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Uncertainty Principles in Risk-Aware Statistical Estimation

Nikolas P. Koumpis and Dionysios S. Kalogerias

Abstract

We present a new uncertainty principle for risk-aware statistical estimation, effectively quantifying
the inherent trade-off between mean squared error (mse) and risk, the latter measured by the associated
average predictive squared error variance (sev), for every admissible estimator of choice. Our uncertainty
principle has a familiar form and resembles fundamental and classical results arising in several other
areas, such as the Heisenberg principle in statistical and quantum mechanics, and the Gabor limit (time-
scale trade-offs) in harmonic analysis. In particular, we prove that, provided a joint generative model
of states and observables, the product between mse and sev is bounded from below by a computable
model-dependent constant, which is explicitly related to the Pareto frontier of a recently studied sev-
constrained minimum mse (MMSE) estimation problem. Further, we show that the aforementioned
constant is inherently connected to an intuitive new and rigorously topologically grounded statistical
measure of distribution skewness in multiple dimensions, consistent with Pearson’s moment coefficient
of skewness for variables on the line. Our results are also illustrated via numerical simulations.

1 Introduction

Designing decision rules aiming for least expected losses is a standard and commonly employed objective in
statistical learning, estimation, and control. Still, achieving optimal performance on average is insufficient
without safeguarding against less probable though statistically significant, i.e., risky, events, and this is
especially pronounced in modern, critical applications. Examples appear naturally in many areas, including
robotics [1], [2], wireless communications and networking [3], [4], edge computing [5], health [6], and finance
[7], to name a few. Indeed, risk-neutral decision policies smoothen unexpected events by construction, thus
exhibiting potentially large statistical performance volatility, since the latter remains uncontrolled. In such
situations, risk-aware decision rules are highly desirable as they systematically guarantee robustness, in the
form of various operational specifications, such as safety [8, 9], fairness [10, 11], distributional robustness
[12, 13], and prediction error stability [14].

In the realm of Bayesian mean squared error (mse) statistical estimation, a risk-constrained reformulation
of the standard minimum mse (MMSE) estimation problem was recently proposed in [15], where, given a
generative model (i.e., distribution) of states and observables, risk is measured by the average predictive
squared error variance (sev) associated with every feasible square integrable (i.e., admissible) estimator.
Quite remarkably, such a constrained functional estimation problem admits a unique closed-form solution;
as compared with classical risk-neutral MMSE estimation (i.e., conditional mean), the optimal risk-aware
estimator nonlinearly interpolates between the risk-neutral MMSE estimator (i.e., conditional mean) and a
new, maximally risk-aware statistical estimator, minimizing average errors while constraining risk under a
designer-specified threshold.

From the analysis presented in [15], it becomes evident that low-risk estimators deteriorate performance
on average and vice-versa. However, although mse and sev (i.e., risk) are shown to trade between each
other within the class of optimal risk-aware estimators proposed in [15], a mathematical statement that
expresses this fundamental interplay for general estimators is non-trivial and currently unknown. This
paper is precisely on the discovery, quantification and analysis of this interplay. Our contributions are as
follows.

–A New mse/sev Uncertainty Principle (Section 3). We quantify the trade-off between mse and sev
associated with any square integrable estimator of choice by bounding their product by a model-dependent,
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estimator-independent characteristic constant. This fundamental lower bound, which we call the optimal
trade-off, is always attained within the class of optimal risk-aware estimators of [15], and provides a universal
benchmark of the trade-off efficiency of every possible admissible estimator. Our uncertainty relation comes in
the natural form of an uncertainty principle; similar relations are met in different contexts, e.g., in statistical
mechanics (Heisenberg principle) [16] and harmonic analysis (Gabor limit) [17]. In essence, uncertainty
principles are bounds on the concentration or spread of a quantity in two different domains. In our case,
sev measures the squared error statistical spread, while mse measures the squared error average (expected)
value. Our uncertainty principle states that, in general, both quantities cannot be simultaneously small, let
alone minimized; in the latter case exceptions exist, herein called the class of skew-symmetric models. In
fact, conditionally Gaussian models are a canonical example in this exceptional class.

