; in [a,a + p]. Choose any nodéfrom S, in the interval. There are at
leastr — 1 remaining nodes in the interval, and at m¢5{ — 1 of them are inS,. Thusi has
at leastr — 1 — [7] +1 > || neighbors in the interval that are not &. Therefore, for any
two disjoint and nonempty subsefs, S; C V, at least one of them i§7 |-reachable. Thus the
graph is at least|-robust, proving the first part of the theorem.

For the second part of the theorem, assurte) — (1) > 3p. Then there exists an interval
la,a + 3p] C (z(1),x(n)). Consider any two nonempty and disjoint subs8{sS, C V, and
denoteX = V\ (S; US,). By the argument above, if eithék or S; does not have any nodes in
some closed interval of lengthwithin (z(1), z(n)), that set will ber-reachable. Thus, suppose

that bothS; andS, have nodes in all closed intervals of lengthwithin (z(1), z(n)). Pick any



node: from S; in the intervalja + p, a + 2p|, and letj € S, be the node ifa+ p, a +2p| that is
closest toi. We assume without loss of generality thdy) < x(i) and that ifz(j) < z(), then
there are only nodes fromr’ between: and j (the latter can always be enforced by redefining
i to be the node ir5; that is closest tg in [a + p, a + 2p)).

Suppose thats; is not r-reachable. Then there are fewer thamodes fromS, U X in the
interval [ () — p, x(i) + p|. If z(j) = x(7), thenj has at leas?r neighbors inxz (i) — p, x(i) + p)
and since at most of them are fromsS,, the setS, will be r-reachable. Thus assume that
x(j) < x(i). Let ns, and ny be the number of nodes ifx(:) — p,z(i)) from S, and X,
respectively. Then the combined number of nodes f®mand X" in [z(i), z(i) + p] must be
less than — ngs, — ny. Let the number of nodes frot strictly between;j and: ben’,,, where
ny < ny < r. Since the intervalz(j),xz(j) + p] contains at least nodes,z(j) has at least
r —n’y neighbors in the intervdle(i), x(j) + p|. Since there are fewer than- ns, — ny nodes
from S, in [z(7), z(i) 4+ p] (and thus in the smaller intervat (i), z(j) + p|), node; has at least
r—ny—(r—ns, —nx) = ns, +nx —n’ neighbors outside its set m(:), z(j)+ p|. Furthermore,
since there are at least- 1 nodes other thap in [z(i) — p, 2(i)), andns, — 1 of them are from
Sy, nodej has at least — 1 — (ns, — 1) = r — ng, neighbors outside its set in (i) — p, x(7)).
Thus, in the intervalz(i) — p, z(j) + p|, nodej has at least — ns, + ns, +ny —ny > r nodes
outside its set, making s&, at leastr-reachable. Thus, the graph i#srobust. The converse
statement follows from Lemnid 1 u

Once again, note that the result in Theoredm 4 does not depembw the positions of the
nodes are generated. Unfortunately, the theorem does tericeio geometric graphs in higher-
dimensions. For example, the graph shown in Fidgure 1 candwed as a geometric graph in
two dimensions, where the nodes in each set are all clusteyedontally within a distance,
and the two sets are vertically separated by a distance @lstvlp so that each node is within
a distancep of exactly one node in the opposite set. Clearly that graginig 1-robust, despite
having a connectivity of;.

Next we will present an asymptotic approach to analyzing-a@ineensional random graphs
(complementary to the analysis in Theorem 4). We first defirogpgrties foralmost allgraphs
in ¢, as follows, similar to thej, , model.

Definition 8: AssumeP is a graph property. We say thalimost all G € G¢ , have property

n,p,l

Pif PGS, € P) — 1asl — oo, andalmost no G € G¢ , has propertyP if P(G? , € P) — 0

n,p,l



asl — oo. O
Note that we study these propertiesgﬁpvl as! — oo, and taken and p to be functions of
[, i.e.,n=mn(l) andp = p(l). We will use the following result from [24].
Theorem 5 ([[24]): Assume thapn = klInl for some constant > 0 andp = Q(ﬁ).

o If k>2,0rk=2andp— oo, then almost altz € G, , are connected.
« If p € ©() andk < (1 —¢) for some constanh < ¢ < 1, then almost na> € G, ; is
connected.
[
We now present the following conditions under which the direensional geometric random
graph becomes-connected and-robust; the proof of this result builds upon and generalize
the proof of Theorerh]5 from [24]. Note thatfl) > [, the graph will be(n(l) — 1)-connected
and (@W-robust, and thus we focus on the case whegi¢ < [ in the theorem below.
Theorem 6:Assume thapn = klIn!/ for some constant > 0.
« If p<landp e Q), then almost allG € G, ,, are r-connected and-robust for all
r € L>.
o If p=o(l) andplr%‘1 — oo for somer € Z,, then almost ali € G, , arer-connected
andr-robust.
« If pcO(lF) andk < (1 — ¢) for some constand < ¢ < 1, then almost na> € G ; is

r-connected or-robust.

[]

Proof: Fix anyr € Z>,. In order to prove the first two parts, we will show that anyeimal

of lengthp contains at least nodes; the results will then follow from the arguments in pheof

of Theoren{#. Let), = [0, ] be subdivided into non-overlapping segments of lerigth 2.

