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Abstract— In this paper, a new approach for designing a
robust Discrete-time Sliding Mode Control (DSMC) is proposed
for the uncertain discrete-time systems. To this end, an LMI
approach is used to develop a new framework to design the
linear sliding functions which are linear to the state. The
LMI approach proposed in this paper is designed to deal
with uncertain systems (matched and unmatched). It is well-
known that the finite sampling rate for the discrete-time systems
leads to this fact that state move within a bound around the
predetermined sliding surface referred to as quasi-sliding mode
band. In this paper, this matter will be discussed in a new point
of view and an innovative method will be used to obtain the
ultimate bound on the system state.

I. INTRODUCTION

Sliding mode control (SMC) is, basically, referred to as a
nonlinear control strategy and, in addition, a special kind of
Variable structure control (VSC) which changes its structure
automatically in order to improve the dynamics performance.
The basic idea of SMC is to drive the state trajectories into
a predetermined sliding surface and, then, maintain on the
sliding surface thereafter. SMC has been always reputed for
its robustness, as this control strategy provides dynamics
with an invariance property to the matched uncertainties and
external disturbances [1]. Consequently, SMC can be used
for the systems involved the modeling uncertainties and,
especially, it is useful when the exact model of the dynamics
is not available. However, there is a significant drawback
for SMC known as chattering, due to its discontinuous
control part. Softening the discontinuous control part is used
as an approach. Hence, the discontinuous term is replaced
by a continuous approximation for reducing the chattering
phenomena [2].

Discrete-time sliding mode control (DSMC) was firstly
considered in the mid 80s [4]. This idea was continued by a
wide range of publications [5] - [10]. On the other hand, it is
well-known that the finite sampling rate in the discrete-time
systems would result in this fact that state trajectories could
not stay on the ideal sliding surface. Instead, state trajectories
would move within a band around the predetermined sliding
surface referred to as quasi-sliding mode band [3].

Broadly speaking, the method of designing the sliding
surface for DSMC is exactly the same as the one used for the
continuous SMC (CSMC). For designing the sliding surface,
a number of different approaches have been proposed by far;
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such as pole placement, eigenstructure assignment, optimal
quadratic methods [2]. Besides, LMI methods have been
explored in [11] - [13]. Moreover, the problem of robust
design approach which aims to make the reduced order
dynamics [2] insensitive to unmatched uncertainties has been
studied in [2], [14]. However, the robustness of the system
during the reaching phase is also of importance. This issue
is more critical when there is a large initial distance from
the predetermined switching surface which may lead to
excessively large control inputs, especially for the controllers
without reaching law.

A large number of the early DSMC publications have
focused on creating a discrete-time counterpart to the
continuous-time reachability condition [15] - [17]. Further-
more, for DSMC, elimination of the discontinuous control
part from the control law leads to the eliminating the
chattering issue [21], [20], [22]. The obtained control law is
called linear control law or equivalent control law. Indeed, it
is argued that DSMC does not necessarily require the use of
a variable structure discontinuous control strategy [21], [20],
[22]. References [21], [20] have shown that using the pure
equivalent control can ensure that the state trajectories stay
within a neighbourhood of the sliding surface in the presence
of bounded matched uncertainty. Moreover, according to
the results presented in [21], [20] the use of a switching
function in the control law may not necessarily improve
the performance. Note that, obviously, the DSMC problem
using only equivalent control law can be regarded as a
robust optimal control problem and it will be equivalent to
discrete-time Lyapunov min-max problems [18] or discrete-
time Riccati min-max problems [19].

Mainly, the robust optimal control strategy used for de-
signing DSMC has been considered for the systems with
matched uncertainties and/or external disturbances. In this
paper, our major focus is on the problem of designing DSMC
for the discrete-time systems involving unmatched uncer-
tainties and matched disturbances using an LMI approach.
Indeed, here, in order to design a robust sliding surface,
an innovative LMI method will be developed. To achieve
this goal, the sliding surface is designed in a way (using
LMI approach) so that the closed-loop system during the so-
called quasi sliding mode is insensitive against unmatched
uncertainties. Besides, a new framework will be used to
find the ultimate bound on the underlying system state.
Furthermore, the proposed method of this paper can be
applied to the systems whose open-loop dynamics are not
necessarily stable.

