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Abstract— This paper studies the problem of remote state
estimation in the presence of a passive eavesdropper. A sensor
measures a linear plant’s state and transmits it to an authorized
user over a packet-dropping channel, which is susceptible to
eavesdropping. Our goal is to design a coding scheme such that
the eavesdropper cannot infer the plant’s current state, while
the user successfully decodes the sent messages. We employ
a novel class of codes, termed State-Secrecy Codes, which are
fast and efficient for dynamical systems. They apply linear time-
varying transformations to the current and past states received
by the user. In this way, they force the eavesdropper’s informa-
tion matrix to decrease with asymptotically the same rate as in
the open-loop prediction case, i.e. when the eavesdropper misses
all messages. As a result, the eavesdropper’s minimum mean
square error (mmse) for the unstable states grows unbounded,
while the respective error for the stable states converges to
the open-loop prediction one. These secrecy guarantees are
achieved under minimal conditions, which require that, at
least once, the user receives the corresponding packet while
the eavesdropper fails to intercept it. Meanwhile, the user’s
estimation performance remains optimal. The theoretical results
are illustrated in simulations.

I. INTRODUCTION

In this paper, we study passive eavesdropping attacks in a
remote estimation setting. This scenario represents Internet
of Things applications, where sensors collect confidential
information about the state of a dynamical system and send
it to an authorized user, e.g. a controller, a cloud server, etc.,
through a wireless channel. Due to the broadcast nature of
the wireless medium, this confidential information might get
leaked to eavesdroppers [1]. Our goal is to design codes such
that the authorized user can estimate the state of the plant,
while any eavesdroppers eventually lose track of the state.
We only deal with eavesdropping attacks here, but other types
of attacks have also been studied [2]. Those include denial-
of-service attacks [3] and data-integrity attacks [4]–[8].

One of the main challenges when designing codes for se-
cret communications is the tradeoff between code complexity
and security. Encryption methods [9] offer confidentiality
guarantees without requiring any mathematical model of
the physical components, i.e. the source or the channel.
They might introduce computational and communication
overheads [10] though, and their effectiveness is based on the
assumption that the adversaries are computationally bounded.
A question that naturally arises is whether we can incorporate
model knowledge in order to develop additional defenses.
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Information theoretic approaches develop codes in the
physical layer of wireless communications by exploiting the
channel model [11]–[15]. The provided secrecy guarantees
are provable, strong and are independent of the eavesdrop-
per’s computational capability. Constructing such codes is
challenging and requires knowledge of the eavesdropper’s
channel model. In the case of packet erasure channels, more
practical codes can be designed [16].

In the case of dynamical systems, the dynamics provide
an additional structure that could be exploited for secrecy. In
this work, we generalize State-Secrecy Codes, a new class of
codes for linear systems, which indeed exploit the dynamics
and the channel randomness. The current state is encoded
by subtracting from it a weighted version of the user’s
previously received state. This operation has low complexity
and requires acknowledgment signals from the user back to
the sensor. Under minimal conditions on the communication
channel, which is modeled as a packet dropping one, the
eavesdropper’s information matrix (inverse mmse covariance
matrix) converges to the open-loop prediction one, i.e. the
information matrix when the eavesdropper misses all mes-
sages. This is because our code introduces artificial dynamics
to the eavesdropper’s information matrix recursion, forcing
it to decrease with asymptotically the same rate as in the
open-loop case (see Remarks 2, 3 in Section III). As a result,
the eavesdropper’s mmse for the unstable states diverges to
infinity, while the mmse for the stable states converges to
the open-loop one (Theorem 1 in Section III). The channel
conditions only require that at least once the user receives
the corresponding packet while the eavesdropper misses it.
Meanwhile, the user can always decode the packets and has
optimal mmse.

Related work can be found in [17]–[19], where a non-
coding approach is adopted. A simple mechanism which
withholds measurements is employed, but with high prob-
ability the eavesdropper might have very small estimation
error infinitely often. Preliminary versions of our scheme
appeared in [20], [21], but the results are limited to protecting
either unstable states [20] or purely stable systems [21]. In
this paper, we develop a new unified framework for general
linear systems, based on a novel analysis from the point of
view of information matrices. The coding schemes in [20],
[21] can be obtained as special cases of the present scheme.
The converse is not true as illustrated in Section V.

