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Abstract— The consensus problem with general linear dy-
namics and communication delays is investigated. An event-
triggered consensus protocol is proposed, where each agent
implements a model of the decoupled dynamics of its neighbors.
This approach not only avoids the need for continuous commu-
nication between agents but also provides a decentralized and
asynchronous method for transmission of information in the
presence of time-varying communication delays. This method
gives more flexibility for scheduling information broadcast-
ing compared to periodic and sampled-data implementations.
Lower-bounds on the inter-event times are computed and shown
to be positive in order to avoid Zeno behavior.

I. INTRODUCTION

Cooperative control of multi-agent systems is an ac-
tive research area with broad and relevant applications in
commercial, academic, and military areas [1]. Design of
decentralized and scalable control algorithms provides the
necessary coordination for a group of agents to outperform
a single or a number of systems operating independently.
In scenarios where communication among agents is limited,
decentralized computation of the time instants that each agent
needs to transmit relevant information is also necessary.

Consensus with limited communication has been studied
using the sampled-data (periodic) approach [2], and [3]. An
important drawback of periodic transmission is that it re-
quires synchronization between the agents, that is, all agents
need to transmit their information at the same time instants
and, in some cases, it requires a conservative sampling period
for worst case situations.

In the present paper, in lieu of periodic approaches, we
use an asynchronous communication scheme based on event-
triggered control strategies and we consider agents that are
described by general linear models and subject to commu-
nication delays. In the context of event-triggered control,
measurements are not transmitted periodically in time but
they are triggered by the occurrence of certain events. In
event-triggered broadcasting [4], [5], [6], [7], and [8], a
subsystem sends its local state to the network only when it is
necessary, that is, only when a measure of the local subsys-
tem state error is above a specified threshold. Event-triggered
control strategies have been used for stabilization of multiple
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coupled subsystems as in [9], and [10] and in other multi-
agent applications [11]. Consensus problems have also been
studied using these techniques [12], [13], [14], [15], [16].
Event-triggered control provides a more robust and efficient
use of network bandwidth. Its implementation in multi-agent
systems also provides a highly decentralized way to schedule
transmission instants which does not require synchronization
compared to periodic sampled-data approaches.

Consensus problems where all agents are described by
general linear models have been considered by different
authors [17], [18], [19], [20], [21], and [22]. In these papers
it is assumed that continuous communication between agents
is possible.

Event-triggered consensus of agents with linear dynamics
and limited communication was recently explored in [23]
and [24]. In our previous work [25] and [26] we proposed
a novel approach in which each agent implements models
of the decoupled dynamics of each one of its neighbors and
uses the model states to compute the local control input. This
approach offered better performance than Zero-Order-Hold
(ZOH) approach used in [23] and [24] where the updates
from neighbors are kept constant by the local agent. A similar
model-based framework was proposed in [27] where only
constant thresholds were used. In this paper we follow a
similar approach as in [25], [26]. One difference with respect
to those papers is that the local control input is based on
the local state and model states of neighbors rather than on
model states of all, local agent and neighbors.

The main contribution of the present paper with respect
to previous work [25], [26] is the design of events in the
presence of communication delays while in those papers
delays were assumed to be negligible. Decentralized event
thresholds that guarantee practical consensus and strictly pos-
itive inter-event times are designed in this paper. The lower-
bounds on the inter-event time intervals are independent of
the particular system trajectories, therefore they hold for any
two consecutive local events.