The rest of this paper is organized as follows: Section



II describes the problem formulation. In Section III, the
proposed method of this paper to design the sliding surface
is given. Section IV explains the use of practical DSMC
for the systems including uncertainties and disturbances.
Effectiveness of the proposed DSMC is studied by numerical
examples in Section V. Finally, Section VI concludes this
paper.

II. PROBLEM FORMULATION

Consider the following uncertain linear discrete-time sys-
tem,

x(k+1) = [A+∆A(k)]x(k)+B[u(k)+ f (k)], (1)

where x(k)∈ Rn and u(k)∈ Rm. Without loss of generality, it
is assumed that B ∈ Rn×m and m≤ n. Besides, rank(B) = m
and it is assumed that the pair (A,B) is stabilizable. The
uncertain matrix ∆A(k) = MR(k)N, where matrices M and
N are known and R(k) is an unknown matrix satisfying
RT (k)R(k) ≤ I,∀k ≥ 0; f (k) denotes external disturbance
with known bound.

The following lemmas are useful in the sequel.
Lemma 1 ( [24]): Let E, F(k) and G be real matrices of

appropriate dimensions with FT (k)F(k)≤ I,∀k≥ 0, then, for
any scalar ε > 0, we have

EF(k)G+GT FT (k)ET ≤ εEET + ε
−1GT G.

Lemma 2 (Schur Complement [23]): The following lin-
ear matrix inequality, [

Q1 H
HT Q2

]
> 0,

is equivalent to Q2 > 0, Q1−HQ−1
2 HT > 0, where QT

1 = Q1,
QT

2 = Q2 and H is a matrix with appropriate dimension.

III. DESIGNING DISCRETE-TIME SMC

Consider the following linear discrete-time sliding func-
tion:

σx(k) = Sx(k), (2)

where S ∈ Rm×n will be designed later such that SB is
nonsingular. During the ideal sliding motion the sliding
function satisfies:

σx(k+1) = σx(k) = 0, ∀k > ks, (3)

where ks > 0 denotes the time that sliding motion starts.
Hence, the so-called equivalent control law may be obtained
from (1), (2) and (3) as

ueq(k) =−(SB)−1S[A+∆A(k)]x(k)− f (k). (4)

Substituting the control law in (4) in the system (1), one
may achieve the following dynamics which presents the ideal
sliding mode dynamics,

x(k+1) = [A+∆A(k)−∆Â]x(k), (5)

where ∆Â = B(SB)−1S[A+∆A(k)].

Theorem 1: The uncertain sliding dynamics in (5) is
asymptotically stable, if there exist a symmetric matrix P̄> 0,
a matrix X and a scalar ε > 0 satisfying the following LMI: −P̄ P̄AT +XT BT P̄NT

AP̄+BX −P̄+ εMMT 0
NP̄ 0 −εI

< 0, (6)

where S = BT P̄−1.
Proof: We choose the following Lyapunov function

candidate:

V (x(k)) = xT (k)Px(k). (7)

Now, it follows from (5) that

∆V (x(k)) =V (x(k+1))−V (x(k))

=xT (k)[A+∆A(k)− Â∆]
T P[A+∆A(k)− Â∆]x(k)

− xT (k)Px(k).
(8)

With the choice of S = BT P, one may derive that

Ξ :=[A+∆A(k)− Â∆]
T P[A+∆A(k)− Â∆]−P

=(A+∆A(k))T P(A+∆A(k))

− (A+∆A(k))T PB(BT PB)−1BT P(A+∆A(k))−P.
(9)

It is known that the feasibility of Ξ < 0 is equivalent to the
feasibility of the following term.