Designed specifically for dynamical systems, State-
Secrecy Codes offer a good tradeoff between code complex-
ity and secrecy of the current state:
• They are simpler than information theoretic codes and

encryption, they do not require knowledge of the eaves-
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dropper’s channel and they avoid communication over-
heads.

• The confidentiality guarantees for the plant’s current
state are comparable to the information theoretic ones,
overcoming the limitations of [17]–[19]; almost surely
the eavesdropper’s information matrix converges to the
open-loop prediction one. These guarantees do not
depend on the computational capabilities of the eaves-
dropper.

II. PROBLEM FORMULATION

The considered remote estimation architecture consists of
a sensor observing a dynamical system, a packet dropping
channel, a legitimate user, and an eavesdropper–see Figure 1.

A. Dynamical system model

The dynamical system is modeled as discrete-time linear:

xk+1 = Axk + wk+1, (1)

where xk ∈ Rn is the state, A ∈ Rn×n is the system
matrix, and wk ∈ Rn is the process noise, modeled as i.i.d.
Gaussian with zero mean and covariance Q. The initial state
x0 is also Gaussian with zero mean, covariance Σ0 and
is independent of the process noise. All system and noise
parameters A,Q,Σ0 are assumed to be public knowledge,
available to all involved entities, i.e., the sensor, the user, and
the eavesdropper. The following assumptions hold through-
out this paper.

Assumption 1: Matrix A in (1) has no eigenvalues on
the unit circle and is invertible. Matrices Q, Σ0 are positive
definite: Q, Σ0 � 0, where � (�) denotes comparison in the
positive definite (semidefinite) cone. �
The case of eigenvalues on the unit circle or zero eigenvalues
is discussed in Section IV. Without loss of generality, we can
assume the system is in real Jordan form (see [22] ch. 3.4).

Assumption 2: Matrix A is in real Jordan form:

A =

[
Au 0
0 As

]
, (2)

where Au ∈ Rnu×nu is the Jordan form of the unstable part
and As ∈ Rns×ns is the Jordan form of the stable part. �
We denote by |λi| ∈ R the magnitude of the eigenvalue of
A that corresponds to the block of Aii. Matrix Q in block
form is written as

Q =

[
Qu Q12

Q′12 Qs

]
.

B. Channel model

Communication follows the packet-based paradigm com-
monly used in networked control systems [23]–[25]. The
sensor transmits encoded state information zk ∈ Rn over
a packet dropping channel with two outputs/receivers as
shown in Figure 1. The first output, denoted by hu,k, is the
authorized one to the user, while the second, denoted by hk,
is the unauthorized one to the eavesdropper.

System Sensor &
Encoder

User
mmse

Eaves.
mmse

xk zk

γu,k
hu,k

γk
hk

x̂u,k

x̂k

ACK

Fig. 1. A sensor collects the state xk of the dynamical system (1) and
transmits zk , an encoded version of the state, over a packet dropping
channel. The packets might be dropped by the authorized user, as captured
by γu,k , and might be intercepted by the eavesdropper, as captured by
γk . Both the user and the eavesdropper compute the minimum mean
square error (mmse) estimates x̂u,k and x̂k respectively. The user transmits
acknowledgment signals back to the sensor.

Communication with the user is unreliable, i.e. packets
might be dropped. Respectively, communication is not se-
cure against the eavesdropper, i.e., the latter may intercept
transmitted packets. We denote by γu,k ∈ {0, 1} the outcome
of the user packet reception at time k, and by γk ∈ {0, 1}
the outcome of the eavesdropper’s packet interception. If
γu,k = 1 (or γk = 1), then the reception (interception) is
successful. Otherwise, the respective packet is dropped. The
outputs of the channel are modeled as:

hu,k =

{
zk, if γu,k = 1

ε, if γu,k = 0
, hk =

{
zk, if γk = 1

ε, if γk = 0
(3)

where symbol ε, is used to represent the “no information”
outcome. The channel outcomes {γu,k, γk, k ≥ 0} are
assumed to be independent of the initial state x0, and the
process noise wk, for k ≥ 0. No specific joint distribution
of the channel outcomes is assumed.

In addition to the main channel, the user can reliably
send acknowledgment signals back to the sensor via the
reverse channel. The case of unreliable acknowledgments is
discussed in Section IV. Thus, at any time step the sensor
knows what is the latest received message zk at the user.
Meanwhile, the eavesdropper is able to intercept all ac-
knowledgment signals and knows the history of user’s packet
successes. In that respect, we model a powerful eavesdropper.
Neither the sensor nor the user have any knowledge about
the eavesdropper’s intercept successes γk.