The remainder of the paper is organized as follows.
Section II provides a brief background on graph theory and
describes the problem. Section III gives a result assuming
continuous communication which will be used throughout
the document. Design of decentralized event thresholds
which guarantee positive inter-event times is addressed in
Section IV for the case of no communication delay. Sec-
tion V extends this approach in order to consider time-
varying, in a range, communication delays. Section VI
presents an example and Section VII concludes the paper.
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II. PRELIMINARIES

A. Graph Theory

Consider a graph G={V, E} consisting of a set of vertices
or nodes V = {1, ..., N} and a set of edges E . An edge
between nodes i and j is represented by the pair (i, j) ∈ E .
A graph G is called undirected if (i, j) ∈ E ⇔ (j, i) ∈ E
and the nodes are called adjacent. The adjacency matrix A
is defined by aij = 1 if the nodes i and j are adjacent
and aij = 0 otherwise. If (j, i) ∈ E , then j is said to be
a neighbor of i. The set Ni is called the set of neighbors
of node i, and Ni is its cardinality. A node j is an element
of Ni if (j, i) ∈ E . A path from node i to node j is a
sequence of distinct nodes that starts at i and ends at j,
such that every pair of consecutive nodes is adjacent. An
undirected graph is connected if there is a path between
every pair of distinct nodes. The Laplacian matrix L of G is
defined as L = D −A where D represents the degree matrix
which is a diagonal matrix with entries dii =

∑

j∈Ni
aij . For

undirected graphs, L is symmetric and positive semi-definite.
L has zero row sums and, therefore, zero is an eigenvalue of
L with associated eigenvector 1N (a vector with all entries
equal to one), that is, L1N = 0. If an undirected graph is
connected then L has exactly one eigenvalue equal to zero
and all its non-zero eigenvalues are positive; they can be set
in increasing order λ1(L) < λ2(L) ≤ λ3(L) ≤ ... ≤ λN (L),
with λ1(L) = 0.

Lemma 1: Let L be the symmetric Laplacian of an undi-
rected and connected graph. Then, consensus is achieved if
and only if

V = ξT L̂ξ = 0, (1)

where L̂ = L⊗Q, Q ∈ R
n×n is a symmetric positive definite

matrix, ξ(t) =
[

ξ1(t)
T ξ2(t)

T . . . ξN (t)T
]T

, and ξi ∈ R
n.

B. Problem Statement

Consider a group of N agents with fixed communication
graphs and fixed weights. Each agent can be described by

ẋi(t) = Axi(t) +Bui(t), i = 1...N, (2)

with

ui(t) = cF
∑

j∈Ni

(xi(t)− yj(t)), i = 1...N, (3)

where xi ∈ R
n is the state of agent i, ui ∈ R

m is its control
input. The matrices A ∈ R

n×n and B ∈ R
n×m. F and c

are design parameters that are defined below. The variables
yj ∈ R

n represent a model (or estimate) of the jth agent’s
state using the decoupled dynamics:

ẏj(t) = Ayj(t), j = 1...N. (4)

Every agent in the network implements a model of itself
yi(t) and also models of its neighbors yj(t). The model state
yi(t) is not used by agent i for control since the real state is
locally available but it is used to trigger local events. Local
events for agent i are defined as follows. When an event
is triggered, agent i will transmit its current state xi to its
neighbors. For negligible communication delays, agent i and
its neighbors will all update their local models yi(t) at the

same time instant. Since agent i and its neighbors use the
same measurements to update the models, say, xi(tki

) and
the model dynamics (4) represent the decoupled dynamics
where all agents use the same state matrix, then the model
states yi(t) implemented by agent i and by its neighbors
are the same. In the presence of communication delays the
previous statement will not hold and we will differentiate
between yii(t), the model state of agent i as seen by agent
i, and yij(t), the model state of agent i as seen by agents j,
j ∈ Ni. More details concerning communication delays are
presented in Section V.

The model update process is similar for all agents i =
1, ..., N . The local control input (3) is decentralized since
it only depends on local information, that is, on the state
of the local agent and on the model states of its neighbors.
Continuous access to the states of neighbors is not needed.
This approach can be seen as a generalization of the sample-
data approach where Zero-Order-Hold (ZOH) models are
used. However, because we consider unstable trajectories in
general, the choice of ZOH models does not provide a good
performance when considering general linear dynamics as it
was in the case of single integrators [12], [13].