(A+∆A(k))T P(A+∆A(k))+ [(A+∆A(k))T PB(BT PB)−1

+FT ](BT PB)[F +(BT PB)−1BT P(A+∆A(k))]

− (A+∆A(k))T PB(BT PB)−1BT P(A+∆A(k))−P < 0,

where F is an introduced auxiliary variable. Equivalently,

(A+∆A(k))T P(A+∆A(k))+FT BT PBF +(A+∆A(k))T

×PBF +FT BT P(A+∆A(k))−P < 0,

or

Σ1 := [(A+∆A(k))T +FT BT ]P[(A+∆A(k))+BF ]−P < 0.
(10)

Let P̄ = P−1, then, Σ1 is equivalent to:

Σ2 := P̄[(A+∆A(k))+BF ]T P̄−1[(A+∆A(k))+BF ]P̄

− P̄ < 0.
(11)

According to Lemma 2, Σ2 is equivalent to:

Σ3 :=
[

−P̄ P̄[(A+∆A(k))+BF ]T

[(A+∆A(k))+BF ]P̄ −P̄

]
< 0.

Introducing X = FP̄, we have

Σ3 :=
[
−P̄ P̄AT +XT BT

AP̄+BX −P̄

]
+

[
0 P̄∆AT (k)

∆A(k)P̄ 0

]
< 0.

(12)



Now, the second matrix in the above equation can be
rearranged as[

0 P̄∆AT (k)
∆A(k)P̄ 0

]
=

[
0 P̄NT RT (k)MT

MR(k)NP̄ 0

]
=

[
P̄NT

0

]
RT (k)

[
0 MT ]+[ 0

M

]
R(k)

[
NP̄ 0

]
≤ε

[
0
M

][
0 MT ]+ ε

−1
[

P̄NT

0

][
NP̄ 0

]
,

(13)
where ε > 0 is a scalar. Note that Lemma 1 is used to
obtain the above inequality. From Equations (12), (13) and
Lemma 2, it can be shown that Σ3 < 0 is implied by the
LMI (6). In the case that LMI (6) is feasible, one can obtain
S = BT P = BT P̄−1.

Remark 1: It should be mentioned that the equivalent
control law in (4) is not a practical controller, since it has
some unknown uncertain terms. The equivalent controller has
been obtained in order to find the sliding mode dynamics
(5). To induce and maintain a sliding motion, a control law
is designed in the sequel.

Remark 2: Note that the equation in (9) has the form of
algebraic Riccati equation which is not possible to rewrite
it as an LMI in the current form. Hence, we have gradually
transformed it to a special Lyapunov equation. Furthermore,
the control law in (4) is referred to as Lyapunov min-
max controller, since it minimizes the Lyapunov function’s
difference, ∆V , for the worst case of the uncertainty; see e.g.
[25].

Remark 3: It is obvious that the stabilizability of the
matrix pair (A,B) is the necessary condition for the feasibility
of the inequalities (10) and (11), but not the sufficient
condition.
Note that in [26] another framework is used to deal with the
uncertain inequality in (9) and convert it to an LMI. Here, our
proposed method removed the stability assumption in [26]
and also improved the conservatism of the control method
in [26].
Consider the following inequality which is used in [26] to
derive the LMI condition,

[A+∆A(k)− Â∆]
T P[A+∆A(k)− Â∆]

≤ 2(A+∆A(k))T P(A+∆A(k))

+2(A+∆A(k))T ST (SB)−1S(A+∆A(k)).

(14)

By substituting the inequality (14) in (8), one may found that

∆V (x(k))≤ xT (k)Πx(k),

where Π = 2(A + ∆A(k))T P(A + ∆A(k)) + 2(A +
∆A(k))T ST (SB)−1S(A + ∆A(k)). Using Lemmas 1 and
2, it can be shown that Π < 0 is implied by the following
LMI:
−P+ εNT N

√
2AT P

√
2AT PB 0√

2PA −P 0
√

2PM√
2BT PA 0 −BT PB

√
2BT PM

0
√

2MT P
√

2MT PB −εI

< 0,

(15)

where P > 0 is a symmetric matrix and ε > 0 is a scalar.
Obviously, regardless of the fact that the dimension of
this LMI is bigger than the dimension of LMIs given in
Theorem 1, the necessary condition for the feasibility of
LMI (15) is the stability of

√
2A. To address this strong

assumption arising from the inequality (14), we suggest to
use a fictitious state-feedback as:

