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Abstract— We present a controller and transmission policy
design procedure for nonlinear wireless networked control
systems. Our objective is to ensure the stability of the closed-
loop system, in a stochastic sense, together with given control
performance, while minimizing the average power used to
generate the communication instants. The controller is designed
by emulation, i.e. ignoring the network, and the transmission
instants are generated by a so-called time-based threshold pol-
icy. The latter consists in waiting a given amount of time since
the last successful transmission instant before using a constant
power to transmit. We explain how to select the waiting time
and the power to minimize the induced average communication
power while ensuring the desired control objectives.

I. INTRODUCTION

This work aims at minimizing the energy consumption
of wireless networks, which are being increasingly being
deployed in control systems [1]. Since 2011, about 2–6% of
the energy consumption worldwide arises from the commu-
nications and information industry, and a significant portion
of this is contributed by the wireless and mobile commu-
nications companies [2]. Improving the efficiency of this
technology has therefore gained a rising amount of interest in
recent years [3]. For mobile devices such as cellular phones,
laptops, and mobile robots, smart and careful management
of the energy utilized is essential due to the limited supply
of energy available. For the case of fixed infrastructure
connected to wireless networks, energy consumption has
become a critical issue due to environmental and economic
factors and has led to a large amount of research and
publications [4], [5].

In the wireless communication literature, various studies
have investigated the design of energy-efficient communica-
tion systems, i.e, maximizing the ratio of data rate to the
energy consumed or minimizing energy while maintaining a
certain quality of service parameter, see [3] for an extensive
survey. One of the most relevant techniques to improve
energy efficiency is that of transmission power control. In
works like [5] and [6], transmission power is optimized so
that the ratio between the number of packets transmitted
successfully to the power consumed is maximized. While
these works are fully relevant in the context of regular
communication systems, they are a priori not well-suited for
wireless networked control systems (WNCS), which have
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different, specific requirements other than maximizing some
kind of data rate.

A few researchers have recently published results, which
consider the above mentioned problem. See [7] for example,
which mostly concentrates on estimation, or [8] that looks
at numerical heuristics. The survey paper [9] provides a
list of works that implement energy-efficient communication
design in the context of WNCS. Power control has also been
studied in the control literature, like [10] and [11] for state
estimation. On the other hand, [12] and [13] studied the
problem of minimization of a cost defined as the sum of
the control cost and the wireless power using state-feedback
event-triggered controllers for linear systems. Recently, [14]
looks at event-based transmission power policies for linear
systems, which reduce the control cost for the same av-
erage transmission power as a constant power policy. In
[15], the energy minimization problem is studied for time-
triggered control when communication is assumed to be al-
ways successful but with varying costs. In [16], a framework
for energy-efficient time-triggered control was proposed for
discrete-time linear systems, in which the authors minimize
the average transmission power while ensuring the desired
control performance. Despite significant progress, a lot of
open issues remain to be solved for other types of trans-
mission policies, plant and controller models and set-ups.
In particular, although recent works like [17] explore power
control for interference management in nonlinear WNCS,
results for nonlinear systems are crucially lacking.

In this context, we propose transmission power policies
for nonlinear discrete-time systems controlled over a wire-
less network. For this purpose, we develop threshold-based
transmission policies, which have been shown to perform
optimally in control systems for state estimation [18]. The
proposed policy is such that transmissions are not attempted
until a certain threshold is passed on the time since the
last successful communication. Once this condition is met,
transmissions are attempted with a certain power level until
the packet is received. The control law, on the other hand,
is based on emulation, i.e. it is designed disregarding the
presence of the network. Our main contributions are the
following.
• We formulate a framework for the threshold-based

transmission policies of nonlinear discrete-time sys-
tems, in contrast to several works that focus on energy-
efficient transmission policies for linear systems like
[13] and [16].

• We provide a set characterizing the length of the time
interval before any transmission is attempted after a
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Fig. 1: Schematic of the networked control system.

successful communication, as well as the transmission
power which has be used, in order to guarantee stability
and performance in a stochastic sense.

• We provide the optimal transmission power to use
in order to minimize the average transmission power
consumed for the policies belonging to the provided
set.

The rest of the paper is organized as follows. In Section II,
we present the control and wireless communication models,
and the main objectives. In Section III, we propose time-
based threshold policies which satisfy the desired objectives.
The Lyapunov assumption we make in Section II is discussed
in more details in Section IV. In Section V, we provide
numerical illustrations of our method. Concluding remarks in
Section VI end the paper. All the major proofs are provided
in the appendix.
Notation. Let R := (−∞,∞), R≥0 := [0,∞), Z>0 :=
{1, 2, . . .} and Z≥0 := {0, 1, 2, . . .}. We use Pr(·) for
the probability and E[·] for the expectation taken over the
relevant stochastic variables. We say a function α : R≥0 →
R≥0 is of class K∞ (α ∈ K∞) if it is continuous, strictly
increasing, α(0) = 0 and lima→∞ α(a) = ∞. For any
x1 ∈ Rn1 and x2 ∈ Rn2 , (x1, x2) stands for (x>1 , x

>
2 )
>.