Note that the difference between the agent dynamics (2)
and our proposed models (4) is given by the input term in (2)
and this input decreases as the agents approach a consensus
state. It can also be seen that in the particular case when
systems (2) represent single integrator dynamics, then our
models degenerate to ZOH models as in [12], [13].

III. CONSENSUS WITH CONTINUOUS MEASUREMENTS

Let us assume in this section that continuous communica-
tion between agents is possible, then (3) is given by:

ui(t) = cF
∑

j∈Ni

(xi(t)− xj(t)), i = 1...N. (5)

Assume that the pair (A,B) is controllable. Then, for α > 0
there exists a symmetric and positive definite solution P to

PA+ATP − 2PBBTP + 2αP < 0. (6)

Let

F = −BTP (7)

c ≥ 1/λ2. (8)

Theorem 1: Assume the pair (A,B) is controllable and
the communication graph is connected and undirected. De-
fine F and c as in (7) and (8). Then the following symmetric
matrix

L̄ = L̂Ac +AT
c L̂ (9)

has only n eigenvalues equal to zero and the rest of its eigen-
values are negative. In addition, the eigenvectors associated
with its n zero eigenvalues belong to the subspace spanned
by the eigenvectors associated with the n zero eigenvalues
of L̂, where L̂ = L ⊗ P , Ac = Ā + B̄, Ā = IN ⊗ A,
B̄ = cL ⊗BF .

Proof. See [25] for proof.
Lemma 2: Assume the pair (A,B) is controllable and the

communication graph is connected and undirected. Then,
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protocol (5), with F and c defined in (7) and (8), solves the
consensus problem for agents described by (2). Furthermore,
the Lyapunov function defined by V = xT L̂x has a time
derivative along the trajectories of (2) with inputs (5) given
by V̇ = xT L̄x.

From Theorem 1 it can be seen that V̇ is negative when the
overall system is in disagreement and is equal to zero only
when the corresponding states are in total agreement. In the
latter case we also have V = 0, see Lemma 1. Different
from consensus with single integrators, where the agents
converge to a constant value, here it is only required that the
difference between states of agents tends to zero, regardless
of the particular response of the systems.

IV. DECENTRALIZED EVENT TRIGGERED CONSENSUS

In this section we consider the case when agents use event-
triggered communication strategies in order to reduce the
frequency of transmissions. It is assumed in this section that
communication delays are negligible. We derive decentral-
ized thresholds that depend only on local information and
can be measured and applied in a decentralized way. Lower-
bounds on the inter-event times for each agent are also deter-
mined which exclude Zeno phenomena. Zeno phenomena in
event-triggered control refers to the occurrence of an infinite
number of triggering events in a finite time interval. Instead
of c, the new coupling factor c1 is now used in the inputs
(3).

Define ei(t) = yi(t) − xi(t), x =
[

xT
1 . . . xT

N

]T
, y =

[

yT1 . . . yTN
]T

, e =
[

eT1 . . . eTN
]T

.
Theorem 2: Assume the pair (A,B) is controllable and

the communication graph is connected and undirected. De-
fine F in (7) and c1 = c + c2 where c ≥ 1/λ2 and c2 > 0.
Then agents (2) with inputs (3) achieve a bounded consensus
error where the difference between any two states is bounded
by

limt→∞ ‖xi(t)− xj(t)‖
2 ≤ Nη

βλmin(P ) (10)

for i, j = 1, ..., N , if the events are triggered when

kee
T
i PBBTPei > σkzz

T
i PBBTPzi + η, (11)

where 0 < σ < 1, η > 0, β =
λmin 6=0(−L̄)

λmax(L̂)
> 0,

ke = Ni(
c−c2
bi

+ c(N − 1)(bi +
1
bi
))

kz = 2c2 − (c− c2)biNi
(12)

and

zi =
∑

j∈Ni

(xi − yj) . (13)

The parameter bi is given by 0 < bi <
2c2

Ni(c−c2)
if c > c2,

and bi > 0 otherwise. Furthermore, the agents do not exhibit
Zeno behavior and the inter-event times tki+1−tki

for every
agent i = 1, ..., N are bounded by the positive times τi, that
is

τi ≤ tki+1 − tki
(14)

where

τi =
ln
[

( η
kτ
)1/2 + 1

]