[A+BK +∆A(k)−B(SB)−1S(A+BK +∆A(k))]T P

× [A+BK +∆A(k)−B(SB)−1S(A+BK +∆A(k))]

≤ 2(A+BK +∆A(k))T P(A+BK +∆A(k))

+2(A+BK +∆A(k))T ST (SB)−1S(A+BK +∆A(k)),
(16)

where K is a known matrix which can stabilize the pair (A,B).
Eventually, LMI (15) will be changed to the LMI in (17),
shown at the top of the next page, where, again, P > 0 is a
symmetric matrix and ε > 0 is a scalar. Clearly, the LMI (17)
is less conservative compared to the one in (15). This idea
will be used in the next section to design DSMC controller.

IV. SLIDING MODE CONTROLLER

One may obtain from (1) and (2) that

σx(k+1) = S[A+∆A]x(k)+SB[u(k)+ f (k)]. (18)

Assume
f l
i ≤ fi ≤ f u

i , i = 1, · · · ,m. (19)

Define,

f+i =
f u
i + f l

i
2

, f−i =
f u
i − f l

i
2

, i = 1, · · · ,m, (20)

and

D+ = col( f+1 , · · · , f+m ), D− = diag( f−1 , · · · , f−m )

Dc = col( f−1 , · · · , f−m ). (21)

Now, the following control law is proposed,

u(k) =−(SB)−1SAx(k)−D+−D−sgn(σx(k)). (22)

Remark 4: Note that, here, to construct the control law
(22), we just used the known upper and lower bounds on
matched disturbance. Although it can be seen in the literature
that the term ∆Ax(k) or S∆Ax(k) is assumed to be bounded;
see e.g. [26], [27] and [28], this assumption implies the
boundedness of system states, thus, the stability of the system
from the first. Hence, in this paper, we construct the nonlinear
part of the controller by using only the external disturbance
information.
The sequel of this paper, aims to consider the stability of
the system (1) using the controller (22). Hence, applying the
controller (22) to the system (1), it is seen that

x(k+1) = (A+∆A− Â)x(k)

+B[ f (k)−D+−D−sgn(σx(k))],
(23)

where Â = B(SB)−1SA. Note that, following the idea used in
(16), again, equation (23) can be revised to:

x(k+1) = [A+BK +∆A−B(SB)−1S(A+BK)]x(k)

+B[ f (k)−D+−D−sgn(σx(k))],
(24)




−P+ εNT N

√
2(A+BK)T P

√
2(A+BK)T PB 0√

2P(A+BK) −P 0
√

2PM√
2BT P(A+BK) 0 −BT PB

√
2BT PM

0
√

2MT P
√

2MT PB −εI

< 0, (17)

in which matrix K is a stabilizing state-feedback such that
A+BK is stable. Furthermore, it can be found that

σx(k+1) = S∆Ax(k)+SB[ f (k)−D+−D−sgn(σx(k))],
(25)

The following lemma is given to characterize the bounded-
ness of the state of the system (23).

Lemma 3 ( [23]): Let V (ζ (k)) be a Lyapunov candidate
function. In the case that there exist real scalars ν ≥ 0, α > 0,
β > 0 and 0 < ρ < 1 such that

α ‖ζ (k)‖2 ≤V (ζ (k))≤ β ‖ζ (k)‖2 ,

and

V (ζ (k+1))−V (ζ (k))≤ ν−ρV (ζ (k)),

then ζ (k) will satisfy

‖ζ (k)‖2 ≤ β

α
‖ζ (0)‖2 (1−ρ)k +

ν

αρ
.

Then every autonomous LTI discrete-time system satisfying
the above lemma is said to be ultimately bounded.