C. MMSE Estimation

Both the user and the eavesdropper know the encoding
scheme and use a minimum mean square error (mmse)
estimate to decode the received/intercepted messages. This
estimate depends on their information up to time k. We
define the user’s batch vector of channel outputs by hu,0:k =
(hu,0, . . . , hu,k) and the batch vector of channel outcomes by
γu,0:k = (γu,0, . . . , γu,k). The eavesdropper’s batch vectors
h0:k, γ0:k are defined similarly. Then, the user’s information
at time k is denoted by Iuk = {hu,0:k}, with Iu−1 = ∅.
Respectively, we denote the eavesdropper’s information by

Ik =
{
h0:k,γu,0:k

}
, I−1 = ∅ (4)

Notice that the eavesdropper has the additional information
of the user’s reception success history. The eavesdropper’s



mmse estimate, x̂k, and the respective mmse covariance
matrix Pk are given by:

x̂k = E {xk|Ik} , Pk = Cov {xk|Ik} , (5)

where Cov {xk|Ik} = E
{

(xk − x̂k) (xk − x̂k)
′ |Ik

}
. The

user’s mmse estimate, x̂u,k and the respective mmse covari-
ance matrix Pu,k are defined similarly.

D. Problem

The goal of this work is to design a coding scheme at
the sensor, so that we achieve perfect secrecy for the current
state (introduced below). We require the user’s estimation
scheme to be optimal, i.e. to have zero estimation error at
the successful reception times. At the same time, we require
the eavesdropper’s mmse error to behave asymptotically as
in open-loop prediction case, i.e., when the eavesdropper
misses all signals zk. The motivation is that the open-loop
prediction mmse is maximum in expectation (see [26]); in
that aspect, it represents the worst case performance for the
eavesdropper. The open-loop prediction estimate and error
covariance matrix are given by:

xopk = E {xk} = 0, P op
k = Cov {xk} , (6)

with the covariance obeying the Lyapunov recursion:

P op
k = AP op

k−1A
′ +Q, P op

0 = Σ0 (7)

For the unstable states, where the open-loop prediction mmse
explodes to infinity, we require the eavesdropper’s mmse
to explode as well. For the stable states, we require the
eavesdropper’s mmse to converge to the open-loop one.

Definition 1 (Perfect Secrecy): Given system (1) and
channel model (3), a coding scheme achieves perfect secrecy
if and only if all of the following hold:

(i) the user’s performance is optimal:

x̂u,k = xk, when γu,k = 1. (8)

(ii) the eavesdropper’s mmse for the unstable states grows
unbounded with probability one:

[Pk]ii
a.s.→ ∞, for i = 1, . . . , nu (9)

(iii) the eavesdropper’s mmse for the stable states converges
to the open-loop prediction one with probability one:

[Pk − P op
k ]ii

a.s.→ 0, for i = nu + 1, . . . , n (10)

where a.s.→ denotes almost sure convergence as k →∞.
The confidentiality requirements against the eavesdropper

are only with respect to the current state and we do not con-
sider guarantees for the batch state estimation error. Contrary
to our previous works [20], [21], we have a unified problem
formulation for general linear systems. This unification was
not possible before; in [20], we could only protect the
unstable part of the state, while in [21] the analysis was
limited to stable systems. In the following section, we present
a new code construction, based on a new analysis from the
information matrix viewpoint, which is more general and
solves the previous limitations.

III. CODING SCHEME

In this section, we first present State-Secrecy Codes for
general linear systems. Then, we prove that they lead to
perfect secrecy. The sensor encodes and transmits the current
state xk as a weighted state difference of the form xk −
Lk−tkxtk , where L is a carefully designed matrix. State xtk ,
also called the reference state of the encoded message, is the
most recent state received at the user’s end. The sensor and
the user can agree on it via acknowledgment signals. Hence,
the user can recover the current state by adding Lk−tkxtk .

However, if the eavesdropper fails to intercept xtk , then
she cannot exactly decode neither xk nor the future packets.
Any uncertainty about the reference state, xtk , gets amplified
by Lk−tk when the eavesdropper tries to decode the current
packet xk − Lk−tkxtk to obtain xk. This also obstructs the
eavesdropper from decoding future packets, since the next
reference state will depend on the current reference state xtk
and so on. Missing just one xtk triggers a chain reaction
effect where the eavesdropper’s mmse starts behaving as the
open-loop prediction one and perfect secrecy is achieved. For
this reason, we call this event critical.