‖A‖
, (15)

kτ = ke
∥

∥PBBTP
∥

∥

(

zi,max ‖cBF‖

‖A‖

)2

, (16)

and zi,max represents a bound on zi(t), that is, ‖zi(t)‖ ≤
zi,max.
Sketch of Proof. By implementing the coupling factor c1 =
c+c2 in (3), we can write (2)-(3) in compact form as follows:

ẋ = (Ā+ B̄D)x+ B̄Ay = (Ac + B̄2)x+ B̄Ae (17)

where B̄D = c1D ⊗ BF and B̄A = −c1A ⊗ BF , B̄1 =
c1L ⊗BF , B̄2 = c2L ⊗BF .

Consider the candidate Lyapunov function V = xT L̂x and
evaluate the derivative along the trajectories of systems (2)
with inputs (3). Assume that bi = b for simplicity of notation
(note that we can always select b = min(bi)). We can express
V̇ as follows:

V̇ = xT L̂
(

(Ac + B̄2)x+ B̄Ae
)

+
(

(Ac + B̄2)x+ B̄Ae
)T

L̂x

= xT L̄x+ 2
∑N

i=1

[

−c2
∑

k∈Ni
(xi − xk)

T

PBBTP
∑

j∈Ni
(xi − xj)

+ c1
∑

k∈Ni
(xi − xk)

TPBBTP
∑

j∈Ni
ej

]

(18)

After several manipulations and using the properties of
undirected graphs it is possible to write

V̇ ≤ xT L̄x+
∑N

i=1

[

−kzz
T
i PBBTPzi

+ kee
T
i PBBTPei

] (19)

When threshold (11) holds, say, at time tki
then the error

resets to zero, that is, ei(tki
) = 0, since yi(tki

) = xi(tki
).

This means that kee
T
i (tki

)PBBTPei(tki
) = 0; then the

expression kee
T
i PBBTPei ≤ σkzz

T
i PBBTPzi + η holds.

Consequently,

V̇ ≤ xT L̄x+
∑N

i=1

[

(σ − 1)kzz
T
i PBBTPzi+η

]

≤ xT L̄x+Nη
(20)

Furthermore, it can be shown that

V (t) ≤
(

V (0)− Nη
β

)

e−βt + Nη
β . (21)

and

λmin(P ) ‖xi − xj‖
2 ≤

(

V (0)− Nη
β

)

e−βt + Nη
β . (22)

Finally, the difference between any two states can be
bounded as in (10).

In order to prove that the inter-event times are lower
bounded by a positive constant we consider the following

‖ei(t)‖ ≤
zi,max ‖cBF‖

‖A‖

(

e‖A‖t − 1
)

. (23)

for t ∈ [tki
, tki+1). We use (23) to analyze the growth of the

term kee
T
i PBBTPei in the time interval t ∈ [tki

, tki+1)

keei(t)
TPBBTPei(t) ≤ kτ

(

e‖A‖(t−tki
) − 1

)2 (24)

where kτ was defined in (16). We can see that the
time it takes kee

T
i PBBTPei to grow from zero to

σkzz
T
i PBBTPzi + η after the last event at time tki

is no
smaller than the time it takes the last expression in (24)
to reach η. Then we solve for the time τi in the following
equation, where τi represents a lower bound on the inter-
event-times, i.e. τi ≤ tki+1 − tki

,
(

e‖A‖τi − 1
)2

=
η

kτ
. (25)
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Since the right hand side of (25) is positive we obtain:

e‖A‖τi =

(

η

kτ

)1/2

+ 1 (26)

Note that the right hand side of (26) is strictly greater than
one. Solving for the time τi > 0 we obtain (15) which shows
that the inter-event times are strictly positive and we can
guarantee that Zeno behavior does not occur at any node. •

Remark 1. The design parameter η provides a tradeoff
between performance as measured by the consensus error
(10) and the bound on the inter-event intervals (15). Also
note that the variables used to compute the threshold (11),
which define the events at node i, are available locally.

