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Robustness of Complex Networks

with Implications for Consensus and Contagion

Haotian Zhang, Elaheh Fata and Shreyas Sundaram

Abstract

We study a graph-theoretic property known as robustness, which plays a key role in certain classes of

dynamics on networks (such as resilient consensus, contagion and bootstrap percolation). This property

is stronger than other graph properties such as connectivity and minimum degree in that one can

construct graphs with high connectivity and minimum degreebut low robustness. However, we show

that the notions of connectivity and robustness coincide oncommon random graph models for complex

networks (Erdős-Rényi, geometric random, and preferential attachment graphs). More specifically, the

properties share the same threshold function in the Erdős-Rényi model, and have the same values in

one-dimensional geometric graphs and preferential attachment networks. This indicates that a variety of

purely local diffusion dynamics will be effective at spreading information in such networks. Although

graphs generated according to the above constructions are inherently robust, we also show that it is

coNP-complete to determine whether any given graph is robust to aspecified extent.

Index Terms

Random graphs, robustness, complex networks, matching-cut

I. INTRODUCTION

The emergence of collective dynamics in large networks of interacting agents has inspired the

study of complex networks; classical examples of such networks abound in both the natural world
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(e.g., ecological systems, biological systems, and socialsystems), and in engineered applications

(e.g., the Internet, the power grid, large-scale sensor networks). Due to their prevalence, a topic of

particular interest has been therobustnessof such networks to disruptions, both in the structure

and in the dynamics that are occurring on the network. Studies of structural robustness have

characterized the ability of different networks to withstand the loss of nodes, either due to

accidental failure or to targeted attack [2], [6], [7], withthe connectivity of the network being

of primary interest. Studies of the robustness of dynamics,on the other hand, focus on the

ability of the nodes in the network to achieve certain objectives even when some nodes deviate

from expected behavior. For instance, various dynamics forinformation diffusion have been

studied in the context of synchronization (or consensus) [19], information cascades [13], [20],

and broadcasting [14]. In such cases, a fundamental challenge is to identify topological properties

that allow legitimate information to propagate throughoutthe network, while limiting the effects

of illegitimate actions. In the case of distributed consensus in computer networks, algorithms

have been proposed to overcome adversaries when all nodes know the network topology and the

connectivityof the network is sufficiently high [19], [21], [26]. However, it was shown in [18],

[30] that connectivity is no longer sufficient to guarantee resilient consensus when the nodes

use a natural class of algorithms that only require each nodeto know its own neighborhood.

Instead, [30] introduced a definition of network robustnessto deal with such dynamics and

showed that resilient consensus can be reached without requiring global information in graphs

that are sufficiently robust. This notion of robustness is stronger than other topological properties

such as connectivity (in that highly robust graphs require high connectivity) and as we describe

later, also plays a role in the study of contagion and bootstrap percolation in networks.

Motivated by the role that this notion of robustness plays inthe above dynamics, in this paper

we study this property in three common random graph models for complex networks: Erdős-

Rényi graphs, geometric random graphs, and preferential attachment graphs. In Erdős-Rényi

graphs, it was established in [12] that the properties of connectivity and minimum degree share

the same threshold function; we show that robustness also shares this threshold. This is perhaps

surprising, given the existence of pathological graphs where robustness and connectivity are far

apart (as shown later in this paper), and indicates that the graphs gain a richer structure at this

threshold than simply beingr-connected. For the other two models, we show that robustness

and connectivity are equivalent in one-dimensional geometric graphs and in certain preferential



attachment models. Our results reveal that a variety of diffusion dynamics (that are agnostic of

the network structure) will be effective at spreading information in such networks. Finally, as a

counterpoint to the random graph analysis above, we providea negative result for determining

whether anygivengraph isr-robust, showing that this problem iscoNP-complete for anyr ≥ 2.

The rest of this paper is organized as follows. In Section II,we provide the definition of

robustness that we consider in this paper and give motivating applications. In Sections III, IV,

and V, we study the robustness of Erdős-Rényi graphs, one-dimensional geometric graphs, and

preferential attachment graphs, respectively. In SectionVI, we provide the complexity analysis

of the robustness problem in general graphs, and conclude inSection VII.

II. ROBUSTNESS OFNETWORKS

Consider a network modeled by theundirectedgraphG = {V, E}, whereV = {1, ..., n} is

the set of nodes andE ⊆ V ×V is the set of edges in the network. An edge(i, j) ∈ E indicates

that nodesi andj can communicate with each other. The set ofneighborsof nodei is defined

asVi = {j ∈ V : (i, j) ∈ E}, the degreeof node i is denoted bydi = |Vi|, and theminimum

degreeof the network ismini∈V di. The connectivityof the network is the largest integerr

such that every pair of nodes has at leastr pairwise node-disjoint paths between them; this is a

fundamental metric in networks and captures information redundancy across the network through

independent paths. By Menger’s theorem [28], the connectivity of a network is also equal to the

smallest number of nodes that have to be removed in order to disconnect the graph. A graph

is r-connected if its connectivity is at leastr. In order to capture another form of information

redundancy, the following topological properties were proposed in [30].

Definition 1 (r-Reachable Set):For a graphG and a subsetS of nodes ofG, S is an r-

reachable set if ∃i ∈ S such that|Vi \ S| ≥ r, wherer ∈ Z≥0.1

Definition 2 (r-Robust Graph):A graphG is r-robust if for every pair of nonempty, disjoint

subsets ofV, at least one of the subsets isr-reachable, wherer ∈ Z≥0.

In words, a setS is r-reachable if it contains a node that has at leastr neighbors outside

that set. Intuitively, ther-reachability property captures the idea that some node inside the set is

influenced by a sufficiently large number of nodes from outside. Whiler-connectedness implies

1Note thatZ≥a represents the set of integers bigger than or equal toa.
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Fig. 1. Example of a graph that has minimum degreen

2
and connectivityn

2
, but is only 1-robust. SetsS1 and S2 induce

complete graphs onn
2

nodes, and the edges between the sets form a perfect matching.

that given any two disjoint sets, the nodes in at least one of the sets collectively haver neighbors

outside,r-robustness indicates that there is at least one node in one of the sets thatby itselfhas

r neighbors outside. Since all graphs are trivially0-robust, we will primarily focus on the cases

wherer ≥ 1 in the rest of the paper.

We will be using the following important properties from [18] to relate robustness with the

concepts of connectivity and minimum degree (the result in [18] applies to directed graphs and

encompasses undirected graphs as a special case).

Lemma 1 ( [18]): For anyr ∈ Z≥0, if G is r-robust, thenG is at leastr-connected and has

minimum degree at leastr.

Lemma 2 ( [18]): A graphG is 1-robust if and only if it is 1-connected.

The above results show thatr-robustness is a stronger property thanr-connectivity (except

for the case wherer = 1 and the trivial case wherer = 0). In fact, there exist graphs that are

very highly connected but have very low robustness. For example, consider the network shown

in Figure 1. SetsS1 andS2 have n
2

nodes (supposen is even), and induce complete subgraphs

(i.e., each node in each set is connected to all other nodes inits set). Each node has exactly one

neighbor from the other set. This graph isn
2
-connected and has minimum degreen

2
but is only

1-robust since bothS1 andS2 are only 1-reachable.

In the rest of this section, we will motivate the study of reachable sets and robustness with

several specific examples of diffusion dynamics (resilientconsensus, contagion and bootstrap

percolation).

A. Resilient Consensus Using Only Local Information

Consider a setting where each node in the network holds some private information (an opinion,

a measurement, etc.). The network operates synchronously,and at each time-step, each normally



operating node updates its value (information) as a weighted average of its neighbors’ values

and its own value. However, there may exist misbehaving nodes which do not follow this pre-

specified rule. Under certain fault models (which define the distribution and behavior of the

misbehaving nodes), an algorithm is said to achieveresilient asymptotic consensusif the values

held by all normal nodes asymptotically converge to the samevalue, for any choice of initial

values.

As mentioned in the Introduction, theconnectivityof the network has traditionally been viewed

as the key metric with regard to resilience of consensus algorithms (and information diffusion

algorithms in general). If the connectivity of the network is 2F or less (whereF ∈ Z≥1), then

there exists at least one set ofF coordinated misbehaving nodes that can prevent the network

from reaching consensus on certain functions of the initialvaluesregardlessof the mechanism

that is used to achieve consensus [14], [19]. On the other hand, if the connectivity is2F +1 or

higher, various algorithms have been proposed to overcome misbehaving nodes under the local

broadcast model of communication (i.e., where each misbehaving node is restricted to send the

same value to all of its neighbors at each time-step) [19], [21], [26].