Definition 2 (Critical event): A critical event occurs at
time k if the user receives the packet, while the eavesdropper
fails to intercept it: γu,k = 1, γk = 0 �

Let us now formally present the coding scheme. We define
the reference time tk to be the time of the most recent
successful reception at the user before k:

tk = max {t : 0 ≤ t < k, γu,t = 1} . (11)

When the set {t : 0 ≤ t < k, γu,t = 1} is empty (before the
first successful transmission), we use tk = −1, x−1 = 0.

The code construction is based on the open-loop informa-
tion matrix, defined as the respective covariance inverse:

Y op
k = (P op

k )−1. (12)

It is well defined and positive definite since Q,Σ0 � 0
in (7). Since A is unstable in general, P op

k will not converge.
However, the information matrix Y op

k converges to a steady
state matrix Y∞ as the following proposition shows.

Proposition 1: Consider system (1). The open-loop pre-
diction information matrix Y op

k , defined in (12), converges:

Y op
k → Y∞ =

[
0 0
0 P−1s,∞

]
. (13)

Matrix Ps,∞ is the unique positive definite solution of

Ps,∞ = AsPs,∞A
′
s +Qs, (14)

and is the limit of P op
s,k ∈ Rns×ns , the part of P op

k corre-
sponding to the stable states. �
We can now introduce the proposed coding scheme.

Definition 3 (State-Secrecy Codes): Given system (1), a
State-Secrecy Code applies the following linear operation:

zk = xk − Lk−tkxtk , with L = A+Q(A′)−1Y∞, (15)

where tk is the reference time as defined in (11) and Y∞ is
the steady-state information matrix (13). �



Algorithm 1 State-Secrecy Code
Input: A, Q, xk for all k ≥ 0.
Output: Encoded signals zk, for all k ≥ 0.

Let t represent the time of user’s most recent message.
1: Compute Y∞ as in (13)
2: Set L = A+Q(A′)−1Y∞
3: Initialize t = −1, x−1 = 0
4: for k = 0, 1, . . . do
5: Transmit zk = xk − Lk−txt
6: if Acknowledgment received then t = k
7: end if
8: end for

The implementation of the scheme is described in Algo-
rithm 1. Notice that the code uses information about the
model of the dynamical system. The intuition behind the
form of L is explained in Remarks 2, 3. The next theorem
proves that State-Secrecy codes achieve perfect secrecy if the
critical event occurs at least once.

Theorem 1 (Perfect secrecy): Consider system (1), with
channel model (3) and coding scheme (15). If the critical
event occurs at least once:

P(γu,k = 1, γk = 0, for some k ≥ 0) = 1, (16)

then perfect secrecy is achieved; the user’s estimation is
optimal and satisfies (8), the eavesdropper’s mmse behaves
asymptotically as the open-loop one satisfying (9), (10). �

Condition (16) for perfect secrecy is minimal since it only
requires the critical event to occur once. For most channels
of practical interest the critical event occurs not only once
but infinitely often, e.g. when the outcomes are i.i.d. (see–
Remark 1 in [20]). Even if the critical event never occurs
naturally, we can force it by employing additional codes,
i.e., encryption [9], only at k = 0. Then letting a simple
State-Secrecy Code take over for k > 0 leads to perfect
secrecy.

Remark 1 (Comparison with previous codes): From
(13), (15), the weighting matrix L can be rewritten as:

L =

[
Au Q12(A′s)

−1P−1s,∞
0 As +Qs(A

′
s)
−1P−1s,∞

]
(17)

If the system has only unstable modes, then we recover the
coding scheme in [20] with L = Au. If the system is stable
then we recover the coding scheme in [21], since from (14):

As +Qs(A
′
s)
−1P−1s,∞ = Ps,∞(A′s)

−1P−1s,∞ (18)

The current scheme is not just a diagonal combination
of the codes in [20], [21]. We have the additional cross
term Q12(A′s)

−1P−1s,∞, which is necessary to achieve perfect
secrecy, as illustrated in Section V. �

In the remainder, we study the eavesdropper’s estimation
performance via bounds on its mmse covariance and the re-
spective information matrix. The former satisfies a nonlinear
Riccati recursion (see Lemma 1) while the latter follows a
stable Lyapunov recursion, which is easier to analyze (see
Lemma 2). Hence, we can show that the information matrix

bound converges to the open-loop prediction one. Then,
Theorem 1 follows as a consequence.