Theorem 2: The control law (22) can drive the system
state into a boundary layer around the ideal sliding surface
(2) and, in addition, the system state is ultimately bounded
if there exist a symmetric matrix P > 0 and scalars ε > 0
and η > 0 satisfying the following LMI,


−P+ηI + εNT N (A+BK)T P 0 0

P(A+BK) −P 0 PM
0 0 −BT PB 2BT PM
0 MT P 2MT PB −εI

< 0,

(26)
in which the matrix K is a known stabilizing state-feedback

and S = BT P.
Proof: Define

V (ζ (k)) = xT (k)Px(k)+σ
T
x (k)(SB)−1

σx(k), (27)

where ζ (k) =
[
xT (k) σT

x (k)
]T . Thus, we can write

∆V (ζ (k)) =V (ζ (k+1))−V (ζ (k))

=xT (k+1)Px(k+1)+σ
T
x (k+1)(SB)−1

σx(k+1)

− xT (k)Px(k)−σ
T
x (k)(SB)−1

σx(k). (28)

Hence, from (24) and (25), it can be shown that

∆V (ζ (k))

=xT (k)[A+BK +∆A−B(SB)−1S(A+BK)]T P

× [A+BK +∆A−B(SB)−1S(A+BK)]x(k)

+2xT (k)[A+BK +∆A−B(SB)−1S(A+BK)]T P

×B[ f (k)−D+−D−sgn(σx(k))]

+ [ f (k)−D+−D−sgn(σx(k))]T (BT PB)

× [ f (k)−D+−D−sgn(σx(k))]

+ xT (k)∆AT ST (SB)−1S∆Ax(k)+2xT (k)∆AT ST

× [ f (k)−D+−D−sgn(σx(k))]

+ [ f (k)−D+−D−sgn(σx(k))]T (BT PB)

× [ f (k)−D+−D−sgn(σx(k))]

− xT (k)Px(k)−σ
T
x (k)(SB)−1

σx(k).

(29)

Besides, note that

2xT (k)[A+BK +∆A−B(SB)−1S(A+BK)]T P

×B[ f (k)−D+−D−sgn(σx(k))]

=2xT (k)∆AT ST [ f (k)−D+−D−sgn(σx(k))],

(30)

xT (k)[A+BK +∆A−B(SB)−1S(A+BK)]T P

× [A+BK +∆A−B(SB)−1S(A+BK)]x(k)

=xT (k)[A+BK +∆A]T P[A+BK +∆A]x(k)

− xT (k)[A+BK]T PB(BT PB)−1BT P[A+BK]x(k)

−2xT (k)∆AT PB(BT PB)−1BT P[A+BK]x(k),

(31)

−2xT (k)∆AT PB(BT PB)−1BT P[A+BK]x(k)

≤xT (k)[A+BK]T PB(BT PB)−1BT P[A+BK]x(k)

+ xT (k)∆AT PB(BT PB)−1BT P∆Ax(k),

(32)

2xT (k)∆AT ST [ f (k)−D+−D−sgn(σx(k))]

≤xT (k)∆AT PB(BT PB)−1BT P∆Ax(k)

+ [ f (k)−D+−D−sgn(σx(k))]T (BT PB)

× [ f (k)−D+−D−sgn(σx(k))].

(33)

Also, ∥∥ f (k)−D+−D−sgn(σx(k))
∥∥≤ 2‖Dc‖ . (34)

Applying (30)-(34) to (29), one may obtain that

∆V (ζ (k)) =V (ζ (k+1))−V (ζ (k))

≤xT (k)Θx(k)−σ
T
x (k)(SB)−1

σx(k)+ γ,
(35)

where Θ = {[A + BK + ∆A]T P[A + BK + ∆A] +
4∆AT PB(BT PB)−1BT P∆A − P}, γ = 16‖SB‖‖Dc‖2.



Using Lemmas 1,2, it can easily be shown that Θ < −ηI
can be implied by the LMI (26). Besides, it is known that

λmin(diag(P,(SB)−1))‖ζ (k)‖2 ≤V (ζ (k))

≤ λmax(diag(P,(SB)−1))‖ζ (k)‖2 ,
(36)

where λmin(·) and λmax(·) denote the minimum and maxi-
mum eigenvalues, respectively. Now, we know that

∆V (ζ (k)) =V (ζ (k+1))−V (ζ (k))

≤−ηxT (k)x(k)−σ
T
x (k)(SB)−1

σx(k)+ γ

≤− min(η ,λmin((SB)−1))

λmax(diag(P,(SB)−1))
V (ζ (k))+ γ,

(37)

Thus, from Lemma 3, (37) and (36), it can be concluded that

∀ε1 > 0, ∃k? > 0, s.t. ∀k > k?,

‖ζ (k)‖2 ≤ λmax(diag(P,(SB)−1)

λmin(diag(P,(SB)−1)) ·min(η ,λmin((SB)−1))
γ + ε1,

(38)
where ε1 > 0 is a scalar. Equation (38) implies that the

system state is ultimately bounded and, in addition, during
the sliding motion the state is within a bound around the
sliding surface.

