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Abstract— The derivation of tight estimation lower bounds is
a key player to design and assess the performance of new esti-
mators. In this contribution, we derive a new compact Cramér-
Rao bound (CRB) for the conditional signal model, where the
deterministic parameter’s vector includes a real positive ampli-
tude and the signal phase. Then, such CRB is particularized to
the delay, Doppler, phase and amplitude estimation with band-
limited (narrowband) signals, where transmitter and receiver
are in relative uniform radial movement. The latter expression
is especially easy to use because it only depends on the signal
samples. We provide illustrative results for a representative
Global Navigation Satellite System positioning example.

I. INTRODUCTION

In many practical problems of interest dealing with de-
terministic parameters estimation, such as radar, sonar or
navigation, the observations are complex circular vectors [1].
An important estimation problem is the identification of the
components of a noisy observation vector x formed from a
linear superposition of Q sources [2]–[5]

x = A (η)α+ n, x,n ∈ CN , A (η) ∈ CN×Q, α ∈ CQ,
(1)

where the mixing matrix depends on an unknown determin-
istic parameter vector η ∈ RP . This problem has received
considerable attention during the last fifty years, both for
time-series analysis [4] and array processing [5], and merged
into the framework of modern array processing [1], [5] where
typically two different signal models are considered: the
conditional signal model (CSM) and the unconditional signal
model [3]. In this article we adopt the less constrained CSM
framework. Indeed, assuming that sources are temporally
white Gaussian processes is a strong hypothesis that may
fail in many real-life applications, i.e., Global Navigation
Satellite Systems (GNSS) which ignited this contribution.

Despite nearly optimal properties (in the asymptotic
regime, i.e., in the large sample regime [3] and/or high
signal-to-noise (SNR) regime [6]) of conditional maximum
likelihood estimators (CMLEs), these estimators suffer from
a large computational cost, as they require solving a non-
linear multidimensional optimization problem. To circum-
vent this problem, several suboptimal techniques have been
introduced: i) substituting the multidimensional search for
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a simpler one-dimension search, e.g., Capon or MUSIC
methods [7], ii) restricting to a single source search, e.g.,
CLEAN [8] or Alternating Projection algorithms [9], or iii)
exploiting the EXtended Invariance Principle (EXIP) [10],
which is based on a re-parametrization of the problem that
simplifies the ML criterion to be maximized. In EXIP, the
efficiency property of the original ML is maintained (at least
asymptotically) through a Weighted Least Square (WLS)
refining step by using a matched weighting matrix.

EXIP has been used in array [11] and/or radar [12]
processing, and lately in GNSS [13]. For instance in GNSS,
the EXIP is applied to the ML direct position estimation
(DPE) [14] and leads to the widespread suboptimal two-step
approach: i) first, estimate delays and Dopplers from each
satellite independently, then ii) estimate the user position
and velocity thanks to a WLS minimization. If a precise
positioning is required (i.e., in intelligent transportation sys-
tems or safety-critical applications), the solution is to exploit,
together with delay and Doppler, the signal phase informa-
tion as well [15], [16]. It is thus of the outmost importance
to characterize the first step (i.e., delay, Doppler and phase
estimation) CMLE asymptotic performance associated to the
following single source CSM,

x = a (η)α+ n, x,n ∈ CN , a (η) ∈ CN , α ∈ C. (2a)

The CMLE’s asymptotic performance in the mean square
error (MSE) sense is accurately described by the Cramér-
Rao bound (CRB). So, it is not surprising that several CRB
expressions for the single source estimation problem have
been derived, for finite [17]–[21] or infinite [22] bandwidth
signals, where the starting point is often either the Slepian-
Bangs fomulas [23] or general theoretical CRB expressions
for Gaussian observation models [5], [7], [24]. However, in
the case where in addition to η we must estimate amplitude
and phase, that is, when (2a) is reparameterized as

x = a (η) ρejϕ + n, x,n ∈ CN , a (η) ∈ CN , ρ ∈ R+,
(2b)

to the best of our knowledge, no compact CRB formula for
the joint estimation of εT =