While the above connectivity bounds provide fundamental limitations on the resilience of

networks to misbehaving nodes, the mechanisms proposed to overcome misbehavior typically

make the assumption that all nodes know the entire network topology (which is unrealistic in large

networks). To remedy this, under theF -local model (where there are at mostF misbehaving

nodes in each normal node’s neighborhood and there is no restriction on their behavior), consider

the followingWeighted-Mean-Subsequence-Reduced (W-MSR)algorithm: at each time-step, each

normal node disregards the largest and smallestF nodes in its neighborhood (breaking ties

arbitrarily) and updates its state to be a weighted average of the remaining values.2 To see

why connectivity is no longer an appropriate metric for studying such an algorithm, consider

again the network in Figure 1 and suppose that nodes inS1 andS2 have initial valuesa and b,

respectively. Whena 6= b, by using the W-MSR algorithm, each node will throw away the value

of its neighbor from the opposite set and thus its own value will remain unchanged, even when

there are no misbehaving nodes. Thus, consensus will not be reached in this network, indicating

that even networks with a large degree or connectivity are not sufficient to guarantee consensus

2We refer to [10], [17], [18], [27], [30] for a more complete description of this and other similar algorithms.



under such algorithms.

Taking a closer look at Figure 1, we see that the reason for thefailure of consensus in this

graph is that no node in either of the two sets receives enoughinformation fromoutsideits own

set. However, if a graph isr-robust (for sufficiently larger), new information will penetrate at

least one out of any two subsets of nodes, preventing stalemates of this form. The following

result from [18] formalizes this property.

Theorem 1 ( [18]): Under theF -local model, the W-MSR algorithm achieves resilient asymp-

totic consensus if the network is(2F + 1)-robust.

B. Contagion and Bootstrap Percolation

Consider another class of diffusion dynamics, where a subset of nodes wish to spread their

‘status’ through the whole network. Specifically, assume that each node in the network can be in

one of two states: infected (e.g., with an idea or innovation) or uninfected. Starting with an initial

set of infected nodes (which can be chosen deterministically or randomly), the infection spreads

(or cascades) in discrete steps according to the following rule: each node becomes infected if at

leastr of its neighbors have been infected and once infected, staysinfected forevermore. Here,

r is called thethresholdfor cascading. This class of dynamics appears in the study ofcontagion

[11], bootstrap percolation [4], [16], best response dynamics in strategic complements games

[15], and resilient broadcasting [30].

For somem < n (wheren is the number of nodes in the network), we say there iscontagion

from anym nodes[15] (or equivalently,bootstrap percolation succeeds from anym nodes)

if any set of initially infected nodes with sizem causes the whole network to be eventually

infected. Note that for cascading with thresholdr, m ≥ r is necessary to facilitate contagion;

otherwise, no nodes will be infected besides the nodes in theinitial set. Further note that the

minimum degree of the network is a fundamental limitation for the emergence of contagion,

i.e., if the minimum degree is less thanr, there always exists an initial set of sizem < n such

that cascading with thresholdr fails to cause contagion. However, minimum degree by itselfis

not sufficiently useful to capture these dynamics. Consideragain the network in Figure 1. Even

though the network has large minimum degree, we can choose aninitial set with n
2

nodes (either

S1 or S2) such that cascading with any threshold bigger than 1 fails to produce contagion. The

following result from [11], [15] (cast in the language of reachable sets) provides the condition



for contagion to succeed.3

Theorem 2:For cascading with thresholdr, contagion from anym nodes occurs if and only

if every subset ofV with size up ton−m is r-reachable, wherem ≥ r.

Given the fundamental role of the notions of reachable sets and robustness in the applications

discussed above, we will start by studying the robustness ofthree common random graph models:

Erdős-Rényi graphs, geometric random graphs, and preferential attachment graphs. After that,

we will analyze the computational complexity of determining the extent to which a given graph

is robust.

III. ROBUSTNESS OFERDŐS-RÉNYI RANDOM GRAPHS

Erdős-Rényi random graphs [5], [12] are one of the most common models for large-scale

networks. The version we study here is denoted asGn,p: it consists ofn nodes and each possible

(undirected) edge between two nodes is present independently with probability p (which may

be a function ofn), and absent with probabilityq = 1 − p. Let the probability of an event be

denoted byP(·). Recall that agraph propertycan be regarded as a class of graphs that is closed

under isomorphism. A key feature of theGn,p model is that we can explore properties that are

shared byalmost allgraphs, a notion that is defined as follows.

Definition 3: AssumeP is a graph property andp = p(n) is a function ofn. We say that

almost all G ∈ Gn,p have propertyP if P(Gn,p ∈ P) → 1 asn → ∞, andalmost no G ∈ Gn,p

has propertyP if P(Gn,p ∈ P) → 0 asn → ∞.

One important feature ofGn,p, which was demonstrated by Erdős and Rényi, is that the model

exhibitsphase transitions. More precisely, we define athreshold functionas follows.

Definition 4 (Threshold Function):Consider a functiont(n) of the form g(n)
n

whereg(n) →

∞ as n → ∞, and a functionx = o(g(n)) satisfyingx → ∞ as n → ∞. We sayt(n) is a

threshold function for a graph propertyP if p(n) = g(n)+x

n
implies that almost allG ∈ Gn,p

have propertyP andp(n) = g(n)−x

n
implies that almost noG ∈ Gn,p has propertyP.

3The work in [11], [15] considers a slightly different scenario where the cascading threshold is based on thefraction of a

node’s neighbors that are infected, but the extension to theabsolute threshold case is trivial.



All of the properties we are going to study in this section have threshold functions of the

above form.4 Loosely speaking, if the probability of adding an edge is ‘larger’ than t(n) in

the sense indicated by Definition 4, then almost allG ∈ Gn,p will have propertyP, and if the

probability is ‘smaller’ thant(n), almost noG ∈ Gn,p will have this property.

Definition 5: ForG ∈ Gn,p and constantr ∈ Z≥1, define the properties ofbeing r-connected,

r-robust andhaving minimum degree r by Kr, Rr andDr, respectively.

Lemma 3 ( [12]): For any constantr ∈ Z≥1, t(n) =
lnn+(r−1) ln lnn

n
is a threshold function for

propertyKr. It is also a threshold function for propertyDr.

The following is one of our main results: it establishes thatthe above threshold function forr-

connectivity (and minimum degreer) is alsoa threshold function forr-robustness in Erdős-Rényi

random graphs.

Theorem 3:For any constantr ∈ Z≥1, t(n) = lnn+(r−1) ln lnn

n
is a threshold function for

propertyRr.

From Lemmas 3 and 2, the above theorem is immediately true forr = 1 since1-connectedness

and1-robustness are equivalent. To prove the theorem forr ≥ 2, we will first need the following

lemma showing that all subsets of nodes up to a certain size will be r-reachable when the

probability is above the given threshold.

Lemma 4:Let α = α(n) be a positive function satisfyingsupn α(n) < 1 and ln lnn =

o(α lnn). For any constantr ∈ Z≥1, let S1−α
r be the property that every subset ofV with size

up to ⌊(1 − α)n⌋ is r-reachable. Ifp(n) = lnn+(r−1) ln lnn+x

n
, wherex = x(n) is some function

satisfyingx = o(ln lnn) and x → ∞ as n → ∞, then almost allG ∈ G(n, p) have property

S1−α
r .

Proof: Let P0 be the probability that some set of cardinality up tonc = ⌊(1 − α)n⌋ is

not r-reachable. We need to prove thatP0 = o(1) when p(n) = lnn+(r−1) ln lnn+x

n
. Denote the

probability that some setS ⊂ V with cardinalityk (i.e., |S| = k) is not r-reachable asPk. By

the union bound, we know thatP0 ≤
∑nc

k=1 Pk. For fixedS of cardinalityk, the probability that

a nodev ∈ S has less thanr neighbors outside is
∑r−1

i=0

(

n−k

i

)

qn−k−ipi, and the probability that

S is notr-reachable is(
∑r−1

i=0

(

n−k

i

)

qn−k−ipi)k, whereq = 1−p. Since there are
(

n

k

)

such setsS,

4There are also various other definitions of threshold functions, but they are typically more conservative than the one we

consider here [5].



we know thatPk ≤
(

n

k

)

(
∑r−1

i=0

(

n−k

i

)

qn−k−ipi)k. In the rest of the proof, we focus on the cases

wherek ≤ nc. Using the fact that
(

n

k

)

≤ ( en
k
)k and

(

n

k

)

≤ nk, we obtain the following upper

bound forPk:

Pk ≤

(

n

k

)

(

r−1
∑

i=0

(

n− k

i

)

qn−k−ipi

)k

≤

(

en

k

r−1
∑

i=0

(np)i(1− p)n−k−i

)k

≤

(

en

k
(1− p)n−kr

(

np

1− p

)r−1
)k

=

(

er

(1− p)r−1

n(np)r−1(1− p)n

k(1− p)k

)k

≤

(

c1n(np)
r−1(1− p)n

k(1− p)k

)k

.

In the last step above,c1 is some constant upper bound for er
(1−p)r−1 satisfying0 < c1 < 2er

for sufficiently largen. By saying that a property holds for sufficiently largen, we mean that

there exists somen0 ∈ Z≥1 such that this property holds for alln > n0. The notion of “for

sufficiently largen” will be implicitly used throughout the proof. Note that1 − p ≤ e−p and

recall thatp(n) = lnn+(r−1) ln lnn+x

n
. Thus,

Pk ≤

(

c1n(np)
r−1e− lnn−(r−1) ln lnn−x

k(1− p)k

)k

=

(

c1n(np)
r−1e−x

k(1− p)kn(lnn)r−1

)k

=

(

c1

(

lnn+ (r − 1) ln lnn+ x

lnn

)r−1
e−x

k(1− p)k

)k

≤

(

c2e
−x

k(1− p)k

)k

.