Remark 2. Note that the triggering of a local event by agent
i, i.e. the transmission of a measurement xi(tki

), does not
change the local control input ui since ui is not a function
of yi. The transmission of a new measurement updates the
control inputs of neighbor agents and for the local agent, it
only resets its local state error ei.

V. DECENTRALIZED EVENT TRIGGERED CONSENSUS

WITH COMMUNICATION DELAYS

In this section we consider the existence of time-varying
but bounded communication delays. Since the measurement
updates will be delayed, the neighbors of an agent i will
have a version of agent i’s model state that it is different
than agent i’s version. It is necessary to distinguish between
the model state as seen by the local agent and as seen by its
neighbors. Define the dynamics and update law of the model
state of agent i as seen by agent i as

ẏii(t) = Ayii(t), yii(tki
) = xi(tki

). (27)

The measurement xi(tki
) is transmitted by agent i at time

tki
and will arrive to agents j, j ∈ Ni, at time tki

+ di(tki
).

Define the dynamics and update law of the model state of
agent i as seen by agent j, j ∈ Ni, as

ẏij(t) = Ayij(t),
yij(tki

+ di(tki
)) = fd(xi(tki

), di(tki
))

(28)

where tki
represents the update instants triggered by agent

i and di(tki
) represents the communication delay associated

to the triggering instant tki
.

Define a positive and constant upper bound on the com-
munication delays by d ≤ τ , that is, di(tki

) < d for any
triggering instant tki

and for i = 1, ..., N , where τ represents
a lower-bound on the inter-event times of any agent and
it will be computed later in this section. Assume that the
current delay is known to the receiving agents, for instance,
by applying time-stamping techniques.

Since both, yii and yij , use the same state matrix for their
continuous evolution between their corresponding update
instants, then we define

fd(xi(tki
), di(tki

)) = eAdi(tki
)xi(tki

). (29)

By definition, we have that the following local triggering
event will occur at time tki+1 ≥ tki

+ d, this means that
yii(tki

+ di(tki
)) = eAdi(tki

)xi(tki
) because no other local

event has been triggered since time instant tki
. Therefore,
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Fig. 1. Relation between state xi, model states yii, yij , and corresponding
errors eii, eij .

we have that yii(t) 6= yij(t) for t ∈ [tki
, tki

+ di(tki
)) and

yii(t) = yij(t) for t ∈ [tki
+ di(tki

), tki+1).
Define the state errors

eii(t) = yii(t)− xi(t), (30)

eij(t) = yij(t)− xi(t). (31)

Note that eii(tki
) = 0 and eij(t) = eii(t), for t ∈ [tki

+
di(tki

), tki+1). These relations are pictured in Fig. 1.
Also define ζ =

[

eT11 . . . e
T
NN

]T
∈ R

nN and ζd =
[

eT1j1 . . . e
T
NjN

]T
∈ R

nN , where the components eiji in ζd
represent the errors defined in (31), that is, the error of agent
i as seen by agents ji, ji ∈ Ni.

The dynamics of every agent in (2) with communication
delays captured by the new input definitions (which are
functions of delayed model states yji):

ui(t) = c1F
∑

j∈Ni

(xi(t)− yji(t)), i = 1...N, (32)

can be written in compact form as follows:

ẋ = (Ac + B̄)x+ B̄Aζd (33)

where the coupling strength c1 = 2c has been used.
Note that if we follow the same analysis as in Theorem

2 we can arrive at a similar expression to (19) involving the
local control inputs zi and the delayed errors eij . This will
create a major difficulty in designing the local events since
the local agent i does not have access to the errors eij as
seen by its neighbors. More importantly, the local agent is
not able to reset the error eij but only the local error eii.

The following theorem provides a method to design local
events in the presence of communication delays and using
the local state errors eii.