(
σ2
n, ρ, ϕ,η

T
)
, where σ2

n is
the white noise n power (n ∼ CN

(
0, σ2

nIN
)
), seems to be

available in the open literature [3]–[5], [7], [17]–[32]. This
lack is all the more surprising that the derivation of such
compact CRB is not difficult with the ad hoc approach, as
proposed in Sec. II, being the first contribution of the article.
A noteworthy feature of this new compact CRB is its ease-
of-use for problems where the CRBs on η and α (complex
amplitude instead of amplitude and phase) have already been



computed. A more demanding problem is the extension of
preliminary results recently derived in [33] for the time-
delay estimation assuming a constant transmitter to receiver
propagation delay (i.e., no Doppler effect, static scenario)
to the joint delay, Doppler, phase and amplitude estimation
case, being the second contribution of this article in Sec.
III. Indeed the latter is a fundamental task in a plethora
of applications, therefore a tractable CRB for this problem
is a key tool of broad interest. In this contribution, we
introduce a new compact CRB expression for this problem
considering the standard narrowband signal model where
the Doppler effect on the band-limited baseband signal is
not considered and amounts to a frequency shift. The new
compact CRB obtained is expressed in terms of the signal
samples, making it especially easy to use whatever the
baseband signal considered. Illustrative results are given for
a representative GNSS positioning example.

II. A COMPACT CRB FOR THE SINGLE SOURCE CSM

First, we provide some new results on the CRB for the
CSM. If we reparameterize (2b) as

x = a′ (θ) ρ+n, a′ (θ) = a (η) ejϕ, θT =
(
ϕ,ηT

)
, (2c)

then the corresponding CRB for ε is given by1

CRBθ =

[
CRBϕ CRBT

η,ϕ

CRBη,ϕ CRBη

]
, (3a)

CRBη =
σ2
n

2ρ2
Re

{(
∂a (η)

∂ηT

)H
Π⊥a(η)

∂a (η)

∂ηT

}−1
, (3b)

CRBϕ =
σ2
n

2ρ2
1

‖a (η)‖2
(3c)

+
Im
{

a (η)
H ∂a(η)

∂ηT

}
CRBη Im

{
a (η)

H ∂a(η)
∂ηT

}T
‖a (η)‖4

,

CRBη,ϕ = −CRBη

Im
{

a (η)
H ∂a(η)

∂ηT

}T
‖a (η)‖2

, (3d)

CRBρ =
σ2
n

2 ‖a (η)‖2
(3e)

+ ρ2
Re
{

a (η)
H ∂a(η)

∂ηT

}T
CRBη Re

{
a (η)

H ∂a(η)
∂ηT

}
‖a (η)‖4

,

CRBσ2
n
=

1

N

(
σ2
n

)2
. (3f)

Proof: see Appendix I.

Surprisingly, to the best of our knowledge, the compact
CRB formulas (3a)-(3f) for the joint estimation of εT =(
σ2
n, ρ, ϕ,η

T
)

do not seem to have been released in the
open literature. A noteworthy feature of this compact CRB
is its ease-of-use for problems where the CRBs on η and

1Let S = span (A), with A a matrix, be the linear span of the set of its
column vectors, S⊥ the orthogonal complement of the subspace S, ΠA =
A
(
AHA

)
AH the orthogonal projection over S, and Π⊥

A = I−ΠA.