Note that lnn+(r−1) ln lnn+x

lnn
< 2 for sufficiently largen and thus0 < c2 < c12

r−1. Next, note that

ln (1− p) = −
∑∞

i=1
pi

i
for p ∈ [0, 1), and thus,

Pk ≤

(

c2e
−x

k
exp{k

∞
∑

i=1

pi

i
}

)k

=

(

c2e
−x

k
exp{kp+ kp2

∞
∑

i=2

pi−2

i
}

)k

(1)

≤

(

c2e
c3
e−xekp

k

)k

=

(

c4e
−xekp

k

)k

.

Note that in (1), since
∑∞

i=2
pi−2

i
<
∑∞

i=2 p
i−2 = 1

1−p
and kp2 < np2 = o(1), 0 < c3 < 1 for

sufficiently largen. Further note thatc4 = c2e
c3 and thus0 < c4 < re22r.

Let f(k) = ekp

k
be a function ofk, wherek ∈ R>0. Then df

dk
= ekp(kp−1)

k2
. Since df

dk
< 0 if

k < 1
p

and df

dk
> 0 if k > 1

p
, f(k) ≤ max{f(1), f(nc)} for k ∈ {1, 2, . . . , nc}. We know that

f(nc) =
exp{ncp}

nc
≤ exp{(1−α)np}

(1−α)n
= 1

1−α
exp{(1−α)np− lnn} = 1

1−α
exp{−α lnn+ (1−α)(r−

1) ln lnn+ (1− α)x}. Sinceα(n) is positive, strictly bounded below1 and ln lnn = o(α lnn),

we know thatf(nc) = o(1). Further note thatf(1) = ep > 1. Thus, for sufficiently largen,

f(k) ≤ f(1) < e andPk ≤
(

c4e
1−x
)k

. We now have

P0 ≤
nc
∑

k=1

Pk ≤
∞
∑

k=1

(

c4e
1−x
)k

=
c4e

1−x

1− c4e1−x
= o(1),

sincex → ∞ asn → ∞, completing the proof.

This lemma immediately leads to a proof of Theorem 3.

Proof of Theorem 3:For the first part of the proof, we show that for any constantr ∈ Z≥1,

if p(n) = lnn+(r−1) ln lnn+x

n
, wherex = x(n) is some function satisfyingx = o(ln lnn) and

x → ∞ asn → ∞, then almost allG ∈ G(n, p) are r-robust. Applying Lemma 4 withα = 1
2
,

we immediately see that in almost allG ∈ Gn,p, any set of nodes with size up to⌊n
2
⌋ will be

r-reachable. Thus, for almost allG ∈ Gn,p, given any two disjoint and nonempty subsets of

nodes ofG, at least one of them will ber-reachable, and thusG will be r-robust.

For the second part of the proof, we need to show that for any constantr ∈ Z≥1, if p(n) =

lnn+(r−1) ln lnn−x

n
, wherex = x(n) is some function satisfyingx = o(ln lnn) and x → ∞ as

n → ∞, then almost noG ∈ G(n, p) is r-robust. The result is obtained by combining Lemma 1

and Lemma 3.



Remark 1:The above theorem shows that Erdős-Rényi graphs gain a great deal more structure

at the thresholdt(n) = lnn+(r−1) ln lnn

n
than simply beingr-connected (or having minimum degree

r). As argued earlier, whereasr-connectedness implies that given any two disjoint and nonempty

sets, the nodes in at least one of the sets collectively haver neighbors outside, the above result

shows that there is (at least) one node in one of the sets thatby itselfhasr neighbors outside.

As an aside, note that the somewhat direct proof ofr-robustness given above immediately yields

a proof ofr-connectedness of Erdős-Rényi graphs for connection probabilities above the given

threshold.

A. Implications for Consensus and Contagion

We now show what the above result means for resilient asymptotic consensus and the emer-

gence of contagion in theGn,p model.

Definition 6: For G ∈ Gn,p and constantF ∈ Z≥1, defineRACF to be the property that

resilient asymptotic consensus is reached under theF -local model using the W-MSR algorithm

for any initial values.

Corollary 1: For any constantF ∈ Z≥1, t(n) = lnn+2F ln lnn
n

is a threshold function for

propertyRACF .

Proof: As discussed in Section II-A and Theorem 1,(2F + 1)-connectedness is necessary

and (2F + 1)-robust is sufficient, respectively, for the W-MSR algorithm to achieve resilient

asymptotic consensus under theF -local model. Thus, by Lemma 3 and Theorem 3, the result

follows.

Definition 7: For G ∈ Gn,p, constantr ∈ Z≥1, and positive functionα = α(n) satisfying

supn α(n) < 1 and ln lnn = o(α lnn), defineCα
r to be the property that contagion from any

⌈αn⌉ nodes occurs when cascading with thresholdr.

Corollary 2: For any constantr ∈ Z≥1 and positive functionα = α(n) satisfyingsupn α(n) <

1 and ln lnn = o(α lnn), t(n) = lnn+(r−1) ln lnn

n
is a threshold function for propertyCα

r .

Proof: Note that by Theorem 2, the propertiesS1−α
r (defined in Lemma 4) andCα

r are

equivalent. Thus, the result follows by combining Lemma 3, Lemma 4 and the discussions in

Section II-B.

The above corollary indicates that at the thresholdt(n) = lnn+(r−1) ln lnn

n
, Erdős-Rényi graphs

gain the ability to allow information initially held by anyα-fraction of nodes to cascade through



the network to all other nodes. The fractionα can go to0 at a sufficiently slow rate; for example,

α can be some function inΩ( 1
(lnn)ǫ

), 0 < ǫ < 1, that satisfiessupn α(n) < 1. Theorem 3 (together

with Corollaries 1 and 2) implies that the ‘worst-case’ networks (such as in Figure 1) will not

appear (with probability tending to1) in Erdős-Rényi graphs.

Remark 2:Note that Corollary 2 also applies to bootstrap percolation(due to the identical

dynamics under the two scenarios). In fact, more general results for bootstrap percolation in

Erdős-Rényi graphs can be found in [16], where probability functions of the formt(n) = g(n)
n

are

also explored. Our approach explicitly highlights the underlying graph properties of reachability

and robustness and shows their relationship to connectivity and minimum degree in Erdős-

Rényi graphs, leading to a fairly direct proof of the phase transition at the given threshold, with

corresponding implications for consensus and contagion (or bootstrap percolation).

IV. ROBUSTNESS OFGEOMETRIC RANDOM GRAPHS

Another widely used model for large networks is thegeometric random graph, which captures

edges between nodes that are in close (spatial) proximity toeach other. We consider the geometric

graphGd
n,ρ,l = {V, E}, which is an undirected graph generated by first placingn nodes (according

to some mechanism) in a regionΩd = [0, l]d, whered ∈ Z≥1. We denote the position of node

i ∈ V with x(i) ∈ Ωd. Nodes i, j ∈ V are connected by an edge if and only if‖x(i) −

x(j)‖ ≤ ρ for some thresholdρ, where‖ · ‖ indicates an appropriate norm (often taken to be

the standard Euclidean norm). When the node positions are generated randomly (e.g., uniformly

and independently) in the region, one obtains ageometric random graph. In the widely-studied

modelGd
n,ρ, the parameterl is fixed and graph properties are typically explored whenn → ∞

andρ → 0, leading to dense random networks [23].5 In the more general modelGd
n,ρ,l, however,

the lengthl is also allowed to increase and the densityn
ld

can converge to some constant, making

it suitable for capturing both dense and sparse random networks [24].

In Section III, we showed that the properties of connectivity and robustness have the same

threshold function in Erdős-Rényi graphs. In this section, we will prove similar results for one-

dimensional geometric random graphs (i.e.,d = 1). We start by providing a result showing that

connectivity and robustness cannot be very different in one-dimensional geometric graphs, and

5Note that properties of networks with a finite number of nodeshave also been explored (e.g., see [9]).



are in fact equal when the nodes are sufficiently spread out (regardless of how the node positions

are generated and the relationships betweenρ, n and l). In the following, we assume that the

nodes are ordered such that ifi, j ∈ V and i < j thenx(i) ≤ x(j).

Theorem 4:In Ω1 = [0, l], if G1
n,ρ,l is r-connected, then it is at least⌊ r

2
⌋-robust. Furthermore,

if x(n)− x(1) > 3ρ, then the graph isr-connected if and only if it isr-robust.

Proof: First, note that ifx(n)−x(1) ≤ ρ then the graph is complete and therefore(n− 1)-

connected and⌈n
2
⌉-robust, and thus the claim holds. In the rest of the proof, weassume that

x(n)− x(1) > ρ. In this case, if the graph isr-connected, the following two properties hold.