Suppose that the critical event occurs at some time k0.
Then, we can establish the following lower bound P̄k on the
eavesdropper’s mmse covariance.

Lemma 1 (MMSE Bound): Consider system (1) chan-
nel model (3) and coding scheme (15). If the critical event:

Bk0
= {γu,k0

= 1, γk0
= 0} (19)

occurs at some time k0 ≥ 0, then with probability one:

Pk � P̄k, for k ≥ k0, in Bk0
(20)

where P̄k satisfies the Riccati equation for k ≥ k0:

P̄k+1 = LP̄kL
′ − LP̄kH

′ (HP̄kH
′ +Q

)−1
HP̄kL

′, (21)

with H = A− L and P̄k0
= Pk0

� 0. �
The lower bound P̄k is equal to the true covariance Pk when
the eavesdropper intercepts all packets after k0:

Pk = P̄k, conditioned on Bk0
∩ {γk = 1 for all k > k0} .

Since (L,H) is not detectable we can not use the classical
tools of Kalman filter to study (21). Nonetheless, it is easier
to work with the information matrix version of P̄k, which
satisfies a Lyapunov recursion with stable dynamics.

Lemma 2 (Convergence properties): Consider the Ric-
cati recursion (21), for k ≥ k0, and some k0 ≥ 0, with
H = A− L and L as in (15). If P̄k0

� 0 then:
a) The information matrix bound:

Ȳk =
(
P̄k

)−1
, for k ≥ k0. (22)

is well defined and satisfies the Lyapunov recursion:

Ȳk+1 = (L′)−1ȲkL
−1 + (L′)−1H ′Q−1HL−1 (23)

b) Matrix Ȳk converges to the open-loop one:

Ȳk → Y∞, (24)

where Y∞ is defined in (13).
c) For the unstable states the lower-bound mmse diverges:

[P̄k]ii ≥ ci |λi|2(k−k0) , for i = 1, . . . , nu, (25)

where ci > 0 are positive constants.
d) For the stable states, the lower-bound mmse is at least

equal to the open-loop one asymptotically:

lim inf
k→∞

[P̄k − P op
k ]ii ≥ 0, for i = nu + 1, . . . , n (26)

where Ps,∞ is defined in (14). �
Equation (23) holds for arbitrary L and is central to the
analysis of state-secrecy codes as it captures all of their
convergence properties. It is also linear in Ȳk and easier to
analyze than (21). The results c), d) of the above lemma
essentially prove perfect secrecy for the covariance P̄k.
Then, Theorem 1 follows since Pk will eventually be lower
bounded by P̄k for k ≥ k0 and some k0. The following
remarks provide intuition about the codes.



Remark 2 (Artificial Dynamics): From (17), and (18)
the eigenvalues of L are:

eig (L) = eig (Au) ∪ eig
(
A−1s

)
, (27)

i.e., all the eigenvalues are outside the unit circle. Hence,
in (21) matrix L imposes explosive unstable artificial dy-
namics to the eavesdropper’s estimation scheme; any prior
uncertainty about xk is amplified by L, when the eaves-
dropper attempts to decode zk+1. By selecting a purely
unstable matrix L we force the eavesdropper’s information
to be upper bounded over time by Ȳk in (23) since the Lya-
punov recursion will converge; if L had stable eigenvalues,
the eavesdropper’s information for some states would grow
unbounded.

Remark 3 (Rate optimality): Matrix L shows up in the
open-loop information matrix recursion. If we write the
open-loop covariance recursion (7) in terms of the informa-
tion matrix Y op

k (by applying the inversion Lemma 3 (see
Appendix)), we obtain the Riccati recursion:

Y op
k+1 = FY op

k F ′ − FY op
k F ′ (FY op

k F ′ +W )
−1
FY op

k F ′,

where F = (A′)−1 and W = Q−1. This is equivalent to:

Y op
k+1 = (F −KkF )Y op

k (F −KkF )
′
+KkWK ′k, (28)

with Kk = FY op
k F ′ (FY op

k F ′ +W )
−1. From the proof of

Proposition 1 and (30) in the Appendix it follows that

F −KkF → (L′)−1,

while
Kk → −(L′)−1H ′.