II. PROBLEM STATEMENT

A. Plant and controller model

We consider the discrete-time system given by

xp(t+ 1) = fp(xp(t), u(t))
y(t) = gp(xp(t)),

(1)

where t ∈ Z≥0 is the time, xp(t) ∈ Rsp is the plant
state, u(t) ∈ Rsu is the control input, y(t) ∈ Rsy is the
measured output used for control and sp, su, sy ∈ Z>0 are
their respective dimensions.

We proceed by emulation, we thus assume that we know
a stabilizing output-feedback controller for system (1) of the
form

xc(t+ 1) = fc(xc(t), y(t))
u(t) = gc(xc(t), y(t)),

(2)

where xc(t) ∈ Rsc is the controller state. When the controller
is static, we simply have u(t) = gc(y(t)) in (2). At this
stage, any controller design techniques can be employed to
construct (2), like backstepping, feedback linearization etc.
The assumption we make on the closed-loop system (1)-(2)
is formalized in the sequel.

We are interested in the scenario where plant (1) and
controller (2) communicate over a wireless channel as il-
lustrated in Figure 1. As a result, the feedback loop is no

longer closed at every time instant t ∈ Z≥0, but only at the
instants tk ∈ T ⊆ Z≥0, k ∈ Z>0 when communication is
successful. In the absence of communication, the controller
uses a networked version of the output measurement denoted
by ŷ. Controller (2) becomes in this context

(
xc(t+ 1)
u(t)

)
=


(
fc(xc(t), y(t))
gc(xc(t), y(t))

)
for t ∈ T(

fc(xc(t), ŷ(t))
gc(xc(t), ŷ(t))

)
for t ∈ Z≥0 \ T .

(3)
The networked version of the output ŷ generated at the
controller evolves according to the following dynamics

ŷ(t+ 1) =

{
f̂(gp(xp(t))) if t ∈ T
f̂(ŷ(t)) if t ∈ Z≥0 \ T ,

(4)

where f̂ is the holding function applied, which can take
various forms including the zero-order-hold strategy, i.e.,
f̂(ŷ) = ŷ, or the zeroing policy, i.e., f̂(ŷ) = 0 for any
ŷ ∈ Rsy . Note that ŷ is never reset to the actual value of y
in (4). This is fine in view of the way we model the closed-
loop system below.

We introduce the concatenated state χ := (xp, xc, ŷ) ∈
Rsχ with sχ := sp + sc + sy , and we write the closed-loop
dynamics of the WNCS as

χ(t+ 1) =

{
fS(χ(t)) for t ∈ T
fU (χ(t)) for t ∈ Z≥0 \ T ,

(5)

where fS , fU are defined as, for χ ∈ Rsχ ,

fS(χ) :=

 fp(xp, gc(xc, gp(xp)))
fc(xc, gp(xp))

f̂(gp(xp))

 , (6)

and

fU (χ) :=

 fp(xp, gc(xc, ŷ))
fc(xc, ŷ)

f̂(ŷ)

 . (7)

The assumptions we make on system (5) are stated next.
Assumption 1: There exist α, α ∈ K∞, a1 ∈ (0, 1), a0 >

a1 and V : Rsχ → R≥0 such that, for any χ ∈ Rsχ ,

α(|χ|) ≤ V (χ) ≤ α(|χ|) (8a)
V (fS(χ)) ≤ a1V (χ), (8b)
V (fU (χ)) ≤ a0V (χ). (8c)

�

Properties (8a) and (8b) imply that the origin of system
χ(t + 1) = fS(χ(t)) is uniformly globally asymptotically
stable (UGAS). This is typically the case when controller
(2) has been designed to ensure that the origin of system
(1)-(2) is UGAS, see Section IV. The fact that the bound in
(8b) is linear in V comes with no loss of generality. If we
know a Lyapunov function which does not admit a linear
bound as in (8b), we can always modify it to satisfy (8b)
and (8a), under mild regularity assumptions, see Theorem 2
in [19]. On the other hand, (8c) in Assumption 1 imposes
a condition on the growth rate of V along solutions to (5)
when a transmission fails. Typically a0 is strictly larger than



1, and we assume a1 < a0 implying that communications
improve the convergence speed of the Lyapunov function V
to 0. Conditions ensuring the satisfaction of Assumption 1
are discussed in more details in Section IV.

To conclude the description of the closed-loop system
(5), we need to explain when a communication attempt is
successful or not. Before that, we define for the sake of
convenience the function F with the following recursion,
for any χ ∈ Rsχ and ` ∈ Z≥0

F (χ, `) :=

{
fS(χ) for ` = 1
fU (F (χ, `− 1)) otherwise. (9)

This allows us to write the dynamics between successful
communication instants as χ(tk + `) = F (χ(tk), `) for all
tk ∈ T and ` ∈ {1, . . . , tk+1 − tk}.