1) Every interval of the form(a, a + ρ] ⊂ (x(1), x(n)) must have at leastr nodes, because

otherwise, removing the nodes in that interval would disconnect the nodes in the interval

[x(1), a] from those in the interval(a+ ρ, x(n)]. The same is true for every interval of the

form [a, a+ ρ) ⊂ (x(1), x(n)), and thus for every closed interval of lengthρ contained in

(x(1), x(n)).

2) Consider any nonempty setS ⊂ V. If there exists an interval[a, a + ρ] ⊂ (x(1), x(n))

with no nodes fromS, then there must be a node fromS in the interval[x(1), a) or in the

interval (a + ρ, x(n)]. By symmetry, assume thatS has nodes in[x(1), a) and leti be the

node inS that is closest toa from this interval. Then the interval(x(i), x(i) + ρ] contains

no nodes fromS, but contains at leastr nodes, and thusS is r-reachable.

Now consider any two disjoint and nonempty subsetsS1,S2 ⊂ V, and any interval[a, a+ρ] ⊂

(x(1), x(n)). If S1 (resp.S2) has no nodes in[a, a+ ρ], thenS1 (resp.S2) is r-reachable. Thus,

suppose bothS1 and S2 have nodes in[a, a + ρ]. If S1 is not ⌊ r
2
⌋-reachable, there are fewer

than ⌊ r
2
⌋ nodes fromS2 in [a, a + ρ]. Choose any nodei from S2 in the interval. There are at

leastr − 1 remaining nodes in the interval, and at most⌊ r
2
⌋ − 1 of them are inS2. Thusi has

at leastr − 1 − ⌊ r
2
⌋ + 1 ≥ ⌊ r

2
⌋ neighbors in the interval that are not inS2. Therefore, for any

two disjoint and nonempty subsetsS1,S2 ⊂ V, at least one of them is⌊ r
2
⌋-reachable. Thus the

graph is at least⌊ r
2
⌋-robust, proving the first part of the theorem.

For the second part of the theorem, assumex(n) − x(1) > 3ρ. Then there exists an interval

[a, a + 3ρ] ⊂ (x(1), x(n)). Consider any two nonempty and disjoint subsetsS1,S2 ⊂ V, and

denoteX = V \ (S1 ∪ S2). By the argument above, if eitherS1 or S2 does not have any nodes in

some closed interval of lengthρ within (x(1), x(n)), that set will ber-reachable. Thus, suppose

that bothS1 andS2 have nodes in all closed intervals of lengthρ within (x(1), x(n)). Pick any



nodei from S1 in the interval[a+ρ, a+2ρ], and letj ∈ S2 be the node in[a+ρ, a+2ρ] that is

closest toi. We assume without loss of generality thatx(j) ≤ x(i) and that ifx(j) < x(i), then

there are only nodes fromX betweeni and j (the latter can always be enforced by redefining

i to be the node inS1 that is closest toj in [a+ ρ, a + 2ρ]).

Suppose thatS1 is not r-reachable. Then there are fewer thanr nodes fromS2 ∪ X in the

interval [x(i)−ρ, x(i)+ρ]. If x(j) = x(i), thenj has at least2r neighbors in[x(i)−ρ, x(i)+ρ]

and since at mostr of them are fromS2, the setS2 will be r-reachable. Thus assume that

x(j) < x(i). Let nS2
and nX be the number of nodes in[x(i) − ρ, x(i)) from S2 and X ,

respectively. Then the combined number of nodes fromS2 andX in [x(i), x(i) + ρ] must be

less thanr− nS2
− nX . Let the number of nodes fromX strictly betweenj andi ben′

X , where

n′
X ≤ nX < r. Since the interval(x(j), x(j) + ρ] contains at leastr nodes,x(j) has at least

r− n′
X neighbors in the interval[x(i), x(j) + ρ]. Since there are fewer thanr− nS2

− nX nodes

from S2 in [x(i), x(i) + ρ] (and thus in the smaller interval[x(i), x(j) + ρ]), nodej has at least

r−n′
X −(r−nS2

−nX ) = nS2
+nX −n′

X neighbors outside its set in[x(i), x(j)+ρ]. Furthermore,

since there are at leastr−1 nodes other thanj in [x(i)−ρ, x(i)), andnS2
−1 of them are from

S2, nodej has at leastr− 1− (nS2
− 1) = r− nS2

neighbors outside its set in[x(i)− ρ, x(i)).

Thus, in the interval[x(i)− ρ, x(j)+ ρ], nodej has at leastr−nS2
+nS2

+nX −n′
X ≥ r nodes

outside its set, making setS2 at leastr-reachable. Thus, the graph isr-robust. The converse

statement follows from Lemma 1

Once again, note that the result in Theorem 4 does not depend on how the positions of the

nodes are generated. Unfortunately, the theorem does not extend to geometric graphs in higher-

dimensions. For example, the graph shown in Figure 1 can be viewed as a geometric graph in

two dimensions, where the nodes in each set are all clusteredhorizontally within a distanceρ,

and the two sets are vertically separated by a distance just below ρ so that each node is within

a distanceρ of exactly one node in the opposite set. Clearly that graph isonly 1-robust, despite

having a connectivity ofn
2
.

Next we will present an asymptotic approach to analyzing one-dimensional random graphs

(complementary to the analysis in Theorem 4). We first define properties foralmost allgraphs

in Gd
n,ρ,l as follows, similar to theGn,p model.

Definition 8: AssumeP is a graph property. We say thatalmost all G ∈ Gd
n,ρ,l have property

P if P(Gd
n,ρ,l ∈ P) → 1 asl → ∞, andalmost no G ∈ Gd

n,ρ,l has propertyP if P(Gd
n,ρ,l ∈ P) → 0



as l → ∞.

Note that we study these properties inGd
n,ρ,l as l → ∞, and taken andρ to be functions of

l, i.e., n = n(l) andρ = ρ(l). We will use the following result from [24].

Theorem 5 ( [24]): Assume thatρn = kl ln l for some constantk > 0 andρ = Ω( 1
ln l

).

• If k > 2, or k = 2 andρ → ∞, then almost allG ∈ G1
n,ρ,l are connected.

• If ρ ∈ Θ(lǫ) and k ≤ (1 − ǫ) for some constant0 < ǫ < 1, then almost noG ∈ G1
n,ρ,l is

connected.

We now present the following conditions under which the one-dimensional geometric random

graph becomesr-connected andr-robust; the proof of this result builds upon and generalizes

the proof of Theorem 5 from [24]. Note that ifρ(l) ≥ l, the graph will be(n(l)− 1)-connected

and⌈n(l)
2
⌉-robust, and thus we focus on the case whereρ(l) < l in the theorem below.

Theorem 6:Assume thatρn = kl ln l for some constantk > 0.

• If ρ < l and ρ ∈ Ω(l), then almost allG ∈ G1
n,ρ,l are r-connected andr-robust for all

r ∈ Z≥1.

• If ρ = o(l) andρl
k

r+1
−1 → ∞ for somer ∈ Z≥1, then almost allG ∈ G1

n,ρ,l arer-connected

andr-robust.

• If ρ ∈ Θ(lǫ) and k ≤ (1 − ǫ) for some constant0 < ǫ < 1, then almost noG ∈ G1
n,ρ,l is

r-connected orr-robust.

Proof: Fix anyr ∈ Z≥1. In order to prove the first two parts, we will show that any interval

of lengthρ contains at leastr nodes; the results will then follow from the arguments in theproof

of Theorem 4. LetΩ1 = [0, l] be subdivided into non-overlapping segments of lengthh = ρ

r+1
.

ThenΩ1 hasc = ⌊ (r+1)l
ρ

⌋ whole segments and potentially a fraction of a segment. Any interval

of lengthρ in Ω1 will contain at leastr whole segments and thus we just need to show every

whole segment contains at least one node.

Let ω be a random variable representing the number of empty whole segments. Sinceω is a

nonnegative integer random variable, by Markov’s inequality we knowP(ω > 0) ≤ E(ω), where



E(ω) = c(1− h
l
)n is the expected value ofω. Since1− x ≤ exp(−x), we have

E(ω) = c

(

1−
h

l

)n

≤ c exp

(

−
nh

l

)

≤
(r + 1)l

ρ
exp

(

−
nρ

(r + 1)l

)

(2)

=
(r + 1)l

ρ
exp

(

−
k

r + 1
ln l

)

=
(r + 1)

ρ
l1−

k
r+1 .

Note that in (2), we replacedn by kl ln l
ρ

.

Under the conditions in the first part of the theorem,ρl
k

r+1
−1 → ∞ regardless of the choice

of r ∈ Z≥1. ThusE(ω) → 0 and Theorem 4 indicates that almost all graphs will be⌊ r
2
⌋-robust

for all r ∈ Z≥1 (or equivalently,r-robust for allr ∈ Z≥1). By Lemma 1, almost all graphs will

be r-connected for allr ∈ Z≥1. Similarly, for the second part,E(ω) → 0 as l → ∞ if k andr

satisfy the given conditions, indicating that the graph will be r-robust andr-connected (again,

using Theorem 4).

For the third part, Theorem 5 indicates that almost noG ∈ Gd
n,ρ,l is connected under the given

conditions, and thus almost no graph isr-connected orr-robust for anyr ≥ 1.