ThenQ; hasc = L“Lpl)lj whole segments and potentially a fraction of a segment. Atgrval
of lengthp in ©; will contain at least- whole segments and thus we just need to show every

whole segment contains at least one node.
Let w be a random variable representing the number of empty wleglments. Since is a

nonnegative integer random variable, by Markov’s inedyalie knowP(w > 0) < E(w), where



E(w) = ¢(1 — 2)" is the expected value of. Sincel — z < exp(—z), we have

o) (1) < o (-22)

(r+ 1)1 np
()
_(r41)l k
= p exp (—T+1lnl)
D) e
p :

Note that in [(2), we replaced by *xL.

Under the conditions in the first part of the theore)aﬂ*r%‘1 — oo regardless of the choice
of r € Z>,. ThusE(w) — 0 and Theorenil4 indicates that almost all graphs will| §¢-robust
for all r € Z>, (or equivalently, -robust for allr € Z-;). By Lemmall, almost all graphs will
be r-connected for all- € Z~,. Similarly, for the second pari(w) — 0 asi — oo if k£ andr
satisfy the given conditions, indicating that the graphl Wwé r-robust andr-connected (again,
using Theoreni]4).

For the third part, Theorefd 5 indicates that aimosthe G, is connected under the given

conditions, and thus almost no graphrieonnected or-robust for anyr > 1. [ ]

V. ROBUSTNESS OFPREFERENTIAL ATTACHMENT NETWORKS

Before discussing the preferential attachment model fonpiex networks, we start by re-
viewing the following construction method farrobust graphs from [18]/[30].
Theorem 7 ([[1B], [30]): Let G = {V, £} be anr-robust graph. Then graph

g = {{V, ’Unew}a {57 gnew}}a

where vney IS @ Nnew node added t@ and &, is the edge set related tg.,, IS r-robust if

d, >, ]

The above theorem indicates that to buildrarobust graph withn nodes (where: > r), we
can start with am-robust graph of order less than(such as a complete graph), and continually
add new nodes with incoming edges from at leastodes in the existing graph. The theorem
does not specifywhich existing nodes should be chosen as neighbors. When the raodes

selected with a probability proportional to the number ofesl that they already have, this is



known aspreferential-attachmenand leads to the formation of so-callsdale-freenetworks
[1]. Specifically, the construction process in Theoftdm hciies with theBarabasi-Albert (BA)
model[1]: start with a network of, nodes and add new nodes to the network one at a time, where
each new node connects itaexisting nodes chosen by the preferential-attachment amesim.

Theorem 8:In the BA model, when the initial network isrobust, then the generated scale-
free network isr-connected (and has minimum degree at least and only if the network is
r-robust. ]

Proof: Note that in the BA model, if there exists some new node whichnects to less

than r existing nodes, then the network will have minimum degress lthanr, and so will
be neitherr-connected nor-robust; on the other hand, if all of the new nodes connect to
existing nodes, then by Theorém 7, the network will-e@bust and thus-connected (and with
minimum degree-). [ ]

To the extent that the BA model is a plausible mechanism fer firmation of complex
networks, our analysis indicates that these networks Veidl facilitate dynamics such as resilient

consensus, provided thatis sufficiently large when the network is forming.

VI. COMPLEXITY OF DETERMINING DEGREE OFROBUSTNESS INGENERAL GRAPHS

While we focused on random graphs in the previous sectioasyaw consider the problem of
determining the extent to which amgyvengraph is robust. Recall that by Lemia 2, 1-robustness
is equivalent to being 1-connected. Since there exist poiyal time algorithms to determine
graph connectivity [8], 1-robustness can be checked inruotyal time. However, in the rest of
this section we will show that finding whether general grapresr-robust forr > 2 is coNP-
complete. This is done by showing that a problem closelytedldo the robustness problem
is NP-complete in general graphs. Before discussing the resluatie need to introduce the
following concepts|[B], and define the robustness amdbustness problems formally.

Definition 9 (Cut and Cut-set)For a graphg = {V,£}, acut C = (S,V\S) is defined as
a partition of nodes off into two nonempty subsetS C V and V\S. The cut-set of a cut
C = (S,V\S) is defined as the subset of the edgegjofiith one endpoint inS and the other
in V\S. O

Definition 10 (Robustness andRobustness Problemsiziven a graplyy, therobustness prob-

lem determines the largest value ofsuch thatg is r-robust. Ther-robustness problem is the



decision version of the robustness problem that determatether graphy is r-robust for a
givenr € Zx;. O

If a graph is notr-robust, then there exist two nonempty and disjoint subsktsodesA, B
such that all nodes in these sets have at most1 neighbors outside their containing sets.
Note that nodes in set’ = V\(A U B) can have any number of neighbors outsitie There
is no apparent way to certify that a graphrisobust without checking all pairs of disjoint and
nonempty subsets of nodes and showing that at least one sef each pair isr-reachable.
This is intractable as the number of such subsets is expah@mnthe size of the input graph.
On the other hand, to certify that a grapmist -robust, one only needs to provide a single pair
of disjoint and nonempty subsets of nodes, of which neiteéiss--reachable. Therefore, in the
r-robustness problem, the ‘No’ instances (input graphs dhratnotr-robust) have certifications
that can be checked in polynomial time, and so th®bustness problem is in the complexity
classcoNP [3].