α (the complex amplitude instead of amplitude and phase)
have already been computed. Indeed, since a (η)

H ∂a(η)
∂ηT

naturally appears to compute
(
∂a(η)
∂ηT

)H
Π⊥a(η)

∂a(η)
∂ηT in (3b),

the CRB for these problems can be readily updated in order
to incorporate (3c)-(3e). As an example, we consider the
well-known single tone (η) estimation problem for which
a (η) = (1, ej2πη . . . , ej2πη(N−1))T [25]: ‖a (η)‖2 = N and

a (η)
H ∂a (η)

∂η
= j2πP,

∂a (η)

∂η

H
∂a (η)

∂η
= (2π)

2
Q, (4a)

P =
∑N−1
n=0 n =

N (N − 1)

2
, (4b)

Q =
∑N−1
n=0 n

2 =
N (N − 1) (2N − 1)

6
, (4c)

which yields
CRBη =

σ2
n

2ρ2
1

(2π)2
(
Q−P2

N

) =
σ2
n

ρ2
6

N(N2−1)
1

(2π)2

CRBϕ =
σ2
n

2ρ2
1

N−P2

Q

=
σ2
n

ρ2
2N−1
N(N+1)

CRBρ =
σ2
n

2N

(4d)

III. STANDARD NARROWBAND SIGNAL MODEL

Given a generic band-limited signal c (t) with bandwidth
B, it can be expressed in time and frequency as

c (t) =
∑N2

n=N1
c (nTs) sinc (πFs (t− nTs))


c (f) =
(
Ts
∑N2

n=N1
c (nTs) e

−j2πfnTs

)
1[−B

2 ,
B
2 ]

(f) , (5)

where Fs ≥ B, c (nTs) are the samples of c (t), N1, N2 ∈ Z,
N1 ≤ N2 and 
 refers to the time-frequency pair. We
consider the transmission of this band-limited signal c (t)
over a carrier frequency fc (λc = c/fc), from a transmitter
T to a receiver R. Both transmitter and receiver are in
uniform linear motion, that is, their respective positions
evolve as pT (t) = pT + vT t and pR(t) = pR + vRt.
In that perspective, we tackle the simplified case where the
propagation delay τ (t) due to the relative radial movement
between T and R, can be approximated by a first order
distance-velocity model,

‖pTR (t)‖ , ‖pR (t)− pT (t− τ (t))‖ = cτ (t) ' d+ vt

⇒ τ (t) ' τ + bt, τ =
d

c
, b =

v

c
. (6)

This so-called relative uniform radial movement is charac-
terized by the time-delay (τ) due to the propagation path
and the dilation (1 − b) induced by the Doppler effect.
Under the narrowband hypothesis, i.e. B � fc, the Doppler
effect on the band-limited baseband signal c (t) may be
considered negligible. In this case, for an ideal transmitter,
propagation channel and receiver, the signal at the output
of the receiver’s Hilbert filter (I/Q demodulation, bandwidth
Fs) is well approximated as [17, (2.1)] [21, (3)]:

x (t) , x (t;η) = αc (t− τ) e−jωcb(t−τ) + n (t) , (7)

Rn (τ) = σ2
nsinc (πFsτ)
 Rn (f) =

σ2
n

Fs
, f ∈

[
−Fs

2
,
Fs
2

]



where ωc = 2πfc, ηT = (τ , b), and α is a complex
amplitude which includes all the transmission budget terms.
If we consider the acquisition of N ′ = N ′2 − N ′1 + 1
(N ′1 � N1, N ′2 � N2) samples at Ts = 1/Fs, then the
discrete vector signal model is given by (2a), or equivalently
(2b), with

xT = (. . . , x(n′Ts), . . .),

a(η)T = (. . . , c(n′Ts − τ)e−jωcb(n
′Ts−τ), . . .),

nT = (. . . , n(n′Ts), . . .),

cT , (. . . , c(nTs), . . .),

for N ′1 ≤ n′ ≤ N ′2 and N1 ≤ n ≤ N2. The SNR at the
output of the CMLE is defined as

SNRout =
α2E(
σ2
n

Fs

) =
α2cHc

σ2
n

, E =
cHc

Fs
,

and the CRB for the estimation of εT =
(
σ2
n, ρ, ϕ,η

T
)

is

CRBη =
1

2SNRout
∆−1η , (8a)

[∆η]1,1 = F 2
s

(
cHVc

cHc
−
∣∣∣∣cHΛc

cHc

∣∣∣∣2
)