–Hedgeable Risk Margins and Lower Bound Characterization (Sections 4-5). We present
an intuitive geometric interpretation of the class of risk-aware estimators of [15], inherently related to the
optimal trade-off involved in our uncertainty principle. We define a new quantity, called the expected hedgeable
risk margin associated with the underlying generative model by projecting the stochastic parameterized
curve induced by the class of risk-aware estimators of [15] onto the line that links the risk-neutral (i.e.,
MMSE) with the maximally risk-averse estimator. Intuitively, such a projection expresses the margin to
potentially counteract against risk (as measured by the sev), on average relative to the distribution of the
observables. Subsequently, we show that, under mild assumptions, the optimal trade-off is order- equivalent
to the corresponding expected risk margin. We do this by proving explicit and order-matching upper and
lower bounds on the optimal trade-off that depend strictly proportionally to the expected risk margin. The
importance of this result is that a large (small) risk margin implies a large (small) optimal trade-off, and
vice versa.

–Topological/Statistical Interpretation of Risk Margins, and Skewness in High Dimensions
(Section 6). The significance of the risk-margin functional is established by showing that it admits a
dual topological and statistical interpretation, within a rigorous technical framework. First, we prove that
the space of all generative models with a finite risk-margin becomes a topological space endowed with a
(pseudo)metric, the latter induced by a certain risk-margin-related functional. This functional vanishes
for all skew-symmetric models, and therefore is rigorously interpretable as a distance to all members of
this exceptional class (via the (pseudo)metric). Simultaneously, the aforementioned risk-margin-related
functional corresponds to an intuitive model statistic which can be regarded as a generalized measure of
distribution skewness, consistent with the familiar Pearson’s moment coefficient of skewness, to which it
reduces exactly for totally unobservable variables on the line. Similarly, the induced (pseudo)metric may be
regarded as a measure of the relative skewness between (filtered) distributions.

Lastly, our results are supported by indicative numerical examples, along with a relevant discussion
(Section 7).

2 SEV-Constrained MMSE Estimation

On a probability space (Ω,F ,P ), consider random elements X : Ω → R
n and Y : Ω → R

m following a
joint Borel probability measure P(X,Y ) ≡ P . Intuitively, X may be thought of as a hidden random state of
nature, and Y as the corresponding observables. Also, hereafter, let L2|Y be the space of square-integrable

Y , σ{Y }-measurable estimators (i.e., deterministic functions of the observables). Provided a generative
model P(X,Y ), we consider the mean squared error and squared error variance functionals mse : L2|Y → R+

and sev : L2|Y → R+ defined respectively as

mse(X̂),E{‖X − X̂‖22}, and (1)

sev(X̂),E{VY {‖X − X̂‖22}} (2)

≡E
{
E
{(
‖X − X̂‖22−E{‖X − X̂‖22|Y }

)2∣∣Y
}}

,

where X̂ ∈ L2|Y . Note that both functionals mse and sev are law invariant, i.e., they depend exclusively on
P(X,Y ) [18]. As such, they may be equivalently thought of as mappings whose domain is the space of Borel
probability measures on the product space R

n × R
m.
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While mse quantifies the squared error incurred by a given estimator X̂ on average and is a gold-standard
performance criterion in estimation and control [19], sev quantifies the risk of X̂ , as measured by the average
predictive variance of the associated instantaneous estimation error around its MMSE-sense prediction given
the observable Y . In other words, sev quantifies the statistical variability of ||X−X̂||22 against the predictable

statistical benchmark E{||X − X̂||22|Y }. Such statistical variability is left uncontrolled in standard MMSE
estimation; in fact, this is a natural flaw of MMSE estimators (i.e., conditional means) by construction,
resulting in statistically unstable prediction errors, especially in problems involving skewed and/or heavy-
tailed distributions [15].