The complexity of the robustness problem is equivalent éodbimplexity of ther-robustness
problem within a factor ofO(logn) (as a binary search can be used for finding the largest
value ofr for which the graph is-robust). To prove theoNP-completeness of therobustness
problem, we instead show that the complement ofrtliebustness problem, which we call the
“p-degree cut problem”, iBlIP-hard. Note that the complement of a decision problem isiobth
by reversing the ‘Yes’ and ‘No’ answers of all input instasicén other words, if problem®;
and P, are complements, then the outputf to an input instance is ‘Yes’ if and only if the
output of P, to that instance is ‘No’. Therefore, the complement of a f@obin NP is in coNP,
and vice versa. Hence, thedegree cut problem, formally defined below, iSNIP.

Definition 11 p-Degree Cut): Given a graply = {V, £}, ap-degree cut is a pair of nonempty
and disjoint subsets of nodgs B C V such that each node ia (resp.B) has at mosp neighbors
outside A (resp.B), wherep € Z>,. The p-degree cut problem determines whether the graph
has ap-degree cut. O

It can be shown that if a problem P-hard, then its complement ®NP-hard (see([3] for a
detailed discussion on complexity clas®d2 andcoNP). Hence, instead of directly showing that
the r-robustness problem iNP-complete, we show that its complement, i.e. théegree cut
problem, isNP-complete. Moreover, recall that therobustness problem is icoNP; therefore,

knowing that thep-degree cut problem iSP-complete, it can be concluded that theobustness



problem iscoNP-complete. To prove thBIP-completeness of the-degree cut problem we first
study the hardness of a relaxed version of this problemdad#fierelaxedp-degree cut problem
defined as follows.

Definition 12 (Relaxeg-Degree Cut): A relaxed-p-degree cut in a given graphg is a cut
C = (A, V\A) such that each node of the graph is incident to at npostiges in the cut-set,
wherep € Z,. Therelaxed-p-degree cut problem determines whether there exists a relaxed-
p-degree cut in the input graph. ]

Note that the difference betweerpalegree cut and a relaxeddegree cut is that in the latter,
we are interested in finding two nonempty sets that are eatiosty-reachable and that partition
the nodes of the graph, whereas in the former the two setdysimape to be nonempty, at most
p-reachable, and disjoint. Both thedegree cut problem and the relaxedlegree cut problem
are in complexity clasBIP, as they possess certifications for ‘Yes’ instances thabeachecked
in polynomial time. The relaxed-1-degree cut problem isiegjant to a known problem called
the “matching-cut problem” in which the goal is to find whatlieere exists a cut in the graph
that is also a matching, i.e., no two edges in the cut-setestiarend-point [22]. In[[22] it was
shown that the matching-cut problemN&-complete via a reduction from NAE3SAT [25]. By
the equivalence of the relaxed-1-degree cut problem anangtehing-cut problem, this shows
the NP-completeness of the relaxed-1-degree cut problem as Welliever, in order to prove
the NP-completeness of the 1-degree cut problem (and subseyutreth-degree cut problem),
we will need some alterations to the proofinl[22]. We will ¢hetart by modifying the reduction
in [22] from NAE3SAT to the matching-cut problem (or relaxgdiegree cut problem) and then
extend that to prove th&lP-completeness of the 1-degree cut problem. We start by dgfini
NAE3SAT formally [25].

Definition 13 (NAE3SAT)For a set of clauses each containing three literals from afset
boolean variables irfConjunctive Normal Form{CNF), NAE3SAT determines whether there
exists a truth assignment of the variables so that each elenistains at least one ‘True’ and
one ‘False’ literal. O

It was shown by Schaefer ih [25] that NAE3SATN$-complete. Here, we discuss a reduction
from NAE3SAT to the relaxed-1-degree cut problem by cortsiing a graphG(¢) for any given
CNF formula¢ such thatG(¢) has a relaxed-1-degree cut (i.6(¢) has a cut where each node

of the graph is incident to at most one edge in the cut-sethdf anly if ¢ can be satisfied
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Fig. 2. The True-block and False-block in the constructibéry0p). Each block is a complete subgraph with, + ¢ nodes.
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Fig. 3. Figure (a) demonstrates the variable-gadget faebtrz;, and (b) shows the clause-gadget for clagise’ z; V zx.

within the NAE3SAT constraints. Let formula consist ofm clausesCt, ..., C,,, where each
clause contains three literals from the set of variabtes- {zi,...,2,}. The construction of
graphg(¢) from a given CNF formulap is as follows.

We first build two blocks where each block is a complete graph 4f. + ¢t nodes. The
upper and lower blocks are labeled theie-blockand False-block respectively, as illustrated in
Figure[2. We complete the construction®@f¢) by adding subgraphs representing the variables
and clauses of to these blocks in a carefully chosen way.