[∆η]2,2 =
ω2
c

F 2
s

(
cHD2c

cHc
−
(

cHDc

cHc

)2
)

[∆η]1,2 = [∆η]2,1 = ωc Im

{
cHDΛc

cHc
− cHDc

cHc

cHΛc

cHc

}

CRBϕ =
1

2SNRout
+

(
Fs Im

{
cHΛc
cHc

}
− bωc

ωc

Fs

cHDc
cHc

)T

×CRBη

(
Fs Im

{
cHΛc
cHc

}
− bωc

ωc

Fs

cHDc
cHc

)
, (8b)

CRBη,ϕ = CRBη

(
Fs Im

{
cHΛc
cHc

}
− bωc

ωc

Fs

cHDc
cHc

)
, (8c)

CRBρ =
1

2EFs

σ2
n

(8d)

+ ρ2F 2
s

(
Re
{

cHΛc
cHc

}
0

)T
CRBη

(
Re
{

cHΛc
cHc

}
0

)
,

CRBσ2
n
=

1

N

(
σ2
n

)2
, (8e)

with D, Λ and V defined as

D = diag ([N1, N1 + 1, . . . , N2 − 1, N2]) , (9a)

(V)n,n′ =

∣∣∣∣∣ n′ 6= n : (−1)|n−n
′| 2

(n−n′)2

n′ = n : π
2

3

, (9b)

(Λ)n,n′ =

∣∣∣∣∣ n′ 6= n : (−1)|n−n′|
(n−n′)

n′ = n : 0
, (9c)

Proof: see Appendix II.

IV. ILLUSTRATIVE RESULTS: GNSS
DELAY/PHASE-BASED POSITIONING

Standard GNSS positioning relies on the use of ML delay/-
Doppler estimates. In contrast, precise navigation (i.e., such
as Real-Time Kinematics (RTK) or Precise Point Positioning
(PPP) techniques) [15] relies on the exploitation of the
signal phase information. Indeed, the phase is linked to
the wavelength which is much smaller than the baseband
signal resolution. In GNSS, the use of phase measurements
is typically decoupled from the baseband signal processing,
i.e., delay/Doppler/phase estimation, and the covariance of
these estimates is set somehow empirically, i.e., based on
the satellite elevation or the estimated carrier-to-noise density
(C/N0) at the receiver. Therefore, so far it has not been pos-
sible to correctly characterize the performance and ultimate
achievable precision of carrier phase-based positioning.

Using the new delay/phase compact CRB in Sec. III,
which only depends on the signal samples, we are able
to assess this delay/phase precision using different GNSS
signals. We consider: i) GPS L1 C/A signal, which uses a
BPSK modulation at 1.023 MHz, ii) GPS L5 signal with
a BPSK modulation 10 times faster, and iii) Galileo E5
signal which uses a large bandwidth AltBOC modulation.
The delay/phase MLEs are denoted τ̂ and ϕ̂ (τ̂), respectively.
The phase CRB in [m] is obtained as λ

2π

√
CRBϕ|ε, and we

use as a reference λE5 = 25.15 cm.
The delay estimation CRB and MLE results for the three

signals are shown in Fig. 1. It is clear that using fast codes
(i.e., larger bandwidth and narrower autocorrelation function
w.r.t. GPS L1 C/A) may significantly improve the delay
estimation. This is particularly true for the Galileo E5 signal,
for which the gain in delay standard deviation is a factor 28
and 8 w.r.t. GPS L1 and L5, respectively.