Hence, asymptotically the open-loop information matrix re-
cursion (28) matches the eavesdropper’s information matrix
recursion (23). In this respect, the convergence rate in (23)
is asymptotically optimal. �

IV. EXTENSIONS AND DISCUSSION

General matrix A. We can deal with singular A by slightly
perturbing the zero eigenvalues. For example, if λi = 0 is a
simple eigenvalue corresponding to state xi, we can define
Ā = A + δeie

′
i, where ei ∈ Rn is the i-th canonical vector

(all elements 0 and the i-th element is 1) and δ > 0 is
a small constant to be designed. We then replace A with
Ā in the code construction. If δ is small enough, then the
eavesdropper’s xi-mmse error will not converge exactly to
the open-loop one, but it will remain close to it. If matrix A
has eigenvalues on the unit circle, we can treat them as being
in the unstable part in (17). A result similar to (25) holds.
Suppose that λj = 1. Then, one occurrence of the critical
event will only guarantee that the mmse for the marginally
stable state is lower bounded, i.e. [P̄k]jj ≥ ci. Instead of
once, we need the critical event to occur infinitely often in
order to achieve unbounded mmse for state xj . The formal
analysis of both cases is left for future work.
Unreliable acknowledgments. Suppose that the reverse
channel is also a packet dropping one. Let γa,k ∈ {0, 1}
denote the reverse channel outcome at time k. If γa,k = 1,
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Fig. 2. We compare the eavesdropper’s, user’s and open-loop mmse for
the states x1 and x2. For the log-plot we used function log (x+ 1) instead
of log x. For this random sample of channel outcomes, the critical event
occurs at time k0 = 5. Then, the eavesdropper’s mmse error for the unstable
state x1 starts diverging, while the mmse error for the stable state x2 starts
converging to the open-loop prediction one. The user has zero error at the
successful reception times.

then the sensor successfully receives the respective acknowl-
edgment, otherwise it does not. Then, we can redefine the
reference time to be:

t̄k = max {t : 0 ≤ t < k, γu,tγa,t = 1} ,

where we require both the packet and the acknowledgment
to be successfully transmitted to update the reference time.
To make sure that the user knows t̄k, the sensor should also
transmit t̄k at every time step. If we define γ̄u,k = γu,kγa,k
the results of this paper still hold if we replace γu,k with
γ̄u,k.

V. SIMULATIONS

We illustrate the performance of State-Secrecy Codes
via numerical simulations. The system under consideration

has state matrix A =

[
1.2 0
0 0.7

]
and noise covariance

matrices Σ0 = Q =

[
1 0.8

0.8 1

]
. For the channel model,

we assume that the channel outcomes are independent across
time and stationary with probabilities P (γu,k = i, γk = j) =
pij , for i, j ∈ {0, 1}. The assumed values are p11 = 0.7,
p01 = p10 = p00 = 0.1. Since the user can decode all
signals, we used the formula:

Pu,k =

{
0 if γu,k = 1

APu,k−1A
′ +Q if γu,k = 0

For the estimation scheme of the eavesdropper see [21] or
[26] for more details.

In Figure 2, we plot the user’s and eavesdropper’s mmse
for the states x1, x2, i.e. the diagonal elements of the matrices
Pu,k, Pk. We compare them to the open-loop prediction error
P op
k defined in (6). The eavesdropper’s mmse error for the
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Fig. 3. We compare our coding scheme with the diagonal combination
of those in [20], [21]. The comparison is made for the eavesdropper’s
x2−mmse error. The diagonal combination fails to achieve perfect secrecy.

unstable state x1 starts diverging after the first critical event
occurs at time k0 = 5. Meanwhile, the mmse error for the
stable state x2 starts converging to the open-loop prediction
one. The user can decode all received messages and has zero
error at the times of successful reception.

In Figure 3 we compare scheme (15), with the diagonal
combination of the schemes in [20], [21], i.e. if we use

L̄ =

[
Au 0
0 Ps,∞(A′s)

−1P−1s,∞

]
.

The comparison is made for the stable state x2. The
eavesdropper’s mmse error under L̄ fails to converge
to the open-loop one. This shows that the cross-term
Q12(A′s)

−1(Ps,∞)−1 in (17) is necessary for perfect secrecy.

VI. CONCLUSION

By exploiting the model of the dynamical system, the
channel randomness, and the artificial dynamics, State-
Secrecy Codes offer strong confidentiality guarantees for
the current state with minimal computational cost and no
communication overhead. With just a single occurrence of
the critical event, the eavesdropper’s information starts de-
creasing with asymptotically the same rate as the open-loop
information. In future work, the codes should be adapted to
the case of output measurements and closed loop systems,
i.e., when the user is a controller. Further studies should be
made about the information leakage regarding the past states.
Making our scheme more robust against active eavesdroppers
is also another future direction.