The subgraphs to be added to the blocks are of two types:r{ghta-gadgets, and (ii) clause-
gadgets. A variable-gadget is incorporated for each viaiapc X. This gadget contains two
nodes representing; and z; (the binary complement aof;), each connected to the True and

False-blocks as illustrated in Figuré 3-(a). Moreover, dach clause i, a clause-gadget is



A
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Fig. 4. The construction of clause; Vv z2 V x3 with each literal-node connected to its correspondingatde-node in the

variable-gadgets. The edges within the True and Falséblbave been omitted for clarity.

constructed by connecting three nodes (each representiteya of the clause) in addition to
some extra nodes to the True and False-blocks as depictewjunelE3-(b). Finally, there are
edges, called thentermediate edgesconnecting each literal-node in each clause-gadget to its
corresponding variable-node in the variable-gadgets. ¥ample of G(¢) for z; V x5 V x5 is
demonstrated in Figuild 4.

If graph G(¢) has a relaxed-1-degree cut, then there exists & eut .4, V\ A) that partitions
the nodes ofj(¢) into two sets4 and B = V\ A such that no node of the graph has more than
one neighbor outside its set. In the following lemmas, wewskimat this cutC satisfies some
useful properties (all of these lemmas assume that gédph has a relaxed-1-degree cut and
pertain to the cut = (A, B) just described). Proofs of all subsequent lemmas and theoie
this section are given in the Appendix.

Lemma 5:Let 7 (resp.F) be the set of all nodes in the True-block (resp. False-hlatk
graphG(¢). Then, 7 C Aor 7T C B (resp.F C A or F C B).

By the above lemma, cut cannot go through the True and False-blockj0f). We assign
‘True’ values to the nodes in the variable and clause-gadbet are connected to the True-block
by C and ‘False’ values to the nodes that are connected to the-bBaisk byC.

Lemma 6:CutC = (A, B) has the following two properties:

1) For each variable-gadget, atitleaves the variable-node and its negation node in opposite
sets, i.e., they have opposite truth assignments.

2) For each clause-gadget, cuieaves at least one literal-node in sétand one literal-node



in B, i.e., at least one literal-node is assigned ‘True’ and @nassigned ‘False.’

Lemma 7:All literal-nodes have the same truth values as their cpoeding variable-nodes.

Using the properties stated in the above lemmas, we obtairfotlowing result.

Lemma 8:The relaxed-1-degree cut problemN#-complete.

Recall that the relaxed-1-degree cut problem is equivdkerthe matching-cut problem that
was shown to bé&lP-complete in[[22]. The difference between the proof we ptedi here and
the proof in [22] is in the construction of the clause-gadgetur construction will allow us to
show theNP-completeness of the more general 1-degree cut problemllag/$o

We first construct a grapH.(¢) by taking three copies df(¢) and adding edges to form one
complete subgraph on all nodes in the three True-blocks anther complete subgraph on all
nodes in the three False-blocks. We refer to each of thesescopG(¢) used in buildingH (¢)
as abox Figure[5 illustrateg{(¢) using the graplyj(¢) shown in Figuré¥ for = 71 V xs V 23.
Using this construction we can now prove the following réesul

Theorem 9:The 1-degree cut problem NMP-complete. O

DO OR 000
— | ‘

Fig. 5. The construction oH(¢) from the graphG(¢) depicted in Figur&l4.

The NP-hardness of the 1-degree cut problem results irctiP-hardness of its complement
problem, i.e., the 2-robustness problem. Since the 2-tobas problem is ircoNP, we can
conclude that it ifoNP-complete. We now seek a stronger result, that is, showiggfoh anyr €
Z>, the r-robustness problem ioNP-complete. This requires showing tiNP-completeness
of the p-degree cut problem for any € Z-,, and to prove this, we first show that for any
p € Z>1, the relaxeds-degree cut problem isP-complete. This is done in the following lemma
by making certain modifications to the gragt¢) built for the NAE3SAT instance) (e.g.,
Figure[4).

Lemma 9:For anyp € Z>,, the relaxeds-degree cut problem islP-complete.



Using the above lemma, we can now prove the following stromggult.

Theorem 10:For anyp € Z>4, the p-degree cut problem isIP-complete. O

Knowing that thep-degree cut iNP-hard for anyp € Z-,, we conclude that its complement
problem, i.e., the-robustness problem for anye Z-, is coNP-hard. Combining this with the
fact that ther-robustness problem is icoNP gives the following result.

Corollary 3: For anyr € Z-,, the r-robustness problem mNP-complete.

Having established the complexity of the robustness pmpige now turn to the problem of
approximatinghe degree of robustness of graphs. To show that a graph ismbust, one needs
to find an(r — 1)-degree cut in that graph. For any given graphet OPT(G) be the smallest
nonnegative integes such thatg has ap-degree cut. Suppose that we have a (polynomial-time)
approximation algorithmALG whose input is graply and whose outpuAL.G(G) guarantees
that graphG has anALG(G)-degree cut. Define thapproximation ratioo of the algorithm to
be such thahLG(G) < a«OPT(G) for all graphsg. Observe that since thedegree cut problem
is NP-complete, one cannot hope to reach an approximation rédtie & 1, unlessP = NP.

In the following lemma, we show that it is unlikely to find anpapximation algorithm for this
problem with approximation ratio less than 2.
Lemma 10:The p-degree cut problem is not approximable within any fact@sl¢han 2,

unlessP = NP.