The CMLEs values obtained for different SNRout, consid-
ering a C/N0 = 45 dB-Hz, are summarized in Table I. It is
remarkable that the phase estimation CRBϕ|ε is ' 1

2SNRout
,

which implies that it does not depend on the broadcasted
signal, as opposite to the delay estimation, and therefore us-
ing fast codes do not improve the phase estimation w.r.t. the
legacy GPS L1 C/A signal. The huge advantage of using new
GNSS signals in terms of delay estimation precision (i.e., see
the difference between τ̂ L1 C/A and τ̂ E5 in Table I) does
not translate to the corresponding signal phase. This supports
the fact that AltBOC-type signals can be a promising solution
for code-based precise positioning, because the advantage
brought by joint delay/phase positioning using these signals
may not be worth the inherent complexity and fundamental
limitations of phase ambiguity resolution techniques [15],
which are the bottleneck of carrier phase-based solutions
such as PPP and RTK. These results open the door to new
precise positioning receiver design.

V. CONCLUSION

In this article we derived a new compact CRB for the
conditional signal model, in order to properly take into
account the signal phase and a positive real amplitude. These
results were particularized to the case of delay, Doppler,
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Fig. 1: Time-delay CRB/MLE for GPS L1 C/A BPSK(1),
GPS L5-I BPSK(10) and Galileo E5 AltBOC(15,10).

SNRout TI ϕ̂ (τ̂) τ̂ L1 C/A τ̂ L5 τ̂ E5
15 1 ms 5 mm 7.08 m 2.03 m 25 cm
18 2 ms 3.6 mm 5.01 m 1.44 m 18 cm
21 4 ms 2.5 mm 3.55 m 1.02 m 13 cm
25 10 ms 1.6 mm 2.24 m 64 cm 8 cm
28 20 ms 1.1 mm 1.59 m 46 cm 6 cm

TABLE I: Phase and Time-delay Estimation Standard De-
viation for: GPS L1 C/A (Fs = 10 MHz), L5 (Fs = 10
MHz) and Galileo E5 (Fs = 120 MHz). SNRout in [dB] and
coherent integration time TI in [ms].

phase and amplitude estimation using a generic band-limited
signals under the narrowband assumption. The latter CRB
is particularly useful because it is expressed only from the
signal samples. The new CRB was used to characterize the
first estimation stage in GNSS delay/phase-based position-
ing, which leads to new precise positioning receiver design.
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APPENDIX I
PROOF OF THE COMPACT CRB EXPRESSION FOR THE

SINGLE SOURCE CSM IN SECTION 2

In the following: i) [A B] and
[
A
B

]
denote the matrix

resulting from the horizontal and vertical concatenation of
matrices A and B, ii) Y =

[
Re{Y}
Im{y}

]
, ∀Y ∈ CN1×N2 , and

iii) for the sake of simplicity in the equations a′ , a′ (θ),
a , a (η). Then (2c) can be recast as

x = a′ (θ) ρ+ n, n ∼ N (0, σ2
nI2N/2), ε

T = (σ2
n, ρ,θ

T ).
(10)

Since x ∼ N
(
mx (ε) ,Cx (ε)

)
, the Fisher information

matrix (FIM) is given by the Slepian-Bangs formula [5]

(Fε)k,l =
∂mx (ε)

∂εk

T

C−1x (ε)
∂mx (ε)

∂εl

+
1

2
tr

(
C−1x (ε)

∂Cx (ε)

∂εk
C−1x (ε)

∂Cx (ε)

∂εl

)
.

In (10), as mx (ε) = a′ (θ) ρ and Cx (ε) = σ2
n/2I2N , then

CRBε = F−1ε =

[
σ4
n

N 0T

0 CRB(ρ,θ)

]
,

CRB(ρ,θ) =
σ2
n

2

[
‖a′‖2 ρa′T ∂a′

∂θT

ρ ∂a′

∂θT

T
a′ ρ2 ∂a′

∂θT

T ∂a′

∂θT

]−1
.

By resorting to the block matrix inversion lemma [34, p 309],[
A11 A12

A21 A22

]−1
=

[
C−11 −A−111 A12C

−1
2

−C−12 A21A
−1
11 C−12

]
,

C1 = A11 −A12A
−1
22 A21, C2 = A22 −A21A

−1
11 A12,

C−11 = A−111 + A−111 A12C
−1
2 A21A

−1
11 ,

one obtains

CRBρ =
σ2
n

2

(
a′TΠ⊥∂a′

∂θT

a′
)−1

,

CRBθ =
σ2
n

2ρ2
Φ−1θ , Φθ =

(
∂a′

∂θT

)T
Π⊥a′

∂a′

∂θT
.