V. ROBUSTNESS OFPREFERENTIAL ATTACHMENT NETWORKS

Before discussing the preferential attachment model for complex networks, we start by re-

viewing the following construction method forr-robust graphs from [18], [30].

Theorem 7 ( [18], [30]): Let G = {V, E} be anr-robust graph. Then graph

G ′ = {{V, vnew}, {E , Enew}},

where vnew is a new node added toG and Enew is the edge set related tovnew, is r-robust if

dvnew ≥ r.

The above theorem indicates that to build anr-robust graph withn nodes (wheren ≥ r), we

can start with anr-robust graph of order less thann (such as a complete graph), and continually

add new nodes with incoming edges from at leastr nodes in the existing graph. The theorem

does not specifywhich existing nodes should be chosen as neighbors. When the nodesare

selected with a probability proportional to the number of edges that they already have, this is



known aspreferential-attachmentand leads to the formation of so-calledscale-freenetworks

[1]. Specifically, the construction process in Theorem 7 coincides with theBarab́asi-Albert (BA)

model[1]: start with a network ofr0 nodes and add new nodes to the network one at a time, where

each new node connects tor existing nodes chosen by the preferential-attachment mechanism.

Theorem 8:In the BA model, when the initial network isr-robust, then the generated scale-

free network isr-connected (and has minimum degree at leastr) if and only if the network is

r-robust.

Proof: Note that in the BA model, if there exists some new node which connects to less

than r existing nodes, then the network will have minimum degree less thanr, and so will

be neitherr-connected norr-robust; on the other hand, if all of the new nodes connect tor

existing nodes, then by Theorem 7, the network will ber-robust and thusr-connected (and with

minimum degreer).

To the extent that the BA model is a plausible mechanism for the formation of complex

networks, our analysis indicates that these networks will also facilitate dynamics such as resilient

consensus, provided thatr is sufficiently large when the network is forming.

VI. COMPLEXITY OF DETERMINING DEGREE OFROBUSTNESS INGENERAL GRAPHS

While we focused on random graphs in the previous sections, we now consider the problem of

determining the extent to which anygivengraph is robust. Recall that by Lemma 2, 1-robustness

is equivalent to being 1-connected. Since there exist polynomial time algorithms to determine

graph connectivity [8], 1-robustness can be checked in polynomial time. However, in the rest of

this section we will show that finding whether general graphsare r-robust forr ≥ 2 is coNP-

complete. This is done by showing that a problem closely related to the robustness problem

is NP-complete in general graphs. Before discussing the reduction we need to introduce the

following concepts [8], and define the robustness andr-robustness problems formally.

Definition 9 (Cut and Cut-set):For a graphG = {V, E}, a cut C = (S,V\S) is defined as

a partition of nodes ofG into two nonempty subsetsS ⊂ V and V\S. The cut-set of a cut

C = (S,V\S) is defined as the subset of the edges ofG with one endpoint inS and the other

in V\S.

Definition 10 (Robustness andr-Robustness Problems):Given a graphG, therobustness prob-

lem determines the largest value ofr such thatG is r-robust. Ther-robustness problem is the



decision version of the robustness problem that determineswhether graphG is r-robust for a

given r ∈ Z≥1.

If a graph is notr-robust, then there exist two nonempty and disjoint subsetsof nodesA,B

such that all nodes in these sets have at mostr − 1 neighbors outside their containing sets.

Note that nodes in setX = V\(A ∪ B) can have any number of neighbors outsideX . There

is no apparent way to certify that a graph isr-robust without checking all pairs of disjoint and

nonempty subsets of nodes and showing that at least one set out of each pair isr-reachable.

This is intractable as the number of such subsets is exponential in the size of the input graph.

On the other hand, to certify that a graph isnot r-robust, one only needs to provide a single pair

of disjoint and nonempty subsets of nodes, of which neither set is r-reachable. Therefore, in the

r-robustness problem, the ‘No’ instances (input graphs thatare notr-robust) have certifications

that can be checked in polynomial time, and so ther-robustness problem is in the complexity

classcoNP [3].

The complexity of the robustness problem is equivalent to the complexity of ther-robustness

problem within a factor ofO(logn) (as a binary search can be used for finding the largest

value ofr for which the graph isr-robust). To prove thecoNP-completeness of ther-robustness

problem, we instead show that the complement of ther-robustness problem, which we call the

“ρ-degree cut problem”, isNP-hard. Note that the complement of a decision problem is obtained

by reversing the ‘Yes’ and ‘No’ answers of all input instances. In other words, if problemsP1

andP2 are complements, then the output ofP1 to an input instance is ‘Yes’ if and only if the

output ofP2 to that instance is ‘No’. Therefore, the complement of a problem in NP is in coNP,

and vice versa. Hence, theρ-degree cut problem, formally defined below, is inNP.

Definition 11 (ρ-Degree Cut):Given a graphG = {V, E}, aρ-degree cut is a pair of nonempty

and disjoint subsets of nodesA,B ⊂ V such that each node inA (resp.B) has at mostρ neighbors

outsideA (resp.B), whereρ ∈ Z≥0. The ρ-degree cut problem determines whether the graph

has aρ-degree cut.

It can be shown that if a problem isNP-hard, then its complement iscoNP-hard (see [3] for a

detailed discussion on complexity classesNP andcoNP). Hence, instead of directly showing that

the r-robustness problem iscoNP-complete, we show that its complement, i.e. theρ-degree cut

problem, isNP-complete. Moreover, recall that ther-robustness problem is incoNP; therefore,

knowing that theρ-degree cut problem isNP-complete, it can be concluded that ther-robustness



problem iscoNP-complete. To prove theNP-completeness of theρ-degree cut problem we first

study the hardness of a relaxed version of this problem called therelaxed-ρ-degree cut problem,

defined as follows.

Definition 12 (Relaxed-ρ-Degree Cut):A relaxed-ρ-degree cut in a given graphG is a cut

C = (A,V\A) such that each node of the graph is incident to at mostρ edges in the cut-set,

whereρ ∈ Z≥0. The relaxed-ρ-degree cut problem determines whether there exists a relaxed-

ρ-degree cut in the input graph.

Note that the difference between aρ-degree cut and a relaxed-ρ-degree cut is that in the latter,

we are interested in finding two nonempty sets that are each atmostρ-reachable and that partition

the nodes of the graph, whereas in the former the two sets simply have to be nonempty, at most

ρ-reachable, and disjoint. Both theρ-degree cut problem and the relaxed-ρ-degree cut problem

are in complexity classNP, as they possess certifications for ‘Yes’ instances that canbe checked

in polynomial time. The relaxed-1-degree cut problem is equivalent to a known problem called

the “matching-cut problem” in which the goal is to find whether there exists a cut in the graph

that is also a matching, i.e., no two edges in the cut-set share an end-point [22]. In [22] it was

shown that the matching-cut problem isNP-complete via a reduction from NAE3SAT [25]. By

the equivalence of the relaxed-1-degree cut problem and thematching-cut problem, this shows

the NP-completeness of the relaxed-1-degree cut problem as well.However, in order to prove

the NP-completeness of the 1-degree cut problem (and subsequently, theρ-degree cut problem),

we will need some alterations to the proof in [22]. We will thus start by modifying the reduction

in [22] from NAE3SAT to the matching-cut problem (or relaxed-1-degree cut problem) and then

extend that to prove theNP-completeness of the 1-degree cut problem. We start by defining

NAE3SAT formally [25].

Definition 13 (NAE3SAT):For a set of clauses each containing three literals from a setof

boolean variables inConjunctive Normal Form(CNF), NAE3SAT determines whether there

exists a truth assignment of the variables so that each clause contains at least one ‘True’ and

one ‘False’ literal.

It was shown by Schaefer in [25] that NAE3SAT isNP-complete. Here, we discuss a reduction

from NAE3SAT to the relaxed-1-degree cut problem by constructing a graphG(φ) for any given

CNF formulaφ such thatG(φ) has a relaxed-1-degree cut (i.e.,G(φ) has a cut where each node

of the graph is incident to at most one edge in the cut-set) if and only if φ can be satisfied



Fig. 2. The True-block and False-block in the construction of G(φ). Each block is a complete subgraph with4m+ t nodes.

Fig. 3. Figure (a) demonstrates the variable-gadget for variable xi, and (b) shows the clause-gadget for clausex̄i ∨ xj ∨ xk.

within the NAE3SAT constraints. Let formulaφ consist ofm clausesC1, . . . , Cm, where each

clause contains three literals from the set of variablesX = {x1, . . . , xt}. The construction of

graphG(φ) from a given CNF formulaφ is as follows.

We first build two blocks, where each block is a complete graph of4m + t nodes. The

upper and lower blocks are labeled theTrue-blockandFalse-block, respectively, as illustrated in

Figure 2. We complete the construction ofG(φ) by adding subgraphs representing the variables

and clauses ofφ to these blocks in a carefully chosen way.