Remark 1: The results presented in this paper apply mu-
tatis mutandis when the network is between the controller
and the actuator, and not between the sensors and the
controller as in Figure 1, by changing the network variable
to be û instead of ŷ. When the network is used in both
directions, the analysis becomes quite convoluted, especially
if communication events occur independently; the study of
this case is left for the future. �

B. Communication setup

We describe in this section, the sequence of successful
communication instants tk ∈ T . In wireless communication,
the signal-to-noise ratio (SNR) determines the probability of
successful communication and it depends on the transmission
power P (t) ∈ [0, Pmax]. Here, Pmax > 0 is the maximum
transmission power allowed by the transmitter at any time.
In particular, we make the next assumption.

Assumption 2: The following holds.
(i) The packet error rate, i.e. the probability of failing

to communicate, is given by e(P (t)) ∈ [0, 1] at all
time t ∈ Z>0 and the mapping P 7→ e(P ) is: (i-a)
differentiable, (i-b) strictly decreasing on [0, Pmax], (i-
c) initially concave and then convex, (i-d) e(0) = 1
and limP→∞ e(P ) = 0.

(ii) When a packet sent at time t ∈ Z>0 is received,
the transmitter obtains an acknowledgement (ACK)
without any error before t+ 1. �

Item (i) of Assumption 2 models the packet error rate as
a smooth time-invariant function of the transmission power,
as is common in wireless communication literature [2], [5].
The additional properties considered are quite standard in
wireless literature, see [6], [20] for example. On the other
hand, most practical communication setups like Wifi, 4G,
etc. use some sort of ACK protocol so that item (ii) of
Assumption 2 is reasonable. The ACK packets have a size of
the order of a few bits and are typically much smaller than
the control/output information packets, and are assumed to
be received without any loss [5].

C. Time-based threshold policies

We focus on a class of communication policies, which we
call time-based threshold (TT) policies. These are such that

communication is attempted only when a certain number of
time instants have elapsed since the last successful communi-
cation, which is known by the transmitter in view of item (ii)
in Assumption 2. To model the latter, we introduce the clock
τ(t) ∈ Z>0 for all t ∈ Z>0, which counts the number of time
instants elapsed since the last successful communication as
follows

τ(t+ 1) =

{
1 for t ∈ T
τ(t) + 1 for t ∈ Z≥0 \ T .

(10)

We assume that the initial time is a successful communi-
cation instant, i.e, we set t1 = 0 resulting in 0 ∈ T and
τ(1) = 1.

For any t ∈ Z>0, we set the transmission power as

P (t) = q(t)p (11)

where q(t) ∈ {0, 1} is updated as follows

q(t) =

{
1 if τ(t) ≥ n+ 1
0 otherwise. (12)

In other words, communication is not attempted before the
number of time instants since the last successful one is
greater than a given constant n ∈ Z≥01. Afterwards, we use
a fixed power p ∈ [0, Pmax] to transmit. This technique is
similar in spirit to time-triggered control as commonly done
in the sampled-data control literature. Under policy (11), the
closed-loop system is

(
χ(t+ 1)
τ(t+ 1)

)
=


(
fS(χ(t))

1

)
if τ(t) ≥ n+ 1, with
probability 1− e(p),(

fU (χ(t))
τ(t) + 1

)
otherwise.

(13)

D. Objectives
The first objective of this work is to preserve the stability

of the WNCS. Due to the stochastic nature of communication
success, we can no longer ensure the original UGAS property
ensured in Assumption 1. Instead, we need to rely on a
stochastic notion of stability, as defined next and which is
inspired by [21].

Definition 1: We say that the set {(χ, τ) : χ = 0} is
stochastically stable for system (13), if there exists α ∈ K∞,
such that for any solution (χ, τ),

∞∑
t=0

E[α(|χ(t)|)] <∞. (14)

�
Definition 1 implies that we are merely interested in the

stability of the origin for χ, and not τ . In addition to
the partial stability property described above, we also want
to ensure that the Lyapunov function V in Assumption 1
converges in expectation to 0, with a certain given rate
µ ∈ (a1,min{1, a0}), along solutions to (13), i.e.,

E[V (χ(t))] ≤ µtV (χ(0)) (15)

1In general, one could design P (t) as a function of τ(t) as is done in
[16] for linear systems. We focus on the simpler threshold policies in this
paper, which are easier to design and implement.



for all t ∈ Z>0 and for any solution (χ, τ) to (13). Property
(15) serves as a measure of the control performance of
system (13). Note that we always pick µ < a0 as otherwise,
never communicating will achieve the objective (15).