VIl. SUMMARY

In this paper, we studied a graph property known as robustubih plays a key role in certain
dynamics such as resilient consensus, contagion and kaigércolation. While it iscoNP-
complete to determine the degree of robustness in genexphgrand one can construct worst-
case networks with very large connectivity (and minimumrdeyjand low robustness, we showed
that the notions of robustness and connectivity coincidéhiee common models for complex
networks. In Erdés-Rényi random graphs, we showed ti@tnnectivity (and minimum degree)
and r-robustness share the same threshold function. In onerdioeal geometric graphs, we
proved that if the nodes are sufficiently spread apachnnectedness is equivalenttoobustness
(regardless of how the node locations are generated). IBAhmodel for preferential attachment
networks, we showed that when the initial network is robcshnectivity (and minimum degree)

and robustness are equivalent. These findings indicatdhtbsé networks possess structure that



makes them conducive to the dynamics described above; fhlecation of this for other classes

of dynamics is a promising direction for future research.

APPENDIX
A. Proof of Lemma&ls

Proof: Since each block is a complete graph with more than threespaeC = (A, )
cannot separate the nodes in the same block; otherwise, élxests a node in the block that has

at least two neighbors outside its own set. [ |

B. Proof of Lemm&l6

Proof: By Lemmalb, there are only two cases to consider: (i) all naddsoth the True
and False-blocks are id (or in B), and (ii) all nodes in the True-block are # and all nodes
in the False-block are if8 (or vice versa).

In case (i), if there exists a node from a variable-gadgegifsthen that node immediately has
at least two neighbors i, contradicting the definition of cuf (see Figuré13-(a)). Similarly,
it can be argued as follows that no node of any clause-gadgetoe in setB. Referring to
Figure[®, the nodes labeled 1, 2, 3, 7, 8, and 9 cannot b8 since they would then have
at least two neighbors ipd. Since nodes 2, 3, 7, and 8 are #y nodes 4 and 6 cannot be
in B either. Then node 5 should also be.h Hence, the only possibility is that all nodes in
variable-gadgets and clause-gadgets arglinrhis makes5 empty and violates the definition
of cutC. Thus, case (i) cannot hold and it only remains to study cise (

In case (i), if both nodes of a variable-gadget are in theesaet (say4), then a node from
the False-block in seB has two neighbors it (as seen in Figurgl 3-(a)). This contradicts the
definition of cutC. The only possible cuts through variable-gadgets for tasecare shown in
Figure[T, which leave any variable-node and its negatiorerand opposite sides @f and thus
concludes the first property in the lemma.

Moreover, in case (ii) suppose all three literal-nodes olaaise-gadget are in sgt (the case
that all three literal-nodes of a clause-gadget ar®& ican be handled via identical arguments).
Since node 5 (in Figurgl 6) is in set, then to respect the properties of it at least one
of its neighbors should also lie id. Without loss of generality due to symmetry, assume that

node 4 is inA. This implies that node 2 is also id; otherwise, cuC results in a 2-reachable
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Fig. 6. All nine nodes in a clause-gadget with labels.
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False-block

Fig. 7. The only two possible cuts through a variable-gadgstilting in all nodes having at most one neighbor on opgosit

sides of the cut.

set. Finally, since both nodes 1 and 2 arednthe node in the False-block connected to both
of them has two neighbors isl. This contradicts the definition af; thusC cannot leave all
literal-nodes in a clause-gadget in the same set. The ordyilple cuts through clause-gadgets
for this case are the ones illustrated in Figure 8. It can lee $ieat none of these six cuts leaves
all three literal-nodes of a clause-gadget on one side otthheHence the second property in

the lemma also holds. [ ]

C. Proof of Lemm&l7

Proof: First, note that a literal-node has the same truth valuesasoitresponding variable-
node if and only if they lie on the same side of ¢ut= (A, B). In the proof of Lemmal6, it
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Fig. 8. The six allowed cuts through the clause-gadget shoviigure[3-(b) that result in two 1-reachable but not 2-hedute

sets.

was shown that the only possible case for the True and Féds&sbis the case that all nodes
in the True-block are in4 and all nodes in the False-block arefin(or vice versa).

In this case, assume that there exists a variable-noitheset A such that its corresponding
literal-node lies in sef3 (the case that the variable-node isinand the corresponding literal-
node is in.A can be analyzed similarly). Then, nodehas the following two neighbors in set
B: its corresponding literal-node and the node in the Falsekbthat it is connected to (see

Figure[4). This contradicts the fact thdtis not 2-reachable and therefore is not possibla

D. Proof of Lemma&l8

Proof: We prove this claim by a reduction from NAE3SAT. Specificalye show that graph
G(¢) has a relaxed-1-degree cut if and onlyihas a solution within the NAE3SAT constraints.
Suppose tha@(¢) has a relaxed-1-degree atit= (A, V\.A). By the first part of Lemma&]l6,
cutC has to go through the edges of each variable-gadget as eéicEigurd ¥ and leaves each
variable-node and its negation node on opposite sides ofuhethereby specifying their truth

assignments. Also, by the second part of Leniina 6, the clgadgets are cut b§ according to
one of the six cases illustrated in Figlide 8, which resulteawing at least one ‘True’ and one
‘False’ literal-node in each clause-gadget. Furthermooge that by Lemma]7, the intermediate
edges are never cut [, Hence, all the literal-nodes corresponding to the samiablarnode
are left in the same set as that variable-node and the nelj&tied-nodes are in the other set.
Consequently, ifG(¢) has a relaxed-1-degree cut, thenis satisfiable within the NAE3SAT

constraints.
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THE TRUTH ASSIGNMENTS CORRESPONDING TO DIFFERENT CUTS IN A BUSE-GADGET DEMONSTRATED INFIGURE[S.