The subgraphs to be added to the blocks are of two types: (i) variable-gadgets, and (ii) clause-

gadgets. A variable-gadget is incorporated for each variable xi ∈ X. This gadget contains two

nodes representingxi and x̄i (the binary complement ofxi), each connected to the True and

False-blocks as illustrated in Figure 3-(a). Moreover, foreach clause inφ, a clause-gadget is



Fig. 4. The construction of clausēx1 ∨ x2 ∨ x3 with each literal-node connected to its corresponding variable-node in the

variable-gadgets. The edges within the True and False-blocks have been omitted for clarity.

constructed by connecting three nodes (each representing aliteral of the clause) in addition to

some extra nodes to the True and False-blocks as depicted in Figure 3-(b). Finally, there are

edges, called theintermediate edges, connecting each literal-node in each clause-gadget to its

corresponding variable-node in the variable-gadgets. An example ofG(φ) for x̄1 ∨ x2 ∨ x3 is

demonstrated in Figure 4.

If graphG(φ) has a relaxed-1-degree cut, then there exists a cutC = (A,V\A) that partitions

the nodes ofG(φ) into two setsA andB = V\A such that no node of the graph has more than

one neighbor outside its set. In the following lemmas, we show that this cutC satisfies some

useful properties (all of these lemmas assume that graphG(φ) has a relaxed-1-degree cut and

pertain to the cutC = (A,B) just described). Proofs of all subsequent lemmas and theorems in

this section are given in the Appendix.

Lemma 5:Let T (resp.F ) be the set of all nodes in the True-block (resp. False-block) of

graphG(φ). Then,T ⊆ A or T ⊆ B (resp.F ⊆ A or F ⊆ B).

By the above lemma, cutC cannot go through the True and False-blocks ofG(φ). We assign

‘True’ values to the nodes in the variable and clause-gadgets that are connected to the True-block

by C and ‘False’ values to the nodes that are connected to the False-block byC.

Lemma 6:Cut C = (A,B) has the following two properties:

1) For each variable-gadget, cutC leaves the variable-node and its negation node in opposite

sets, i.e., they have opposite truth assignments.

2) For each clause-gadget, cutC leaves at least one literal-node in setA and one literal-node



in B, i.e., at least one literal-node is assigned ‘True’ and one is assigned ‘False.’

Lemma 7:All literal-nodes have the same truth values as their corresponding variable-nodes.

Using the properties stated in the above lemmas, we obtain the following result.

Lemma 8:The relaxed-1-degree cut problem isNP-complete.

Recall that the relaxed-1-degree cut problem is equivalentto the matching-cut problem that

was shown to beNP-complete in [22]. The difference between the proof we provided here and

the proof in [22] is in the construction of the clause-gadgets; our construction will allow us to

show theNP-completeness of the more general 1-degree cut problem as follows.

We first construct a graphH(φ) by taking three copies ofG(φ) and adding edges to form one

complete subgraph on all nodes in the three True-blocks and another complete subgraph on all

nodes in the three False-blocks. We refer to each of these copies ofG(φ) used in buildingH(φ)

as abox. Figure 5 illustratesH(φ) using the graphG(φ) shown in Figure 4 forφ = x̄1∨x2∨x3.

Using this construction we can now prove the following result.

Theorem 9:The 1-degree cut problem isNP-complete.

Fig. 5. The construction ofH(φ) from the graphG(φ) depicted in Figure 4.

TheNP-hardness of the 1-degree cut problem results in thecoNP-hardness of its complement

problem, i.e., the 2-robustness problem. Since the 2-robustness problem is incoNP, we can

conclude that it iscoNP-complete. We now seek a stronger result, that is, showing that for anyr ∈

Z≥2, the r-robustness problem iscoNP-complete. This requires showing theNP-completeness

of the ρ-degree cut problem for anyρ ∈ Z≥1, and to prove this, we first show that for any

ρ ∈ Z≥1, the relaxed-ρ-degree cut problem isNP-complete. This is done in the following lemma

by making certain modifications to the graphG(φ) built for the NAE3SAT instanceφ (e.g.,

Figure 4).

Lemma 9:For anyρ ∈ Z≥1, the relaxed-ρ-degree cut problem isNP-complete.



Using the above lemma, we can now prove the following stronger result.

Theorem 10:For anyρ ∈ Z≥1, the ρ-degree cut problem isNP-complete.

Knowing that theρ-degree cut isNP-hard for anyρ ∈ Z≥1, we conclude that its complement

problem, i.e., ther-robustness problem for anyr ∈ Z≥2 is coNP-hard. Combining this with the

fact that ther-robustness problem is incoNP gives the following result.

Corollary 3: For anyr ∈ Z≥2, the r-robustness problem iscoNP-complete.

Having established the complexity of the robustness problem, we now turn to the problem of

approximatingthe degree of robustness of graphs. To show that a graph is notr-robust, one needs

to find an(r− 1)-degree cut in that graph. For any given graphG, let OPT(G) be the smallest

nonnegative integerρ such thatG has aρ-degree cut. Suppose that we have a (polynomial-time)

approximation algorithmALG whose input is graphG and whose outputALG(G) guarantees

that graphG has anALG(G)-degree cut. Define theapproximation ratioα of the algorithm to

be such thatALG(G) ≤ αOPT(G) for all graphsG. Observe that since theρ-degree cut problem

is NP-complete, one cannot hope to reach an approximation ratio of α = 1, unlessP = NP.

In the following lemma, we show that it is unlikely to find an approximation algorithm for this

problem with approximation ratio less than 2.

Lemma 10:The ρ-degree cut problem is not approximable within any factor less than 2,

unlessP = NP.

VII. SUMMARY

In this paper, we studied a graph property known as robustness which plays a key role in certain

dynamics such as resilient consensus, contagion and bootstrap percolation. While it iscoNP-

complete to determine the degree of robustness in general graphs, and one can construct worst-

case networks with very large connectivity (and minimum degree) and low robustness, we showed

that the notions of robustness and connectivity coincide inthree common models for complex

networks. In Erdős-Rényi random graphs, we showed thatr-connectivity (and minimum degree)

and r-robustness share the same threshold function. In one-dimensional geometric graphs, we

proved that if the nodes are sufficiently spread apart,r-connectedness is equivalent tor-robustness

(regardless of how the node locations are generated). In theBA model for preferential attachment

networks, we showed that when the initial network is robust,connectivity (and minimum degree)

and robustness are equivalent. These findings indicate thatthose networks possess structure that



makes them conducive to the dynamics described above; the implication of this for other classes

of dynamics is a promising direction for future research.

APPENDIX

A. Proof of Lemma 5

Proof: Since each block is a complete graph with more than three nodes, cutC = (A,B)

cannot separate the nodes in the same block; otherwise, there exists a node in the block that has

at least two neighbors outside its own set.

B. Proof of Lemma 6

Proof: By Lemma 5, there are only two cases to consider: (i) all nodesin both the True

and False-blocks are inA (or in B), and (ii) all nodes in the True-block are inA and all nodes

in the False-block are inB (or vice versa).

In case (i), if there exists a node from a variable-gadget in setB, then that node immediately has

at least two neighbors inA, contradicting the definition of cutC (see Figure 3-(a)). Similarly,

it can be argued as follows that no node of any clause-gadget can be in setB. Referring to

Figure 6, the nodes labeled 1, 2, 3, 7, 8, and 9 cannot be inB since they would then have

at least two neighbors inA. Since nodes 2, 3, 7, and 8 are inA, nodes 4 and 6 cannot be

in B either. Then node 5 should also be inA. Hence, the only possibility is that all nodes in

variable-gadgets and clause-gadgets are inA. This makesB empty and violates the definition

of cut C. Thus, case (i) cannot hold and it only remains to study case (ii).

In case (ii), if both nodes of a variable-gadget are in the same set (sayA), then a node from

the False-block in setB has two neighbors inA (as seen in Figure 3-(a)). This contradicts the

definition of cutC. The only possible cuts through variable-gadgets for this case are shown in

Figure 7, which leave any variable-node and its negation node on opposite sides ofC and thus

concludes the first property in the lemma.

Moreover, in case (ii) suppose all three literal-nodes of a clause-gadget are in setA (the case

that all three literal-nodes of a clause-gadget are inB can be handled via identical arguments).

Since node 5 (in Figure 6) is in setA, then to respect the properties of cutC, at least one

of its neighbors should also lie inA. Without loss of generality due to symmetry, assume that

node 4 is inA. This implies that node 2 is also inA; otherwise, cutC results in a 2-reachable



Fig. 6. All nine nodes in a clause-gadget with labels.

Fig. 7. The only two possible cuts through a variable-gadgetresulting in all nodes having at most one neighbor on opposite

sides of the cut.

set. Finally, since both nodes 1 and 2 are inA, the node in the False-block connected to both

of them has two neighbors inA. This contradicts the definition ofC; thus C cannot leave all

literal-nodes in a clause-gadget in the same set. The only possible cuts through clause-gadgets

for this case are the ones illustrated in Figure 8. It can be seen that none of these six cuts leaves

all three literal-nodes of a clause-gadget on one side of thecut. Hence the second property in

the lemma also holds.