An intuitive way to ensure the two above properties is
to set P (t) = Pmax for all t ≥ 0 by picking n = 0
and p = Pmax. This would result in frequent successful
communications in view of item (i) of Assumption 2, but
also, and importantly, in a high power consumption [2].
We want to avoid this issue by reducing the average power
consumed while preserving the stability of the origin for
(13) according to Definition 1 and satisfying the convergence
property (15). The average communication power over an
infinite horizon is defined as

J(P) := lim
T→∞

E

[∑T
t=1 P (t)

T

]
, (16)

where P = (P (1), P (2), . . . ) is the sequence of transmission
powers applied. Our objective is to find the optimal p and n,
which minimizes (16) under the TT policy defined by (11)
and (12), while ensuring certain conditions, which we will
identify to be sufficient for the satisfaction of the control
objective.

Remark 2: Minimizing J(P) over all possible P is hard
to solve due to the nonlinear inter-dependence of P (t) and
the stability constraints, which is why we focus on TT
policies in this paper. We also feel that TT policies are
appealing from an implementation point of view. �

III. MAIN RESULTS

Given a convergence rate µ ∈ (a1,min{1, a0}) for the
expected value of V , we first identify a set of n and p
ensuring (15) and stochastic stability as in Definition 1. Later,
we will minimize (16) over this set.

We define γ(i) := a1a
i
0 for all i ∈ Z≥0, and for any

p ∈ [0, Pmax] and n ∈ Z≥0,

µn(p) := exp

(
(1− e(p)) log(γ(n)) + log(a0)e(p)

1 + n(1− e(p))

)
.

(17)
We prove in Theorem 1 stated below (recall that all proofs
are provide in the Appendix) that µn(p) is a possible
convergence rate for the expected value of V along solutions
of (13) as in (15) while implementing the power control
policy defined by (11) and (12). This theorem is one of
the main results of this paper, which provides conditions for
stochastic stability.

Theorem 1: For given µ ∈ (a1,min{1, a0}), n ∈ Z≥0
and p ∈ [0, Pmax], if µn(p) ≤ µ, then the WNCS (13) is
stochastically stable and

E[V (χ(t))] ≤ µn(p)tV (χ(0)) ≤ µtV (χ(0)) (18)

for all t ∈ Z≥0 and any solution (χ, τ) to (13). �
Theorem 1, subject to some conservatism, implies that as
long as n and p are chosen such that µn(p) ≤ µ, the desired
stability and convergence properties are ensured.

Remark 3: The convergence rate µn(p) used in Theorem
1 by setting γ(i) = a1a

i
0 may be conservative in general.

When additional properties on F and V are known, less
conservative bounds on the growth of V may be used to
obtain γ(i). �
Next, we provide conditions on p such that µn(p) ≤ µ for
given n ∈ Z≥0 and µ ∈ (a1,min{1, a0}) as required in
Theorem 1.

Proposition 1: For given µ ∈ (a1,min{1, a0}) and n ∈
Z≥0, if µn(Pmax) ≤ µ then µn(p) ≤ µ for any p ∈
[p
n
, Pmax], where p

n
∈ [0, Pmax] is the unique solution to

µn(pn) = µ. In addition, the function µn(·) is monotonically
decreasing for any n ∈ Z≥0. �

Proposition 1 gives an easy-to-check condition to know
whether µn(p) ≤ µ for any p ∈ [0, Pmax] is feasible for
given n ∈ Z≥0 and µ ∈ (a1, 1), namely to see if µn(Pmax) ≤
µ. The minimum admissible power value corresponds to p

n
in Proposition 1. Using p

n
does not necessarily imply that

the cost (16) is minimized for a fixed n ∈ Z≥0. Indeed,
it might be more efficient to use a higher power in (11)
because we assume that transmissions are attempted until
a packet goes through, and using a smaller power would
imply a larger number of attempted transmissions, thereby
potentially increasing the net energy consumed [5], [6], see
Section V for an illustration.

According to Theorem 1 and Proposition 1, the set

S :=
{
(p, n) : n ∈ Z≥0, p ∈ [p

n
, Pmax] : µn(Pmax) ≤ µ

}
,

contains the values of p and n ensuring the condition of The-
orem 1, under which the control goals are satisfied, in view
of Proposition 1. In the next proposition, we characterize the
associated average communication cost. We use the notation
JTT(p, n) to denote the cost in (16) while implementing (11)
and (12).

Proposition 2: Using a transmission policy based on (11)
and (12), the cost in (16) for all p ∈ [0, Pmax] and n ∈ Z≥0
is given by

JTT(p, n) =
p

(1− e(p))n+ 1
. (19)

The mapping (p, n) 7→ JTT(p, n) is
1) strictly increasing in p for small n,
2) “N shaped” for larger values of n, i.e., it is initially

increasing upto a local maximum, then decreasing to
a local minimum and then finally increasing again in
p. �

We can exploit Proposition 2 to characterize the optimal
power p minimizing (16) for a given n, such that (p, n) ∈ S.