On the other hand, if» has a solution under the NAE3SAT constraints, then aut
(A, V\A) can be found inG(¢) such that (i) each variable-gadget is cut so that the variabl
node and its negation node are connected to the blocks thieélle their truth values, and (ii)
each clause-gadget is cut according to its truth assignamiitustrated in Tablé€l I. It can be
easily observed that using this cut, no node of grgpd) is incident with more than one edge
of the cut-set and henag(¢) has a relaxed-1-degree cut. This proof of Mie-hardness of the
relaxed-1-degree cut problem, together with the fact thit problem is inNP, shows that the

relaxed-1-degree cut problem MP-complete. [ ]

E. Proof of Theorerl9

Proof: We show that the 1-degree cut problemN®-hard by showing tha#/(¢) has a
1-degree cut if and only i§(¢) has a relaxed-1-degree cut for any instanocef NAE3SAT. It
can be easily seen thatdf(¢) has a relaxed-1-degree cut thiri¢) also has a relaxed-1-degree
cut (e.g., simply replicate the cut ifi(¢) for each box inH(¢)) and thus a 1-degree cut. It
only remains to show if{(¢) has a 1-degree cut th&h(¢) has a relaxed-1-degree cut. Assume
that setsA, B and X' partition the nodes ot{(¢) such that (i).4 and B are nonempty, and (ii)
each node in4 and B has at most one neighbor outside its own set (i4&.5 and X' specify
a 1l-degree cut).

First, for any clique ir{(¢) with at least three nodes, the fact tblaand 5 are not 2-reachable
implies the following two properties:



1) SetX can only contain zero, one, or all nodes of the clique, and
2) If a node of the clique is i4 (resp.B), then no node of that clique is i (resp..A).

Let 7 and F denote the set of all nodes in the True and False-blocks @hgké ¢). Several
different scenarios can take place for s&tsand F with respect to setsd, B and X'. First,
consider the case that bofh and F are subsets ofl (the case that botfi and F are subsets
of B can be analyzed similarly). Since each box#of¢) is isomorphic toG(¢), by the same
argument as in the proof of Lemrha 6 this scenario is not plesatbit would leave séf empty.
Now, by property (2) stated above and without loss of gentgrdue to symmetry, assume that
T CAUX andF C BUX.If T C X or F C X, the same argument as above yields tHair
B would be empty, respectively. Therefore, by property (IQveh|7 NX| < 1 and|FNX| < 1.
Consequently, there exist at least two boxe$(if®) whose True-blocks are subsets4fand at
least two boxes whose False-blocks are subsefs. @y the pigeonhole principle, there exists
a box inH(¢), denoted byg’(¢), such that its True-block is a subset.dfand its False-block

is a subset of3. We show that no node @’(¢) can be in sett.

True-block True-block

False-block False-block

(a) (b)

Fig. 9. Here, the True-block is a subset.4f the False-block is a subset Bfand the variable-node correspondingztpis
in X. Figure (a) shows the edges connected to nodthat are cut. In Figure (b), without loss of generality, itaissumed that
nodez; is either inB or X and its incident edges with the other endpointsdrare marked. It can be seen that the node in

the True-block has two adjacent nodes outsitle

Suppose that there exists a node in a variable-gad@gtdn that lies inX’. Then the two nodes
in the True and False-blocks connected to that node havegabai outside their containing sets,
i.e., a neighbor int (Figure[9-(a)). Moreover, the other variable-node in thatiable-gadget
isin A, B or X. In all these cases this node is in a different set from attleas of its two



neighbors in the True and False-blocks (Figure 9-(b)). ldetizere exists at least one node in
A or B that has two neighbors outsidé or B, respectively, contradicting the fact that we are
considering al-degree cut. Therefore, no node in the variable-gadgetdean setX.

Furthermore, observe that since the True-block is a sulfset and the False-block is a
subset of53, then each variable-node has at least one neighbor outsidentaining set. Since
it was assumed that each nodednand B has at most one neighbor outside its set, it follows
that all other neighbors of a variable-node should lie in $hene set as that node. Therefore,
in G'(¢), the endpoints of all intermediate edges, i.e., the edgeseating literal-nodes in the
clause-gadgets to the corresponding variable-nodesn ltte same sets. This, in combination
with the fact that none of the variable-nodesdf{¢) are in X shows that no literal-node in
any clause-gadget d¥’(¢) is in X. It only remains to show that the non-literal-nodes in the
clause-gadgets @'(¢), i.e., nodes labeled 2, 3, 4, 6, 7 and 8 as in Figlre 6, are ntteither.

By the same argument as for variable-nodes, nodes labeled 8 aannot lie int'. Also, note

that since the True and False-blocksdjto) are subsets aff and B, respectively, and node 2
(resp. node 8) is either il or B, then one of the edges connecting node 2 (resp. node 8) to the
True and False-blocks is excised. Therefore, all its otlghbors, i.e., nodes 3 and 4 (resp.
nodes 6 and 7), should lie in the same set as node 2 (resp. nods & result, nodes 3, 4, 6
and 7 cannot be itkt’. Consequently, no node &f (¢) lies in X.