To counteract risk-neutrality of MMSE estimators, a constrained reformulation of the MMSE problem
was recently introduced in [15], where the mse is minimized subject to an explicit constraint on the associated
sev. The resulting risk-aware stochastic variational (i.e., functional) problem is

minimize
X̂∈L2|Y

mse(X̂)

subject to sev(X̂) ≤ ε
, (3)

where ε > 0 is a user-prescribed tolerance. As problem (3) may be shown to be convex [15, 20], prominent
role in the analysis of (3) plays its variational Lagrangian relaxation

inf
X̂∈L2|Y

mse(X̂) + µ sev(X̂), (4)

for fixed µ ≥ 0, dependent of the particular ε of choice. By defining the third-order posterior statistic

R(Y ) , E{||X||22X|Y } − E{||X||22|Y }E{X|Y }, (5)

and under the mild condition that E{‖X‖32|Y } ∈ L2|Y (also assumed hereafter), an essentially unique
optimal solution to (4) may be expressed in closed form as

X̂
∗
µ(Y ) =

E
{
X|Y

}
+ µR(Y )

I + 2µΣX|Y
, (6)

for all µ ≥ 0, where ΣX|Y � 0 denotes the conditional convariance of X relative to Y . When µ ≡ ∞, we
also define the maximally risk-averse estimator (corresponding to the tightest choice of ε)

X̂
∗
∞(Y ) ,

1

2
Σ†

X|Y R(Y ) +U

[
0r[

U
⊤
E
{
X|Y

}]r+1

n

]
, (7)

where Σ†
X|Y � 0 denotes the Moore–Penrose pseudoinverse of ΣX|Y , the latter with spectral decomposition

ΣX|Y ≡ UΛU
⊤ and of rank r. It is then standard procedure to show that limµ→∞ X̂

∗
µ = X̂

∗
∞, implying

that the paratererization X
∗
(·) is continuous on [0,∞]. Lastly, as also proved in [15], whenever PX|Y satisfies

the condition
E{(Xi − E {Xi | Y })2 (X − E{X | Y }) | Y } ≡ 0 (8)

for all i ∈ N
+
n , it follows that

X̂
∗
µ = E{X|Y }, ∀µ ∈ [0,∞]. (9)

In particular, this is the case when PX|Y is jointly Gaussian. Hereafter, every generative model P(X,Y )

satisfying (9) for almost all Y will be called skew-symmetric; this terminology is justified later in Section 5.

3 Uncertainty Principles

Already from (6) we can see that there is an inherent trade-off between mse and sev for the family of optimal

estimators {X̂
∗
µ}µ. Of course, the resulting mse and sev define the Pareto frontier of problem (4). In this

section, we quantify the mse/sev trade-off for all admissible estimators. We do that by deriving a non-trivial
lower bound on the product between mse and sev.

We start by stating two technical lemmata, useful in our development. To this end, let σmax(Y ) denote

the maximum eigenvalue of ΣX|Y , and define ∆̂X , X̂
∗
0 − X̂

∗
∞.
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Lemma 1 (Monotonicity). The functions mse(X̂
∗
(·)) and sev(X̂

∗
(·)) are increasing and decreasing on [0,∞],

respectively.

Lemma 2 (Continuity). The same functions mse(X̂
∗
(·)) and sev(X̂

∗
(·)) are continuous on [0,∞] and Lip-

schitz continuous on [0,∞) with respective constants

Kmse = 4E
{
σmax(Y )

∥∥∆̂X
∥∥2
2

}
and

Ksev = 4E
{
σmax(Y )2

∥∥∆̂X
∥∥2
2

}
.

(10)

Utilizing the lemmata above, we may now introduce the main result of the paper, which provides a new
and useful characterization of the region of allowable mse-sev combinations ever possibly achievable by any
square-integrable estimator, given a generative model. Essentially, our result, which follows, quantifies that
inherent trade-off between average estimation performance and risk.

Theorem 1 (Uncertainty Principles). Every admissible estimator X̂ ≡ X̂(Y ) ∈ L2|Y satisfies the lower
bounds

mse(X̂)sev(X̂) ≥ h ≥ mse(X̂
∗
0)sev(X̂

∗
∞), (11)

where the characteristic number h is given by

h(P) ≡ mse(X̂
∗
µ
⋆)sev(X̂

∗
µ
⋆), (12)

for any µ⋆ ∈ argminµ∈[0,∞]

{
mse(X̂

∗
µ)sev(X̂

∗
µ)
}
6= ∅.