Theorem 2: For any n ∈ Z≥0 with µn(Pmax) ≤ µ, let p∗n
be the optimal power, i.e., p∗n ∈ argminp | (p,n)∈S JTT(p, n).
If a local minimum pon ∈ R>0 exists such that ∂JTT

∂p (pon, n) =

0 and ∂2JTT

∂p2 (pon, n) > 0, then p∗n ∈
{
p
n
, pon, Pmax

}
.

Otherwise, p∗n = p
n

. �
Proof: Proposition 2 implies JTT for a given n is either

strictly increasing or N shaped. In the first case, pon does not
exist and so, selecting p

n
is optimal.

In the second case, JTT is N shaped in p, and it has a
single local minimum and is concave for small p and then
convex. Since we look at JTT(p, n) for p ∈ [p

n
, Pmax], a



closed and compact set, the global optimum is either the
local minimum or one of the boundary points. When pon >
Pmax, JTT may be decreasing or concave in the interval
[p
n
, Pmax], which implies that the global minimum is at p

n
or Pmax. Otherwise, the optimal power is either p

n
or the

local minimum pon.
Theorem 2 characterizes the optimal power to use for a

given n ∈ Z≥0 and this power can be found once the local
minimum pon for JTT is found, if it exists. In practice, the
existence of the local minimum pon ∈ [p

n
, Pmax] for JTT

with a given n can be easily checked by applying a gradient
descent initialized at Pmax. If the gradient descent converges
to a point in the interval [p

n
, Pmax], then this point is pon.

Our objective is to find the best pair (p, n) ∈ S minimizing
JTT. We can show that the set of feasible n such that
µn(Pmax) ≤ µ is finite, allowing us to do an exhaustive
search over all JTT (p∗n, n) to find the best pair (p, n) ∈ S .
This is done by noticing that even while using infinite
transmission power, we have in view of (17),

lim
p→∞

µn(p) = (a1a
n
0 )

1
n+1 , (20)

by applying the property that limp→∞ e(p) = 0 in item (i)
of Assumption 2. Therefore, if (a1a

n
0 )

1
n+1 > µ for some

n ∈ Z≥0, then µn(p) > µ for any p applying the decreasing
property shown in Proposition 1. Note that since a0 > a1,
(a1a

n
0 )

1
n+1 is increasing in n and as a0 > µ we define

N := max
{
n ∈ Z≥0|(a1an0 )

1
n+1 ≤ µ

}
, (21)

which is finite and in Z≥0. Then for any n > N and any
p ∈ [0, Pmax], we have µn(p, n) > µ implying that such
(p, n) does not belong to S, and we thus only consider n in
the finite set {0, . . . , N}.

IV. ABOUT ASSUMPTION 1

We present conditions ensuring the satisfaction of As-
sumption 1 when the strategy used to generate ŷ is based
on zeroing and zero-order-hold respectively.

A. Zeroing strategy

We suppose that controller (2) has been designed such the
next properties hold.

Assumption 3: There exist W : Rsp+sc → R continuous,
αW , αW ∈ K∞, aW,1 ∈ (0, 1) and aW,0 > 0 such that, for
any (xp, xc) ∈ Rsp+sc :

(i) αW (|(xp, xc)|) ≤W (xp, xc) ≤ αW (|(xp, xc)|);
(ii) W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) ≤

aW,1W (x);
(iii) W (fp(xp, gc(xc, 0), fc(xc, 0)) ≤ aW,0W (x). �

Items (i)-(ii) of Assumption 3 are equivalent to the fact
that the origin of (1)-(2) is UGAS when fp, fc, gp and gc
are continuous, see [22]. Item (iii), on the other hand, is
an exponential growth condition on W when a transmission
fails and f̂ is the zero function. The next proposition ensures
the satisfaction of Assumption 1.

Proposition 3: Suppose Assumption 3 holds, then As-
sumption 1 is verified with V : χ 7→ W (xp, xc) + |ŷ|,

a1 = aW,1, a0 = aW,0, α(s) = min{αW (s/2), s/2} and
α(s) = αW (s) + s for any s ≥ 0. �

Proof: Let χ ∈ Rsχ , V (χ) ≤ αW (|(xp, xc)|) + |ŷ|
in view of item (i) of Assumption 3, from which we
derive that V (χ) ≤ αW (|χ|) with αW is given in
Proposition 3. We proceed similarly to prove the lower-
bound on V by invoking [23, Remark 2.3]. On the other
hand, in view of item (ii) of Assumption 3, V (fS(χ)) =
W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) ≤ a1W (x) ≤
aW,1V (χ). We similarly derive from item (iii) of Assumption
3 that V (fS(χ)) ≤ aW,0V (χ), which concludes the proof.
�

B. Zero-order-hold strategy

When zero-order-hold devices are used to generate ŷ,
we need to modify Assumption 4 to conclude about the
satisfaction of Assumption 1.