We have thus shown that #(¢) has a 1-degree cut the&¥i(¢) has a relaxed-1-degree cut.
SinceG(¢) andg’(¢) are isomorphic, grapfi(¢) also has a relaxed-1-degree cut. Consequently,
H(¢) has a 1-degree cut if and onlygf ¢) has a relaxed-1-degree cut for any NAE3SAT instance
¢. Hence, the 1-degree cut problemNB-hard, and thudP-complete by virtue of being iNP.

[

F. Proof of Lemma&l9

Proof: Recall that in order to show that the relaxed-1-degree coiblpm isNP-hard, for
any NAE3SAT instance we constructed a grapfi(¢) = {V, £} such thatG(¢) had a relaxed-
1-degree cut if and only if» was satisfiable within the NAE3SAT constraints. Here, foy an
p € Z>1, we make two modifications tg(¢) to construct graplg,(¢) = {V,,E,} so thatG,(¢)
has a relaxeg-degree cut if and only if the original gragh(¢) has a relaxed-1-degree cut. We

can then conclude that the relaxediegree cut problem iBlP-hard and thusNP-complete by



virtue of being inNP.

The two modifications to grapfi(¢) are: (i) a modification to the nodes in the True and False-
blocks of G(¢), and (ii) a modification to the other nodes @f¢), i.e. nodes in the variable
and clause-gadgets. In modification (i), for each node the True-block (resp. False-block) of
G(¢), we addp — 1 nodes in the False-block (resp. True-block) and conneeh tteev. Thus,
this step adds a total @f(p — 1)(4m +t) nodes to the graph. In modification (i), for each node
u in the variable and clause-gadgets @) that is not in the True or False-blocks, we add
p — 1 nodes in each of the True and False-blocks and connéztthem. This step adds a total
of 2(p — 1)(9m + 2t) nodes to the graph. The new graph is calgdy). Note that the nodes
added to the True and False-blocksdifp) to constructg,(¢) are connected to all other nodes
in those blocks and hence the True and False-block§,0f) are complete subgraphs (each
containing(4m + t)p + (9m + 2t)(p — 1) nodes). Figuré¢_10 demonstratés(¢) for the graph
G(¢) shown in Figuré K.

Fig. 10. GraphG2(¢) constructed from the grapfi(¢) demonstrated in Figuig 4. The highlighted nodes and edgethar

ones that exist iG(¢) as well.

It is easy to observe that §(¢) has a relaxed-1-degree otit= (A’,B’), thenG,(¢) has a
relaxedp-degree cuC, = (A, B), by assigning the nodes corresponding to thosel'imand 5’
in G(¢) to setsA andB in G,(¢), respectively. Furthermore, each newly added node in the Tr
and False-blocks of,(¢) should be assigned to the same set as the rest of the nodes in it
block (recall that by Lemmal5, in the relaxed-1-degree cablam all the nodes in each of the
True and False-blocks belong to the same subset of nodes}.r8mains to prove the converse
statement.

If graph§,(¢) has a relaxeg-degree cut, then there exists a Ejit= (A, V,\A) that partitions
the nodes ofj,(¢) into two nonempty setsl andB = V,\ A such that no node of the graph has



more thanp neighbors outside its containing set. Note that since tle Tresp. False) block is
a clique with more tha2p + 1 nodes forp € Z-,, the relaxeds-degree cut cannot separate the
nodes in the True (resp. False) block.

Next, note that the True and False-blockstpf¢) cannot both lie in se#d (or similarly B).
For if they did, it can be easily checked that except for théesdabeled 4, 5 and 6 in Figurk 6,
if any other node ofj,(¢) lies in B, then it has at leastp neighbors outside its containing set
in the True and False-blocks and hence violates the defindgfocut C,. Now nodes labeled 4
and 6 cannot lie ir3, since they have@p neighbors in setd. Consequently, node 5 should also
lie in A which makesB empty and hence is not allowed.

Without loss of generality, we now assume that the TruedblufcG,(¢) is a subset of4 and
its False-block is a subset &. In the following, we prove that in this case, daCif has three
properties.

First, similar to the relaxed-1-degree cut problem, botlaaable-node and its negation node
in a variable-gadget cannot lie in sdt (resp.B); otherwise, the node in the False-block (resp.
True-block) connected to both these nodes hasl neighbors outside its set.

Second, since a variable-node and its negation node in abkesgadget lie in different sets,
each of these nodes are incident witledges in the cut-set. Therefore, no other edge connected
to these nodes can be excised by €utin particular, the intermediate edges connecting literal
nodes in clause-gadgets to their corresponding variatdies) should be left uncut.

Third, we argue that the three literal-nodes in a clauseygiadannot be in the same subset of
nodes, sayd. Suppose that the literal-nodes corresponding to nodetedtd and 9 in Figurel 6
are in setd. Due to the same argument as for variable-gadgets, the rbdeshare a neighbor
in the True and False-blocks with these nodes, i.e., thesladkeled 2 and 8 in Figufé 6, should
lie in B. Then nodes labeled 3, 4, 6 and 7 in Figlure 6 should also & Kow if node 5 in
Figure[® lies inA, then it has at least + 1 neighbors outside its containing set, which is not
admissible.