Theorem 3: Assume the pair (A,B) is controllable and
the communication graph is connected and undirected. De-
fine F in (7) and c1 = 2c where c ≥ 1/λ2. Then agents (2)
with inputs (32) achieve, in the presence of communication
delays di < d, a bounded consensus error where the
difference between any two states is bounded by (10) for
i, j = 1, ..., N , if the events are triggered when

kAδi > σzTi PBBTPzi + η (34)
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where 0 < σ < 1,

zi =
∑

j∈Ni

(xi − yji) , (35)

δi = eTii(e
Ad)T eAdeii+2km

∥

∥eAdeii
∥

∥ (e‖A‖d−1)
+ k2m(e‖A‖d − 1)2,

(36)

η = kAk
2
m(

∥

∥eAd
∥

∥+ 1)2(e‖A‖d − 1)2, (37)

km =
zi,max‖cBF‖

‖A‖ , and kA ≥
∥

∥(A⊗ P )B̄A

∥

∥. Furthermore,
the agents do not exhibit Zeno behavior and the inter-event
times tki+1 − tki

for every agent i = 1, ..., N are bounded
by the positive times τ = d, that is

d ≤ tki+1 − tki
. (38)

Proof. Since the only condition on the design parameter c2
is c2 > 0 we made the choice c2 = c (which makes c1 = 2c)
in order to simplify the following analysis which addresses
the case of communication delays.

Consider the candidate Lyapunov function V = xT L̂x and
evaluate the derivative along the trajectories of systems (2)
with inputs (32).

V̇ = xT L̂
(

(Ac + B̄)x+ B̄Aζd
)

+
(

(Ac + B̄)x+ B̄Aζd
)T

L̂x.
(39)

It can be shown that (39) can be written as

V̇ = xT L̄x+ 2c
∑N

i=1

[

−zTi PBBTPzi

+
∑

k∈Ni
eTkiPBBTP

∑

j∈Ni
eji

] (40)

where eji represents the state error of agent j as seen by
agent i for j ∈ Ni. The last term in (40) satisfies

2c
∑N

i=1

∑

k∈Ni
eTkiPBBTP

∑

j∈Ni
eji

= ζTd (A⊗ P )B̄Aζd ≤ kAζ
T
d ζd.

(41)

Define νi = yij − yii, then we have

eij = yij − xi = yij − (yii − eii) = νi + eii. (42)

The term νi(t) is piece-wise continuous defined as follows:

νi(t) =

{

eA(t−tki
)eii(t

−
ki
), t ∈ [tki

, tki
+ di(tki

))
0, t ∈ [tki

+ di(tki
), tki+1)

(43)

The initial condition in (43) is obtained by simply realizing
that νi(tki

) = yij(tki
) − yii(tki

) = yii(t
−
ki
) − xi(t

−
ki
) =

eii(t
−
ki
), (the local error just before it resets to zero), since

the local model yii is updated using xi(tki
) and yij(tki

) =
yij(t

−
ki
) = yii(t

−
ki
). Define ν = [νT1 . . . νTN ]T and we have

that

ζd = ν + ζ. (44)

Consider the worst case scenario (greatest difference between
ζd and ζ) given when all agents transmit at the same instant
tk and the greatest possible delay d− = d − ǫ, for a small
ǫ > 0, is present. Then, we have the following

ζTd (tk + d−)ζd(tk + d−)

= ζT (t−k )(e
Ād)T eĀdζ(t−k ) + 2ζT (tk + d−)eĀdζ(t−k )

+ ζT (tk + d−)ζ(tk + d−)

=
∑N

i=1

[

eTii(t
−
k )(e

Ad)T eAdeii(t
−
k )

+ 2eTii(tk+d−)eAdeii(t
−
k )+eTii(tk+d−)eii(tk+d−)

]

≤
∑N

i=1

[

eTii(t
−
ki
)(eAd)T eAdeii(t

−
ki
)