Assumption 4: There exist W : Rsp+sc → R continuous,
aW , aW > 0, aW,1 ∈ (0, 1) and aW,0, b0 ≥ 0 such that, for
any χ ∈ Rsχ :

(i) aW |(xp, xc)|2 ≤W (xp, xc) ≤ aW |(xp, xc)|2;
(ii) W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) ≤

aW,1W (x);
(iii) W (fp(xp, gc(xc, ŷ), fc(xc, ŷ)) ≤ aW,0W (x) + b0|ŷ|2.

�
Items (i)-(ii) of Assumption 4 are equivalent to the fact

that the origin of (1)-(2) is uniformly globally exponentially
stable under conditions as mentioned after Assumption 3.
Item (iii) is an exponential growth condition on W when a
transmission fails, which involves ŷ this time because of the
use of a zero-order-hold strategy.

We also require the output map to be linearly bounded.
Assumption 5: There exist c ≥ 0 such that |gp(xp)| ≤

c|xp| for any xp ∈ Rsp . �
Assumption 5 is verified when y = Cpxp with Cp a

real matrix for instance in which case c = |Cp|. The next
proposition ensures the satisfaction of Assumption 4.

Proposition 4: Suppose Assumptions 4-5 hold, then As-
sumption 1 is verified with V : χ 7→ W (xp, xc) + ν|ŷ|2

with ν ∈
(
0, (1− aW,1)

aW
c2

)
, a1 = aW,1 + νc2/aW ,

a0 = max{aW,0, b0/ν + 1} given in Assumption 3, α(s) =
min{αU (s/2), ν(s/2)2} and α(s) = αU (s) + νs2 for any
s ≥ 0. �

Proof: The proof of (8a) follows similar lines as
in the proof of Proposition 3. Let χ ∈ Rsχ . In
view of item (ii) of Assumption 4, V (fS(χ)) =
W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) + ν|gp(xp)|2 ≤
aW,1W (x) + ν|gp(xp)|2. According to Assumption 5,
|gp(xp)|2 ≤ c2|xp|2, and, in view of item (i) of As-
sumption 4, |gp(xp)|2 ≤ c2/aWW (xp, xc) ≤ c2/aWV (χ).
Consequently, V (fS(χ)) ≤ aW,1W (x) + νc2/aWV (χ) ≤(
aW,1 + νc2/aW

)
V (χ) = a1V (χ) and a1 ∈ (0, 1) in view

of the definition of ν in Proposition 4.
On the other hand, V (fU (χ)) ≤ aW,0W (x)+b0|ŷ|2+ν|ŷ|2

in view of (7) and item (iii) of Assumption 4. Hence,
V (fU (χ)) ≤ max{aW,0, b0/ν + 1}(W (x) + ν|ŷ|2) =



max{aW,0, b0/ν + 1}V (χ) = a0V (χ). We have proved that
the conditions in Assumption 1 are verified. �

V. NUMERICAL EXAMPLE

We illustrate the results of Section III on a single link robot
arm, whose model is obtained by discretizing the continuous-
time system using Euler method with sampling period of
0.001 seconds. System (1) with plant state xp = (x1, x2) ∈
R2 is given by(

x1(t+ 1)
x2(t+ 1)

)
=

(
x1(t) + 0.001x2(t)

x2(t) + 0.001(sin(x1(t)) + u(t))

)
.

(22)
The controller (2) is given by u = − sin(x1)− 25x1− 10x2
and we use zero-order-holds to implement it.

Assumption 1 is verified with V (χ) 7→ χTPχ, a1 = 0.98
and a0 = 1.0009 where

P =


0.0384 −0.0019 −0.0336 0.0031
−0.0019 0.0015 0.0033 −0.0008
−0.0336 0.0033 0.0341 −0.0032
0.0031 −0.0008 −0.0032 0.0009

 .

For the communication channel model, we consider a
Rayleigh slow-fading channel with parameters such that
e(p) 7→ 1 − exp(−1/p), which verifies Assumption 2, see
[24] for details, with Pmax = 10. We fix µ = 0.9999 and
pick n ∈ {1, . . . , N} with N = 20 and p

20
= 9.5 using (17)

and Theorem 1.
In Figure 2, we plot the optimal power p∗n minimizing

JTT(p, n) for n ∈ {0, . . . , 19} and compare it with the re-
quired power p

n
to ensure the convergence property (15). We

note that p
n

is not always the optimal power as mentioned
after Proposition 1. In Figure 3, we plot the average power
consumed JTT(p

∗
n, n) with respect to feasible values of n

for given values of µ, when using the optimal power p∗n
as defined in Theorem 2. We note that using the largest
values of feasible n results in a higher communication cost
because while the frequency of communications decreases,
the power required to stabilize the system also increases
with n. The optimal n for µ ∈ {0.995, 0.999, 0.9999} can
be observed to be 1, 8, 18 respectively. We observe that a
smaller µ demands more frequent communication, leading
to a higher communication cost.