A. Other sliding mode controllers

1) Linear controller: Consider the following so-called
linear controller,

u(k) =−(SB)−1SAx(k). (39)

This linear controller can be used in the system (1) with
external disturbance, and can guarantee the boundedness of
the system state; in addition, in the absence of external
disturbance the controller (39) can ensure the asymptotic
stability of system (1). In this case, the ultimate bound on the
closed-loop system state is as in (38) with γ = 4‖SB‖‖ f‖2.

2) Using mean value of the disturbance in the controller:
As discussed in section II, it is argued in the literature that
the discontinuous part of the sliding mode control input can
be detrimental to performance [6]. This issue is only true
for the discrete-time systems involving balanced matched
uncertainties and/or disturbances; see the Appendix A of [6].
However, for the unbalanced disturbances, the component
D+ can always be used to compensate the nonzero mean
of the unbalanced matched disturbances. For instance, the
controller in (39) can be revised to the following one; see
[21],

u(k) =−(SB)−1SAx(k)−D+. (40)

3) Using switching components: The switching compo-
nent in the discrete-time sliding mode controller would,
basically, improve the performance for the cases that exter-
nal disturbance is smooth enough. In simpler terms, using
the switching functions in the discrete-time sliding mode
control is more effective for the systems involving distur-
bance of which the maximum frequency component is small
enough compared to the sampling rate of the discrete-time
system. Note that under the smoothness and, in addition,
boundedness conditions of external disturbance a disturbance
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Fig. 1. Trajectories of the state for the nonlinear controller case

estimator has been proposed in [30] in order to reduce the
ultimate bound on the discrete-time system state.

V. SIMULATION RESULTS

Let parameters of system (1) to be as:

A =

 0.9 0.6 0.04
−0.01 0.9 1.12
−0.16 −1.25 0.97

 ,B =

 0.5 0
0.09 0.1
0.99 1.5


M =

[
0.3 0.3 0.4

]T
, N =

[
−0.3 0.3 0.3

]
,

R(k) = 0.6sin(k), f (k) =
[

0.02
0.01

]
sin(

k
10

).

The open-loop system is unstable, and the following state-
feedback can stabilize the matrix pair (A,B),

K =

[
−1.2369 −1.1773 −0.6318
0.9232 1.2143 −0.6354

]
Using this state-feedback, the LMI (26) is solved and the
results are as:

P =

 1.9518 −0.3541 −0.6148
−0.3541 0.9710 0.7624
−0.6148 0.7624 1.3873

 ,
η = 0.1468I3, ε = 2.9951.

Hence, using P, and also D+ =
[
0 0

]T and D− =[
0.02 0.01

]T the control law in (22) is obtained. The results
of applying this controller to the system (1) are shown in
Figs. 1-2. Here, the initial state is assumed to be x(0) =[
−0.5 0 −1

]T . It can be seen that the state is bounded
and also during the sliding motion the state trajectories are
within a band of sliding surface σx(k) = 0.

Once again, we repeat the above example by using linear
controller only. Results are shown in Figs. 3-4. As seen, the
performance of the linear controller is better.

VI. CONCLUSIONS

In this paper, a new LMI based robust DSMC for the
systems involving unmatched uncertainty and matched dis-
turbance has been developed. Likewise, the proposed LMI
method can deal with unstable systems. A new framework
has also been used to find the ultimate bound on the system
state. Furthermore, some notes on the using of the discontin-
uous term in the discrete-time sliding mode controller have
been discussed.
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Fig. 2. Trajectories of the switching function for the nonlinear controller
case
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Fig. 3. Trajectories of the state for the linear controller case
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