+ 2km
∥

∥eAdeii(t
−
ki
)
∥

∥ (e‖A‖d − 1) + k2m(e‖A‖d − 1)2
]

(45)

where eTii(t
−
ki
) represents the error just before the update

instant, i.e., before it is reset to zero because of the update
at time tki

. On the other hand, eii(tki
+ d−) represents the

error after the update at time tki
and it can only be estimated

using (23).
Since the worst case is given by the maximum delay d−

we can use (45) and the current local error eii(t) to bound
the delayed error eij(t + d) for any time t > 0 and the
following holds:

V̇ ≤ xT L̄x+
N
∑

i=1

[

−2czTi PBBTPzi + kAδi
]

. (46)

Then, the local thresholds can be defined based on the local
errors eii(t) as in (34) with δi given by (36). When an event
is triggered the error eii is reset to zero and the following
holds

V̇ ≤ xT L̄x+ 2c
∑N

i=1(σ − 1)zTi PBBTPzi+Nη
≤ xT L̄x+Nη

(47)

and the bound (10) on the difference between any two states
follows.

The final task is to determine η such that the inter-
event times satisfy (38) for a given d. At time tki

we
have eii(tki

) = 0 and δi(tki
) = k2m(e‖A‖d − 1)2. The

error response eii(t) can be bounded using (23) for t ∈
[tki

, tki+1). During the same time interval we can use (23)
to obtain the following

kA‖δi‖≤kA

[

k2m
∥

∥eAd
∥

∥

2
(e‖A‖(t−tki

) − 1)2

+ 2k2m
∥

∥eAd
∥

∥(e‖A‖(t−tki
)−1)(e‖A‖d−1)

+ k2m(e‖A‖d − 1)2
]

.

(48)

Similarly, it can be seen that the time it takes kAδi to grow
from kAk

2
m(e‖A‖d−1)2 to σzTi PBBTPzi+η is no smaller

than the time it takes the right hand side of (48) to grow
from kAk

2
m(e‖A‖d − 1)2 to η. Then, in order to guarantee

that the inter-event times are lower-bounded by τ = d >
di we find the term η using (48) when t − tki

= d and
we obtain (37) which guarantees that Zeno behavior does
not occur at any node since the inter-event times are strictly
positive and lower-bounded by d as in (38). Furthermore, by
design of τ = d we also guarantee that no additional event
is triggered by the local agent before the current transmitted
measurement is received by the neighbor agents, i.e., tki+1 >
tki

+ di(tki
), for i = 1, ..., N . •

VI. EXAMPLE

Consider a decentralized model-based implementation of
four second order agents (N = 4, n = 2) with unstable
linear dynamics given by:

A=

[

0.38 −2
1.62 0.08

]

, B=

[

0.45
−1.87

]

, P =

[

0.5352 −0.1804
−0.1804 0.4009

]

where the matrix P is obtained by solving (6). The upper-
bound on the communication delays is d = 0.01 seconds;
The nonzero elements of the undirected adjacency matrix
are a12 = a23 = a34 = 1 (the corresponding symmetric
elements are also equal to one). Fig. 2 shows the response of
the agents and the models. Fig. 3 shows that the disagreement
between agents converge to a bounded region; it also shows
the communication time instants for every agent.
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Fig. 2. Top: States of four agents in Example 1. Bottom: States of
corresponding models yij .
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Fig. 3. First two plots show the disagreement for the dimensions of the
states of the agents. The last plot shows the transmission instants for each
one of the four agents.

VII. CONCLUSIONS

Event-based consensus protocols for linear systems with
limited communication and transmission delays have been
studied. Decentralized events have been designed in order
for each agent to broadcast measurement updates only when
it is necessary, that is, when a function of discrepancy
between real and model states is greater than a specified
threshold. The decentralized event triggered technique allows
each agent to transmit information based on its own decisions
and synchronization of updates is not required as in periodic
approaches. The use of models and event-based techniques
provides a formal framework that reduces communication
and provides freedom to each agent in order to determine its
own broadcasting instants.
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