Moreover, since

ATB = Re {A}T Re {B}+ Im {A}T Im {B}
= Re

{
AHB

}
then

a′Ta′ = aHa,

a′T
∂a′

∂θT
=
(

0 Re
{

aH ∂a
∂ηT

} )
(
∂a′

∂θT

)T
∂a′

∂θT
= Re

{[
‖a‖2 −jaH ∂a

∂ηT

j ∂a
∂ηT

H
a ∂a

∂ηT

H ∂a
∂ηT

]}
(
∂a′

∂θT

)T
∂a′

∂θT
=

 ‖a‖2 Im
{

aH ∂a
∂ηT

}
Im
{

aH ∂a
∂ηT

}T
Re
{

∂a
∂ηT

H ∂a
∂ηT

}


and therefore

Φθ =
∂a′

∂θT

T
∂a′

∂θT
− 1

a′Ta′

(
a′T

∂a′

∂θT

)T (
a′T

∂a′

∂θT

)
=

[
‖a‖2 Im {Υ}T

Im {Υ} Re {Υ} − Re{γ}Re{γ}T

‖a‖2

]
,

where Υ = ∂a
∂ηT

H ∂a
∂ηT and γT = aH ∂a

∂ηT , which yields

Φ−1θ =

[
C−11 −A12

A11
C−12

−C−12
A21

A11
C−12

]
,

C2 = Re {Υ} − Re {γ}Re {γ}T + Im {γ} Im {γ}T

‖a‖2

= Re {Υ} −
Re
{
γγH

}
‖a‖2

= Re

{
∂a

∂ηT

H

Π⊥a
∂a

∂ηT

}

C−11 =
1

‖a‖2
+

Im {γ}T C−12 Im {γ}
‖a‖4

C−12

A21

A11
=

C−12 Im {γ}
‖a‖2

,

that is, the expressions in (3a)-(3d). Last, to obtain (3e)
consider that

a′TΠ⊥∂a′

∂θT

a′ = aHa−
(

0
Re {γ}

)T
×
[

aHa Im {γ}T
Im {γ} Re {Υ}

]−1(
0

Re {γ}

)

= aHa− Re {γ}T
(
Re {Υ} − Im {γ} Im {γ}T

aHa

)−1
Re {γ}

= aHa− Re {γ}T
(

C2 +
Re {γ}Re {γ}T

aHa

)−1
Re {γ}

= aHa− Re {γ}T aHaC−12 Re {γ}
aHa +Re {γ}T C−12 Re {γ}

a′TΠ⊥∂a′

∂θT

a′ =

(
aHa

)2
aHa +Re {γ}T C−12 Re {γ}

,

CRBρ =
σ2
n

2aHa

(
1 +

Re {γ}T C−12 Re {γ}
aHa

)
.

APPENDIX II
PROOF OF THE CRB EXPRESSION FOR THE

NARROWBAND SIGNAL MODEL IN SECTION 3

First notice that

CRBη =
σ2
n

2ρ2
Φ−1η

Φη = lim
(N ′1,N ′2)→(−∞,+∞)

Re

{(
∂a (η)

∂ηT

)H
Π⊥a(η)

∂a (η)

∂ηT

}
.