C. Proof of Lemma 7

Proof: First, note that a literal-node has the same truth value as its corresponding variable-

node if and only if they lie on the same side of cutC = (A,B). In the proof of Lemma 6, it



Fig. 8. The six allowed cuts through the clause-gadget shownin Figure 3-(b) that result in two 1-reachable but not 2-reachable

sets.

was shown that the only possible case for the True and False-blocks is the case that all nodes

in the True-block are inA and all nodes in the False-block are inB (or vice versa).

In this case, assume that there exists a variable-nodex in setA such that its corresponding

literal-node lies in setB (the case that the variable-node is inB and the corresponding literal-

node is inA can be analyzed similarly). Then, nodex has the following two neighbors in set

B: its corresponding literal-node and the node in the False-block that it is connected to (see

Figure 4). This contradicts the fact thatA is not 2-reachable and therefore is not possible.

D. Proof of Lemma 8

Proof: We prove this claim by a reduction from NAE3SAT. Specifically, we show that graph

G(φ) has a relaxed-1-degree cut if and only ifφ has a solution within the NAE3SAT constraints.

Suppose thatG(φ) has a relaxed-1-degree cutC = (A,V\A). By the first part of Lemma 6,

cut C has to go through the edges of each variable-gadget as depicted in Figure 7 and leaves each

variable-node and its negation node on opposite sides of thecut, thereby specifying their truth

assignments. Also, by the second part of Lemma 6, the clause-gadgets are cut byC according to

one of the six cases illustrated in Figure 8, which results inhaving at least one ‘True’ and one

‘False’ literal-node in each clause-gadget. Furthermore,note that by Lemma 7, the intermediate

edges are never cut byC. Hence, all the literal-nodes corresponding to the same variable-node

are left in the same set as that variable-node and the negatedliteral-nodes are in the other set.

Consequently, ifG(φ) has a relaxed-1-degree cut, thenφ is satisfiable within the NAE3SAT

constraints.



xi xj xk Cut

T T T no cut

T T F I

T F T II

T F F III

F F T IV

F T F V

F T T VI

F F F no cut

TABLE I

THE TRUTH ASSIGNMENTS CORRESPONDING TO DIFFERENT CUTS IN A CLAUSE-GADGET DEMONSTRATED INFIGURE 8.

On the other hand, ifφ has a solution under the NAE3SAT constraints, then a cutC =

(A,V\A) can be found inG(φ) such that (i) each variable-gadget is cut so that the variable-

node and its negation node are connected to the blocks labeled with their truth values, and (ii)

each clause-gadget is cut according to its truth assignmentas illustrated in Table I. It can be

easily observed that using this cut, no node of graphG(φ) is incident with more than one edge

of the cut-set and henceG(φ) has a relaxed-1-degree cut. This proof of theNP-hardness of the

relaxed-1-degree cut problem, together with the fact that this problem is inNP, shows that the

relaxed-1-degree cut problem isNP-complete.

E. Proof of Theorem 9

Proof: We show that the 1-degree cut problem isNP-hard by showing thatH(φ) has a

1-degree cut if and only ifG(φ) has a relaxed-1-degree cut for any instanceφ of NAE3SAT. It

can be easily seen that ifG(φ) has a relaxed-1-degree cut thenH(φ) also has a relaxed-1-degree

cut (e.g., simply replicate the cut inG(φ) for each box inH(φ)) and thus a 1-degree cut. It

only remains to show ifH(φ) has a 1-degree cut thenG(φ) has a relaxed-1-degree cut. Assume

that setsA,B andX partition the nodes ofH(φ) such that (i)A andB are nonempty, and (ii)

each node inA andB has at most one neighbor outside its own set (i.e.,A, B andX specify

a 1-degree cut).

First, for any clique inH(φ) with at least three nodes, the fact thatA andB are not 2-reachable

implies the following two properties:



1) SetX can only contain zero, one, or all nodes of the clique, and

2) If a node of the clique is inA (resp.B), then no node of that clique is inB (resp.A).

Let T andF denote the set of all nodes in the True and False-blocks of graph H(φ). Several

different scenarios can take place for setsT and F with respect to setsA,B and X . First,

consider the case that bothT andF are subsets ofA (the case that bothT andF are subsets

of B can be analyzed similarly). Since each box ofH(φ) is isomorphic toG(φ), by the same

argument as in the proof of Lemma 6 this scenario is not possible as it would leave setB empty.

Now, by property (2) stated above and without loss of generality due to symmetry, assume that

T ⊆ A∪X andF ⊆ B∪X . If T ⊆ X or F ⊆ X , the same argument as above yields thatA or

B would be empty, respectively. Therefore, by property (1) above, |T ∩X | ≤ 1 and|F ∩X | ≤ 1.

Consequently, there exist at least two boxes inH(φ) whose True-blocks are subsets ofA, and at

least two boxes whose False-blocks are subsets ofB. By the pigeonhole principle, there exists

a box inH(φ), denoted byG ′(φ), such that its True-block is a subset ofA and its False-block

is a subset ofB. We show that no node ofG ′(φ) can be in setX .

Fig. 9. Here, the True-block is a subset ofA, the False-block is a subset ofB and the variable-node corresponding tox̄i is

in X . Figure (a) shows the edges connected to nodex̄i that are cut. In Figure (b), without loss of generality, it isassumed that

nodexi is either inB or X and its incident edges with the other endpoints inA are marked. It can be seen that the node in

the True-block has two adjacent nodes outsideA.

Suppose that there exists a node in a variable-gadget inG ′(φ) that lies inX . Then the two nodes

in the True and False-blocks connected to that node have a neighbor outside their containing sets,

i.e., a neighbor inX (Figure 9-(a)). Moreover, the other variable-node in that variable-gadget

is in A,B or X . In all these cases this node is in a different set from at least one of its two



neighbors in the True and False-blocks (Figure 9-(b)). Hence, there exists at least one node in

A or B that has two neighbors outsideA or B, respectively, contradicting the fact that we are

considering a1-degree cut. Therefore, no node in the variable-gadgets canbe in setX .

Furthermore, observe that since the True-block is a subset of A and the False-block is a

subset ofB, then each variable-node has at least one neighbor outside its containing set. Since

it was assumed that each node inA andB has at most one neighbor outside its set, it follows

that all other neighbors of a variable-node should lie in thesame set as that node. Therefore,

in G ′(φ), the endpoints of all intermediate edges, i.e., the edges connecting literal-nodes in the

clause-gadgets to the corresponding variable-nodes, lie in the same sets. This, in combination

with the fact that none of the variable-nodes inG ′(φ) are inX shows that no literal-node in

any clause-gadget ofG ′(φ) is in X . It only remains to show that the non-literal-nodes in the

clause-gadgets ofG ′(φ), i.e., nodes labeled 2, 3, 4, 6, 7 and 8 as in Figure 6, are not inX either.

By the same argument as for variable-nodes, nodes labeled 2 and 8 cannot lie inX . Also, note

that since the True and False-blocks ofG ′(φ) are subsets ofA andB, respectively, and node 2

(resp. node 8) is either inA or B, then one of the edges connecting node 2 (resp. node 8) to the

True and False-blocks is excised. Therefore, all its other neighbors, i.e., nodes 3 and 4 (resp.

nodes 6 and 7), should lie in the same set as node 2 (resp. node 8). As a result, nodes 3, 4, 6

and 7 cannot be inX . Consequently, no node ofG ′(φ) lies in X .

We have thus shown that ifH(φ) has a 1-degree cut thenG ′(φ) has a relaxed-1-degree cut.

SinceG(φ) andG ′(φ) are isomorphic, graphG(φ) also has a relaxed-1-degree cut. Consequently,

H(φ) has a 1-degree cut if and only ifG(φ) has a relaxed-1-degree cut for any NAE3SAT instance

φ. Hence, the 1-degree cut problem isNP-hard, and thusNP-complete by virtue of being inNP.

F. Proof of Lemma 9

Proof: Recall that in order to show that the relaxed-1-degree cut problem isNP-hard, for

any NAE3SAT instanceφ we constructed a graphG(φ) = {V, E} such thatG(φ) had a relaxed-

1-degree cut if and only ifφ was satisfiable within the NAE3SAT constraints. Here, for any

ρ ∈ Z≥1, we make two modifications toG(φ) to construct graphGρ(φ) = {Vρ, Eρ} so thatGρ(φ)

has a relaxed-ρ-degree cut if and only if the original graphG(φ) has a relaxed-1-degree cut. We

can then conclude that the relaxed-ρ-degree cut problem isNP-hard and thusNP-complete by



virtue of being inNP.

The two modifications to graphG(φ) are: (i) a modification to the nodes in the True and False-

blocks of G(φ), and (ii) a modification to the other nodes ofG(φ), i.e. nodes in the variable

and clause-gadgets. In modification (i), for each nodev in the True-block (resp. False-block) of

G(φ), we addρ − 1 nodes in the False-block (resp. True-block) and connect them to v. Thus,

this step adds a total of2(ρ− 1)(4m+ t) nodes to the graph. In modification (ii), for each node

u in the variable and clause-gadgets ofG(φ) that is not in the True or False-blocks, we add

ρ− 1 nodes in each of the True and False-blocks and connectu to them. This step adds a total

of 2(ρ − 1)(9m + 2t) nodes to the graph. The new graph is calledGρ(φ). Note that the nodes

added to the True and False-blocks ofG(φ) to constructGρ(φ) are connected to all other nodes

in those blocks and hence the True and False-blocks ofGρ(φ) are complete subgraphs (each

containing(4m + t)ρ + (9m + 2t)(ρ − 1) nodes). Figure 10 demonstratesG2(φ) for the graph

G(φ) shown in Figure 4.