VI. CONCLUSIONS

We have proposed a framework to design a class of energy-
efficient transmission power policies for nonlinear WNCS.
The main objective of this work is to minimize the average
transmission power while maintaining stability of the WCNS
is a stochastic sense. We provide expressions to compute the
optimal transmission power for the proposed performance
criteria under the proposed policy based on time thresholds.
Future work will design threshold policies based on the
wireless channel state and potentially, the state of the plant
as in event-triggered control.
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Fig. 2: We plot the optimal power p∗n minimizing JTT(p, n),
and the required power p
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for given values of n.
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APPENDIX

A. A technical lemma

We first provide a lemma on the evolution of τ(t) along
solutions to (13) for the proposed TT policy.

Lemma 1: Under policy (12), the clock state τ(t) is a
Markov process, with steady state probabilities given by

Pr(τ(t) = j) =
1− e(p)

n(1− e(p)) + 1
, (23)

for all j ∈ {1, 2, . . . , n+ 1} and

Pr(τ(t) > n+ 1) =
e(p)

n(1− e(p)) + 1
. (24)

�
Proof: Using (11), (12) and Assumption 2 give us

Pr(τ(t+1)|τ(t)). Since P (t) = 0 when τ(t) ≤ n, e(P (t)) =
1 and this implies

Pr
(
τ(t+ 1) = τ(t) + 1|τ(t) ≤ n

)
= 1. (25)

For all ` ∈ Z≥0 we have

Pr
(
τ(t+ 1) = n+ `+ 2|τ(t) = n+ 1 + `

)
= e(p)

Pr
(
τ(t+ 1) = 1|τ(t) = n+ 1 + `

)
= 1− e(p)

(26)
in view of Assumption 2 and the fact that P (t) = p when
τ(t) ≥ n + 1 according to (11) and (12). This allows us to



evaluate
Pr(τ(t) = 1) =

1− e(p)
n(1− e(p)) + 1

, (27)

when the Markov chain is in steady state, which will also
be the steady state probabilities for τ(t) = i for any i ∈
{1, . . . , n+ 1}. Additionally,

Pr(τ(t) > n+ 1) =
e(p)

n(1− e(p)) + 1
. (28)

B. Proof of Theorem 1

We first note that, in view of Assumption 1 and (13), we
have that

V (F (χ, i+ 1)) ≤ a1ai0V (χ) (29)

for all χ ∈ Rsχ and i ∈ Z≥0.
Let χ0 ∈ Rsχ and consider χ(t) the solution to (13)

initialized at χ0. Recall that due to the structure of (12),
once a transmission is successful, the next transmission is
attempted only after n steps. Therefore, we define for all
t ∈ Z≥0

TU (t) :=
{
i ∈ {1, 2, . . . , t− 1} | τ(i+ 1) ≥ 2 + n

}
, (30)

which denotes the set of all time instances where transmis-
sions were attempted, but communication failed before t.
This implies that for any t ∈ Z>0

∀i ∈ TU (t); V (χ(i+ 1)) ≤ a0V (χ(i)) (31)

in view of Assumption 1.
On the other hand, we define the set of all time instances

where transmission was successful before t for all t ∈ Z≥0
as

TS(t) :=
{
i ∈ {1, 2, . . . , t− 1} | τ(i+ 1) = 1

}
, (32)

because whenever a communication occurs at some time,
we have τ(t+ 1) = 1 according to (10). However, note that
a1 ≤ γ(n) for any n ∈ Z≥0 by definition. This allows us, in
view of Assumption 1 to write for any t ∈ Z>0,

∀i ∈ TS(t); V (χ(i+ `)) ≤ γ(n)V (χ(i)). (33)

for all ` ∈ {1, . . . , n+1}. Combining (31) and (33), we can
write

V (χ(t)) ≤ γ(n)
t−1∏
i=0

G(i)V (χ0) (34)

where G(i) := a0 if i ∈ TU (t), G(i) := γ(n) if i ∈ TS(t)
and G(i) := 1 otherwise. This can be done because we have
a0 ≤ γ(1) ≤ · · · ≤ γ(n). Taking the logarithm on both
sides, we have for any t ∈ Z>0,

log(V (χ(t))) ≤ log(V (χ(0))) +

t∑
i=1

log(G(i)). (35)

Note that under policy (11) and (12), the transmission
power P (t) can be seen as a Markov process which depends
on the clock state τ(t), with steady state distribution as stated
in Lemma 1. Recall that we initialize τ(1) = 1. This allows

us to see G(i) as a random variable and we can calculate
the distribution of G(i) as

Pr(G(i) = γ(n)) ≤ Pr(τ(i+ 1) = 1)
Pr(G(i) = a0) ≥ Pr(τ(i+ 1) = n+ 1)

(36)

for all i ∈ {0, . . . , t− 1} for any t ∈ Z>0.
The results of Lemma 1 provides Pr(τ(i + 1) = 1) and

we have

E[log(V (χ(t)))] ≤ log(V (χ0))

+t
(
Pr(τ(t) > n+ 1) log(a0))

+Pr(τ(t) = n+ 1) log(γ(n))
)

≤ log(V (χ0)) + tµn(p)
(37)

Taking the exponential on both sides, we get the conver-
gence rate

E[V (χ(t))] ≤ µn(p)tV (χ0) (38)

Since µn(p) < µ, property (38) automatically implies that∑∞
t=0 E[α(|χ(t)|)] ≤

∑∞
t=0 E[V (χ(t))]

≤ 1
1−µV (χ0) <∞ (39)

satisfying condition (14) in Definition 1 as µ < 1 and
concluding our proof.