The derivative of a (t;η) w.r.t. the parameters of interest
reads

∂a (t;η)

∂η
= −Qϑ (t− τ) e−jωcb(t−τ),

Q =

[
−jωcb 0 1

0 jωc 0

]
, ϑ (t) =

 c (t)
tc (t)
c(1) (t)

 .

where c(1) (t) = dc(t)
dt . Then we can write

aH (η)
∂a (η)

∂ηT

= −

(
Q

N ′2∑
n=N ′1

ϑ (nTs − τ) c (nTs − τ)∗
)T

,

∂a (η)

∂ηT

H
∂a (η)

∂ηT

= Q∗

(
N ′2∑

n=N ′1

ϑ (nTs − τ)ϑH (nTs − τ)

)
QT ,

‖a (η)‖2 =
N ′2∑

n=N ′1

|c (nTs − τ)|2 ,

and

lim
(N ′1,N ′2)→(−∞,+∞)

Ts
N ′2∑

n=N ′1

ϑ (nTs − τ) c (nTs − τ)∗

=
+∞∫
−∞

ϑ (t− τ) c (t− τ)∗ dt =
+∞∫
−∞

ϑ (t) c (t)
∗
dt = w,

lim
(N ′1,N ′2)→(−∞,+∞)

Ts
N ′2∑

n=N ′1

ϑ (nTs − τ)ϑH (nTs − τ)

=
+∞∫
−∞

ϑ (t− τ)ϑ (t− τ)H dt =
+∞∫
−∞

ϑ (t)ϑ (t)
H
dt = W

with

w =

 w1

w2

w3

 , W =

 w1 w∗2 w∗3
w2 W2,2 $∗

w3 $ W3,3

 ,
where $ =

∫ +∞
−∞ tc(1) (t) c (t)

∗
dt, and w1, w2,W2,2,W3,3 ∈

R. From these results, we can write that Φη is

Φη = FsRe

{
QWQH − (Qw) (Qw)

H

w1

}

= Fs

 W3,3 − |w3|2
w1

ωc Im
{
$ − w2w3

w1

}
ωc Im

{
$ − w2w3

w1

}
ω2
c

(
W2,2 − w2

2

w1

)  ,
where from [33] we already have w1, w3 and W3,3,

w1 =
cHc

Fs
,

w3 = cHΛc,

W3,3 = Fsc
HVc,

and the remaining terms are computed as

w2 =
∫ +∞
−∞ c (t) (tc (t))

∗
dt

=
∫ Fs

2

−Fs
2

c (f)

(
j

2π

dc (f)

df

)∗
df

=
1

F 2
s

∫ 1
2

− 1
2

(
(Dc)

H
υ (f)

) (
υH (f) c

)
df

=
1

F 2
s

cHDH
(∫ 1

2

− 1
2

υ (f)υH (f) df
)

c

=
1

F 2
s

cHDc,

$ =
∫ +∞
−∞ c(1) (t) (tc (t))

∗
dt

=
∫ Fs

2

−Fs
2

(j2πf) c (f)

(
j

2π

dc (f)

df

)∗
df

=
1

Fs

∫ 1
2

− 1
2

(j2πf)
(
υH (f) c

) (
(Dc)

H
υ (f)

)
df

=
1

Fs
cHDH

(
j2π

∫ 1
2

− 1
2

fυ (f)υH (f) df
)

c

=
1

Fs
cHDΛc,

W2,2 =
∫ +∞
−∞ |tc (t)|

2
dt =

∫ Fs
2

−Fs
2

∣∣∣∣ j2π dc (f)df

∣∣∣∣2 df
=

1

F 3
s

∫ 1
2

− 1
2

∣∣υH (f) (Dc)
∣∣2 df

=
1

F 3
s

cHDH
(∫ 1

2

− 1
2

υ (f)υH (f) df
)

Dc

=
1

F 3
s

cHD2c.

Finally, the other terms in (8b)-(8d) are also computed
from w as follows:

CRBϕ =
σ2
n

2ρ2
1

Fsw1
+

1

w2
1

×(
Im {w3} − bωcw1

ωcw2

)T
CRBη

(
Im {w3} − bωcw1

ωcw2

)
,

CRBη,ϕ = CRBη
1

w1

(
Im {w3} − bωcw1

ωcw2

)
,

CRBρ =
σ2
n

2Fsw1
+ ρ2

1

w2
1

×(
Re {w3}
0

)T
CRBη

(
Re {w3}
0

)T
.