The above three properties forcg to partition the nodes of,(¢) into two setsA and B
such that setsd’ =V N.A and B’ = V N B are nonempty and partition the nodesdiip) into
one of the forms shown in Figuré€$ 7 and 8, without cutting digfothe True or False-blocks
of G(¢). Therefore, if graplg,(¢) has a relaxeg-degree cut the(¢) has a relaxed-1-degree

cut and hence the relaxgddegree cut problem isIP-hard. [ ]



G. Proof of Theoreri 10

Proof: As we did in theNP-hardness proof of the 1-degree cut problem, forguegree cut
problem we build grapli,(¢) by taking2p + 1 copies ofG,(¢) and adding edges to construct
complete subgraphs on all the nodes in the True and Fals&std thesep + 1 copies. Again,
each copy ofG,(¢) in H,(¢) is called a box.

We prove that the-degree cut problem islP-hard by showing that{,(¢) has ap-degree
cut if and only if G,(¢) has a relaxeg¢-degree cut. It is not hard to see thatdf(¢) has a
relaxedp-degree cut, theft{,(¢) has ap-degree cut and hence it remains to show the converse
statement also holds.

Assume that{,(¢) has ap-degree cut, and that sets B and X" partition the nodes o#{,(¢)
with A and B nonempty and at mogt-reachable. It can be easily observed that the following
generalized version of the two properties in the proof of areen[9 holds for cliqgues with at

least2p + 1 nodes:

1) SetX can contain up t@ nodes or all nodes of the clique, and

2) If a node of the clique is id (resp.B), then no node of that clique is i (resp..A).

We denote the True and False-blocks7éf(¢) by 7 and F, respectively. As in the proof
of Theoren D, it can be argued that the only possible case$ fand 7 are7 C AU X and
FCBUX,orT CBUX andF C AU X. The analysis of the latter case is removed due to
symmetry. The True-block cannot be a subseftgfas it would leave sed empty. Similarly,
the False-block cannot be a subsetiaf as it would leave seB empty. Thus by property (1),
[T NX| < pand so there exigi+ 1 boxes inH,(¢) whose True-blocks are subsets.4f The
same argument holds for the False-blocks of the boxéé,iiw). Consequently, there is a box in
H,(¢) whose True and False-blocks are subsetsiaind 3, respectively. This box is denoted
by G,(¢). We show that no node id/,(¢) can lie in setX.

Suppose that a node in a variable-gadgegif) lies in X'. Regardless of the set the other
node in that variable-gadget is in, either the node in the-Tock or the one in the False-block
to which both these variable-nodes are connectedphad neighbors outside its set, which is
not allowed (see Figure 111 for an illustration whes= 2).

Moreover, since the True and False-blocksqyf¢) are subsets ofd and B, respectively,

each variable-node has neighbors outside its set and hence cannot afford to be ctethe



True-block True-block True-block

False-block False-block False-block

(a) (b) (c)

Fig. 11. The True and False-blocks are subsetgl@ind 53, respectively, and the variable-node corresponding;tés in X.
Figure (a) shows the edges incident to nadehat are excised. In Figure (b), without loss of generaiitis assumed that node

x; is either in set5 or X and the edges that connect the nodesdito it are depicted. Figure (c) demonstrates another edge
that connects a node id that is in the True-block to a node i that is in the False-block. It can be seen that the node in the

True-block connected to both the nodes in the variable-gialdgs three neighbors outside its set.

to another node outside its set. Therefore, the intermedidges connecting literal-nodes to
their corresponding variable-nodes cannot be exciseds ithicombination with the fact that
no variable-node is it shows that no literal-node in any clause-gadget itinAlso, by the
same argument provided for variable-gadgets, it can be istioat the nodes labeled 2 and 8 in
Figure[® cannot lie in set’. Moreover, the nodes labeled 2, 3 and 4 in Fidure 6 (resp.sode
labeled 6, 7 and 8) should lie in the same set; otherwise, Adqgdesp. node 8) has more than
neighbors outside its set. Thus, no node in any clause-jadgebe inX’. As a result, no node
in G/ (¢) is in X.

Thus, if H,(¢) has ap-degree cut, thew/(¢) and hencej,(¢) has a relaxeg-degree cut,
due to the fact thag/,(¢) andg,(¢) are isomorphic. Therefore, the converse statement is grove
which concludes thé&lP-hardness of the-degree cut problem. Since thedegree cut problem

is in NP, it can be concluded that it iNP-complete. [ |

H. Proof of Lemma&_10

Proof: Assume that some polynomial-time algorithhh.G provides an approximation ratio
1 < a < 2 for all graphsG. Consider the set of connected graphs that have a 1-degreencu
any graphg from this set, the output of the algorithm must satisfyG(G) < a«OPT(G) < 2,
i.e., ALG(G) = 1. Thus, given any connected graghthe algorithm would outpuALG(G) = 1



if and only if the graph has &degree cut, contradicting the fact that this isN#P-hard problem

(as shown in Theorefd 9). Therefore, an approximation rass than 2 is not obtainable for the

p-degree cut problem unlegs= NP. [ |
Remark 3:Note that this proof holds for any integer-valued optim@atproblem whose

decision version isNP-hard with parameter equal o O
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