APPENDIX

Inversion lemmas

The following two lemmas are from chapter 0 in [22].
Lemma 3 (Inversion Lemma [22]): Let B,C,U, V be

matrices of conformable sizes with B,C invertible:

(B +UCV )−1 = B−1 −B−1U(C−1 + V B−1U)−1V B−1.
Lemma 4 (Block Inversion Lemma [22]): Let B =[
B11 B12

B21 B22

]
be an invertible matrix. Let C = B−1 with

the same partition. Assuming the involved inverses exist:

C22 = (B22 −B21B
−1
11 B12)−1, C21 = −C22B21B

−1
11 .

The second identity follows from CB = I.

Proof of Proposition 1

The open-loop information matrix satisfies the Riccati
equation (28), which does not meet the stabilizability condi-
tion. Thus, we leverage the results of [27] for non-stabilizable
systems. The proof proceeds in two steps. First, we show that

Y∞ =

[
0 0
0 P−1s,∞

]
is a stabilizing solution (see below) to

the algebraic version of (28). Then, we prove convergence.
Part A: stabilizing solution. There are two conditions for

Y∞ to be a stabilizing solution [27]:
i) Matrix Y∞ is a fixed-point of (28)

ii) All eigenvalues of F −K∞F are inside the unit circle,
where K∞ = FY∞F

′ (FY∞F
′ +W )

−1
.

Lengthy algebra gives:

K∞ =

[
0 0

P−1s,∞Q
′
12 P−1s,∞Qs

]
,

where we used (14), Lemma 4 two times (one to express Q−1s

and one for (FY∞F
′ +W )

−1), and Q−1s Q′12 = −W21W
−1
u

(follows from QQ−1 = I). This also implies:

F −K∞F =

[
(A′u)−1 0

−P−1s,∞Q
′
12(A′u)−1 P−1s,∞AsPs,∞

]
.

To verify i), we compute:

FY∞F
′ −K∞FY∞F ′ =

[
0 0
0 D

]
,

with D = (A′)−1P−1s,∞A
−1−P−1s,∞Qs(A

′)−1P−1s,∞A
−1
s . If we

replace Qs with Ps,∞ − AsPs,∞A
′
s, we verify D = P−1s,∞.

This shows that Y∞ is a fixed-point of (28). To verify ii),
notice that

eig(F −K∞F ) = eig(A−1u ) ∪ eig(As).

Thus, from Assumption 1 the eigenvalues of F −K∞F lie
inside the unit circle. Thus, Y∞ is a stabilizing solution.

Part B: convergence We use Theorem 4.2 of [27]. Since
the pair (F, F ) is observable (F is invertible), F has no
poles on the unit circle and Y op

0 = Σ−10 � 0, matrix Y op
k

converges exponentially fast to the unique stabilizing fixed-
point of (28), i.e., Y∞ from part A. Finally, P op

s,k satisfies the
Lyapunov recursion:

P op
s,k = AsP

op
s,k−1A

′
s +Qs.

Since As is stable, P op
s,k converges to Ps,∞.

Proof of Theorem 1

The user can always decode the messages, thus, con-
dition (8) of perfect secrecy is true. To prove the re-
maining conditions assume that the critical event Bk0

=
{γu,k0 = 1, γk0 = 0} occurs for some k0. From Lemmas 1,
2, conditioned on Bk0 :

[Pk]ii ≥ ci |λi|2(k−k0) →∞, for i = 1, . . . , nu

lim inf
k→∞

[Pk − P op
k ]ii ≥ 0, for i = nu + 1, . . . , n

From Lemma 3 in [21], we also have Pk � P op
k . Thus:

lim
k→∞

[Pk − P op
k ]ii = 0, in Bk0

for i = nu + 1, . . . , n.



Since conditions (9), (10) hold in Bk0
for every k0 ≥ 0, from

hypothesis (16) they hold with probability one.

Proof of Lemma 1

The proof of Pk � P̄k, Pk0 = P̄k0 can be found in the
proof of Theorem 1 in [21]. The proof of (21) is the same
as the proof of Lemma 1 in [21]. From the same proof we
can also deduce that P̄k0

= Σ0 � 0 or P̄k0
� Q � 0.