Fig. 10. GraphG2(φ) constructed from the graphG(φ) demonstrated in Figure 4. The highlighted nodes and edges are the

ones that exist inG(φ) as well.

It is easy to observe that ifG(φ) has a relaxed-1-degree cutC = (A′,B′), thenGρ(φ) has a

relaxed-ρ-degree cutCρ = (A,B), by assigning the nodes corresponding to those inA′ andB′

in G(φ) to setsA andB in Gρ(φ), respectively. Furthermore, each newly added node in the True

and False-blocks ofGρ(φ) should be assigned to the same set as the rest of the nodes in its

block (recall that by Lemma 5, in the relaxed-1-degree cut problem all the nodes in each of the

True and False-blocks belong to the same subset of nodes). So, it remains to prove the converse

statement.

If graphGρ(φ) has a relaxed-ρ-degree cut, then there exists a cutCρ = (A,Vρ\A) that partitions

the nodes ofGρ(φ) into two nonempty setsA andB = Vρ\A such that no node of the graph has



more thanρ neighbors outside its containing set. Note that since the True (resp. False) block is

a clique with more than2ρ+1 nodes forρ ∈ Z≥1, the relaxed-ρ-degree cut cannot separate the

nodes in the True (resp. False) block.

Next, note that the True and False-blocks ofGρ(φ) cannot both lie in setA (or similarly B).

For if they did, it can be easily checked that except for the nodes labeled 4, 5 and 6 in Figure 6,

if any other node ofGρ(φ) lies in B, then it has at least2ρ neighbors outside its containing set

in the True and False-blocks and hence violates the definition of cut Cρ. Now nodes labeled 4

and 6 cannot lie inB, since they have2ρ neighbors in setA. Consequently, node 5 should also

lie in A which makesB empty and hence is not allowed.

Without loss of generality, we now assume that the True-block of Gρ(φ) is a subset ofA and

its False-block is a subset ofB. In the following, we prove that in this case, cutCρ has three

properties.

First, similar to the relaxed-1-degree cut problem, both a variable-node and its negation node

in a variable-gadget cannot lie in setA (resp.B); otherwise, the node in the False-block (resp.

True-block) connected to both these nodes hasρ+ 1 neighbors outside its set.

Second, since a variable-node and its negation node in a variable-gadget lie in different sets,

each of these nodes are incident withρ edges in the cut-set. Therefore, no other edge connected

to these nodes can be excised by cutCρ. In particular, the intermediate edges connecting literal-

nodes in clause-gadgets to their corresponding variable-nodes should be left uncut.

Third, we argue that the three literal-nodes in a clause-gadget cannot be in the same subset of

nodes, sayA. Suppose that the literal-nodes corresponding to nodes labeled 1 and 9 in Figure 6

are in setA. Due to the same argument as for variable-gadgets, the nodesthat share a neighbor

in the True and False-blocks with these nodes, i.e., the nodes labeled 2 and 8 in Figure 6, should

lie in B. Then nodes labeled 3, 4, 6 and 7 in Figure 6 should also be inB. Now if node 5 in

Figure 6 lies inA, then it has at leastρ + 1 neighbors outside its containing set, which is not

admissible.

The above three properties forceCρ to partition the nodes ofGρ(φ) into two setsA andB

such that setsA′ = V ∩ A andB′ = V ∩ B are nonempty and partition the nodes ofG(φ) into

one of the forms shown in Figures 7 and 8, without cutting through the True or False-blocks

of G(φ). Therefore, if graphGρ(φ) has a relaxed-ρ-degree cut thenG(φ) has a relaxed-1-degree

cut and hence the relaxed-ρ-degree cut problem isNP-hard.



G. Proof of Theorem 10

Proof: As we did in theNP-hardness proof of the 1-degree cut problem, for theρ-degree cut

problem we build graphHρ(φ) by taking2ρ+ 1 copies ofGρ(φ) and adding edges to construct

complete subgraphs on all the nodes in the True and False-blocks of these2ρ+1 copies. Again,

each copy ofGρ(φ) in Hρ(φ) is called a box.

We prove that theρ-degree cut problem isNP-hard by showing thatHρ(φ) has aρ-degree

cut if and only if Gρ(φ) has a relaxed-ρ-degree cut. It is not hard to see that ifGρ(φ) has a

relaxed-ρ-degree cut, thenHρ(φ) has aρ-degree cut and hence it remains to show the converse

statement also holds.

Assume thatHρ(φ) has aρ-degree cut, and that setsA, B andX partition the nodes ofHρ(φ)

with A andB nonempty and at mostρ-reachable. It can be easily observed that the following

generalized version of the two properties in the proof of Theorem 9 holds for cliques with at

least2ρ+ 1 nodes:

1) SetX can contain up toρ nodes or all nodes of the clique, and

2) If a node of the clique is inA (resp.B), then no node of that clique is inB (resp.A).

We denote the True and False-blocks ofHρ(φ) by T andF , respectively. As in the proof

of Theorem 9, it can be argued that the only possible cases forT andF areT ⊆ A ∪ X and

F ⊆ B ∪ X , or T ⊆ B ∪ X andF ⊆ A ∪ X . The analysis of the latter case is removed due to

symmetry. The True-block cannot be a subset ofX , as it would leave setA empty. Similarly,

the False-block cannot be a subset ofX , as it would leave setB empty. Thus by property (1),

|T ∩ X | ≤ ρ and so there existρ+ 1 boxes inHρ(φ) whose True-blocks are subsets ofA. The

same argument holds for the False-blocks of the boxes inHρ(φ). Consequently, there is a box in

Hρ(φ) whose True and False-blocks are subsets ofA andB, respectively. This box is denoted

by G ′
ρ(φ). We show that no node inG ′

ρ(φ) can lie in setX .

Suppose that a node in a variable-gadget ofG ′
ρ(φ) lies in X . Regardless of the set the other

node in that variable-gadget is in, either the node in the True-block or the one in the False-block

to which both these variable-nodes are connected hasρ + 1 neighbors outside its set, which is

not allowed (see Figure 11 for an illustration whenρ = 2).

Moreover, since the True and False-blocks ofG ′
ρ(φ) are subsets ofA and B, respectively,

each variable-node hasρ neighbors outside its set and hence cannot afford to be connected



Fig. 11. The True and False-blocks are subsets ofA andB, respectively, and the variable-node corresponding tox̄i is in X .

Figure (a) shows the edges incident to nodex̄i that are excised. In Figure (b), without loss of generality,it is assumed that node

xi is either in setB or X and the edges that connect the nodes inA to it are depicted. Figure (c) demonstrates another edge

that connects a node inA that is in the True-block to a node inB that is in the False-block. It can be seen that the node in the

True-block connected to both the nodes in the variable-gadget has three neighbors outside its set.

to another node outside its set. Therefore, the intermediate edges connecting literal-nodes to

their corresponding variable-nodes cannot be excised. This in combination with the fact that

no variable-node is inX shows that no literal-node in any clause-gadget is inX . Also, by the

same argument provided for variable-gadgets, it can be shown that the nodes labeled 2 and 8 in

Figure 6 cannot lie in setX . Moreover, the nodes labeled 2, 3 and 4 in Figure 6 (resp. nodes

labeled 6, 7 and 8) should lie in the same set; otherwise, node2 (resp. node 8) has more thanρ

neighbors outside its set. Thus, no node in any clause-gadget can be inX . As a result, no node

in G ′
ρ(φ) is in X.

Thus, if Hρ(φ) has aρ-degree cut, thenG ′
ρ(φ) and henceGρ(φ) has a relaxed-ρ-degree cut,

due to the fact thatG ′
ρ(φ) andGρ(φ) are isomorphic. Therefore, the converse statement is proved

which concludes theNP-hardness of theρ-degree cut problem. Since theρ-degree cut problem

is in NP, it can be concluded that it isNP-complete.

H. Proof of Lemma 10

Proof: Assume that some polynomial-time algorithmALG provides an approximation ratio

1 < α < 2 for all graphsG. Consider the set of connected graphs that have a 1-degree cut; on

any graphG from this set, the output of the algorithm must satisfyALG(G) ≤ αOPT(G) < 2,

i.e.,ALG(G) = 1. Thus, given any connected graphG, the algorithm would outputALG(G) = 1



if and only if the graph has a1-degree cut, contradicting the fact that this is anNP-hard problem

(as shown in Theorem 9). Therefore, an approximation ratio less than 2 is not obtainable for the

ρ-degree cut problem unlessP = NP.

Remark 3:Note that this proof holds for any integer-valued optimization problem whose

decision version isNP-hard with parameter equal to1.
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