C. Proof of Proposition 1

Recall that we consider a0 > a1 in Assumption 1. Due to
the property of logarithms, if log(µn(p)) for any n ∈ Z≥0,
is monotonically decreasing in p, then so is µn(p).

log(µn(p)) =
(log(γ(n)) + (log(a0)− log(γ(n))e(p)

1 + n(1− e(p))
,

(40)
which is strictly decreasing in p if e(p)

1+n(1−e(p)) is strictly
decreasing in p. We can evaluate its derivative as

e′(p)

1 + n(1− e(p))
+

ne(p)e′(p)

(1 + n(1− e(p)))2
, (41)

which has all terms positive except for e′(p), and we have
e′(p) ≤ 0 from item (i) of Assumption 2 concluding the
proof of monotonicity.

Next, observe that we have µn(0) = a0 as e(0) = 1
according to Assumption 2. Since, we consider µ < a0, if
µn(Pmax) < µ, we have µn(Pmax) ≤ µ ≤ µn(0). Since
e(·) is a continuous function, we have µn(·) also continuous
implying that there exists at least one p

n
∈ [0, Pmax] such

that µn(pn) = µ. Finally, due to µn(·) being monotonous,
p
n

is unique and µn(Pmax) > µ implies no such p
n

exists.
If p

n
∈ [0, Pmax] exists, since µn(·) is a monotonically

decreasing function of p, p ≥ p
n

implies that µn(p) ≤ µ.

D. Proof of Proposition 2

Since we know that P (t) is a stochastic variable under
policy (11)-(12), we can rewrite the cost (16) as

JTT(p, n) = E[P (t)] = pPr(τ(t) ≥ n+ 1). (42)

Applying Lemma 1, we substitute for Pr(τ(t) ≥ n + 1)
which gives us (19).



For n = 0, we trivially have that the function JTT(p, 0) =
p, which is strictly increasing in p. For all other cases, we
will have p

n
> 0 and in order to study the properties of

JTT(p, n) w.r.t p, we look at the properties of the inverse
cost which is never zero for p > 0 defined as

ξn(p) =
1

JTT(p, n)
=

1

p
+ n

1− e(p)
p

(43)

Due to the stability requirement, we only look at ξn(p)
for all p ∈ [p

n
, Pmax], n ≥ 1. Note that due to item (i) of

Assumption 2, we have 1− e(p) to be a sigmoidal function
of p. We can therefore apply Theorem 1 in [20], to conclude
that the term 1−e(p)

p is quasi-concave and takes the value 0

at the limits when p → 0 and p → ∞. The term 1−e(p)
p

therefore has a unique maximum at say pu and is strictly
increasing in the interval (0, pu) and is decreasing in the
interval (pu,∞).

Now, we can consider the two cases.
• There is no local extremum for ξn(p) for p > 0.
• There exists at least one p∗ which is a local extremum

satisfying

∂ξ(p∗)

∂p
=
−ne′(p∗)

p∗
− 1 + n(1− e(p∗)

p∗2
= 0. (44)

In the first case, since ξn(·) is differentiable and has no
local extremum, ∂ξ(p)

∂p is never 0 for p > 0. Note that the
function ξn is decreasing in the interval (pu,∞) for any
n, and so p 7→ ξn(p) must be decreasing for all p > 0.
Since ξn(p) is differentiable and ∂ξ(p∗)

∂p is never 0, ξn(p) is
always decreasing, which implies that JTT(p, n) is always
increasing.

For the second case, there exists at least one p∗ satisfying
(44). Then, we evaluate

∂2ξ(p)
∂p2 = −ne′′(p)

p + 2
p2

(
1+n(1−e(p))

p + ne′(p)
)

(45)

However, note that at a local extremum, the above ex-
pression will have the second term vanishing due to (44),
implying that

∂2ξ(p∗)
∂p2 = −ne′′(p∗)

p∗
(46)

which is positive when e is concave and negative when e
is convex. From item (ii) of assumption 2, we know that
(1 − e) is initially convex and then concave after a point
which means that ξ has only local minima initially (when
1 − e is convex), and then only local maxima. Since ξ(p)
is continuous and differentiable, this is only possible if the
local minimum and maximum are unique.
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