Proof of Lemma 2

Proof of a). Equation (23) follows from a direct application
of the inversion Lemma 3 to (21). By Lemma 1, we have
P̄k0
� 0, thus, Ȳk0

� 0 and is well defined. By induction,
from (23), matrix Ȳk � 0 is well defined for all k ≥ k0.

Proof of b). By (27) matrix L is purely unstable, which
implies L−1 has all eigenvalues inside the unit circle. Hence,
matrix Ȳk converges to the unique positive semi-definite fixed
point of the Lyapunov recursion (23). Thus, it is sufficient
to show that Y∞ satisfies the Lyapunov equation:

Y∞ = (L′)−1Y∞L
−1 + (L′)−1H ′Q−1HL−1. (29)

First, from (17) and (18) the inverse of the block lower
triangular matrix L′ is:

(L′)−1 =

[
(A′u)−1 0

−P−1s,∞Q
′
12(A′u)−1 P−1s,∞AsPs,∞

]
. (30)

The first term in the right-hand side of (29) is:

(L′)−1Y∞L
−1 =

[
0 0
0 P−1s,∞AsPs,∞A

′
sP
−1
s,∞

]
(31)

Next, we compute the second term of (29). We have:

(L′)−1H ′ =

[
0 0

−P−1s,∞Q12 −P−1s,∞Qs

]
.

After some algebra and using the definition of the inverse
QQ−1 = I , we obtain:

(L′)−1H ′Q−1HL−1 =

[
0 0
0 P−1s,∞QsP

−1
s,∞

]
. (32)

From (13), (29), (31), (32), we only need to check if the
nonzero elements are equal or:

P−1s,∞ = P−1s,∞AsPs,∞A
′
sP
−1
s,∞ + P−1s,∞QsP

−1
s,∞.

But this follows from (14) if we multiply with Ps,∞ from
both sides. This completes the proof of b).

Proof of c). Define the operator:

g(X) = LXL′ − LXH ′(HXH ′ +Q)−1HXL′, (33)

which is increasing with respect to positive semidefinite
comparison (Lemma 1c in [23]).

Assume that state xi corresponds to a simple real unstable
eigenvalue λi for some i ∈ {1, . . . , nu}. Define ei to be the
i-th canonical vector (i-th element is 1 and the remaining are
0). Recall that A is in real Jordan form, thus Aii = λi. Since
P̄k0 � 0, we have P̄k0 � cieie

′
i, where ci = λmin(P̄k0) > 0

is the minimum eigenvalue of P̄k0
. From (17) it follows that:

H = A− L =

[
0 −Q12(A′)−1P−1s,∞
0 −Qs(A

′)−1P−1s,∞

]
. (34)

This implies Hei = 0, for i = 1, . . . , nu. or

g(cieie
′
i) = ciLeie

′
iL
′ = ciλ

2
i eie

′
i,

By monotonicity of g, we have:

P̄k0+1 = g(P̄k0
) � g(cieie

′
i) = ciλ

2
i eie

′
i.

Repeating, it follows by induction that:

P̄k � ciλ2(k−k0)
i eie

′
i, k ≥ k0.

Thus, [P̄k]ii = e′iP̄kei ≥ ciλ
2(k−k0)
i . The case of

complex eigenvalues or multiple eigenvalues is simi-
lar and, thus, omitted. One can start from P̄k0

�
λmin(P̄k0

)
(
eie
′
i + · · ·+ ei+pe

′
i+p

)
, where p is the dimen-

sion of the corresponding real Jordan block.
Proof of d). Denote the block partition of matrix P̄k as:

P̄k =

[
P̄u,k P̄12,k

P̄ ′12,k P̄s,k

]
.

The partitions of matrix Ȳk, P op
k are defined similarly. From

the block inversion Lemma 4, we have

Ȳ −1s,k = P̄s,k − P̄ ′12,kP̄−1u,kP̄12,k � P̄s,k.

For the diagonal elements, the above inequality implies:
[Ȳ −1s,k ]jj ≤ [P̄s,k]jj , for j = 1, . . . , ns. or

lim inf
k→∞

[P̄s,k − P op
s,k]jj ≥ lim

k→∞
[Ȳ −1s,k − P

op
s,k]jj = 0,

where the last equality follows from Proposition 1 and b).
This completes the proof of d) since by definition of P̄s,k,
P op
s,k the above inequality is the same as (26).
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