Proof of Theorem 1. We may examine the following three mutually exclusive cases:

Case 1: sev(X̂) ∈ (sev(X̂
∗
∞), sev(X̂

∗
0)]. Then, from the intermediate value theorem, it follows that there

is µ
X̂

∈ [0,∞) such that X̂
∗
µ
X̂

matches the performance of X̂ , i.e.,

sev(X̂
∗
µ
X̂

) ≡ sev(X̂). (13)

This fact, together with optimality of X̂
∗
µ
X̂

for the Lagrangian relaxation (4), implies

mse(X̂) + µ
X̂
sev(X̂) ≥ mse(X̂

∗
µ
X̂

) + µ
X̂
sev(X̂

∗
µ
X̂

), (14)

which further gives

mse(X̂) ≥ mse(X̂
∗
µ
X̂

). (15)

Therefore, it is true that

mse(X̂)sev(X̂) ≥ mse(X̂
∗
µ
X̂

)sev(X̂
∗
µ
X̂

)

≥ inf
µ∈[0,∞]

mse(X̂
∗
µ)sev(X̂

∗
µ), (16)

proving the claim of the theorem in this case.

Case 2: sev(X̂) ≡ sev(X̂
∗
∞). Because sev(X̂) is convex quadratic in X̂ and bounded below, it is

fairly easy to show that sev(X̂
∗
∞) ≡ inf

X̂∈L2|Y
sev(X̂). Now, it either holds that mse(X̂) ≥ mse(X̂

∗
∞) (≡

limµ↑∞mse(X̂
∗
µ)), giving

mse(X̂)sev(X̂) ≥ mse(X̂
∗
∞)sev(X̂

∗
∞), (17)

or it must be true that mse(X̂) < mse(X̂
∗
∞). In the latter case, the intermediate value property implies the

existence of a multiplier µ
X̂

∈ [0,∞) such that mse(X̂) ≡ mse(X̂
∗
µ
X̂

). If µ
X̂

> 0, optimality of X̂
∗
µ
X̂

for (4)
yields

mse(X̂) + µ
X̂
sev(X̂) ≥ mse(X̂

∗
µ
X̂

) + µ
X̂
sev(X̂

∗
µ
X̂

), (18)
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or, equivalently, sev(X̂) ≥ sev(X̂
∗
µ
X̂

). Note that sev(X̂) ≡ sev(X̂
∗
∞), and so this actually implies that

sev(X̂
∗
∞) ≡ sev(X̂

∗
µ
X̂

). Regardless, we obtain

mse(X̂)sev(X̂) ≥ mse(X̂
∗
µ
X̂

)sev(X̂
∗
µ
X̂

). (19)

If µ
X̂
≡ 0, then X̂ ≡ X̂

∗
0 ≡ E{X|Y } almost everywhere, which implies that sev(X̂

∗
∞) ≡ sev(X̂) ≡ sev(X̂0),

and
mse(X̂)sev(X̂) ≡ mse(X̂

∗
0)sev(X̂

∗
0). (20)

From (17), (19) and (20), we readily see that

mse(X̂)sev(X̂) ≥ inf
µ∈[0,∞]

mse(X̂
∗
µ)sev(X̂

∗
µ), (21)

whenever X̂ is such that sev(X̂) ≡ sev(X̂
∗
∞).

Case 3: sev(X̂) /∈ [sev(X̂
∗
∞), sev(X̂

∗
0)]. Then we must necessarily have

sev(X̂) > sev(X̂
∗
µ), ∀µ ∈ [0,∞]. (22)

In this case, either mse(X̂) ≡ mse(X̂
∗
µ
X̂

) for some µ
X̂

∈ [0,∞], implying that

mse(X̂)sev(X̂) ≥ mse(X̂
∗
µ
X̂

)sev(X̂
∗
µ
X̂

), (23)

or mse(X̂) > mse(X̂
∗
µ) for all µ ∈ [0,∞], which gives

mse(X̂)sev(X̂) > mse(X̂
∗
µ)sev(X̂

∗
µ), ∀µ ∈ [0,∞]. (24)

Again, it follows that

mse(X̂)sev(X̂) ≥ inf
µ∈[0,∞]

mse(X̂
∗
µ)sev(X̂

∗
µ), (25)

and the proof is now complete.

The practical aspects of Theorem 1 are summarized as follows: Provided an adequate threshold of
mse(sev), the corresponding sev(mse) is always, at least, inversely proportional to that level. Except for
its analogy to classical uncertainty principles from physics and analysis (see Section 1), our uncertainty
relation resembles classical lower bounds in unconstrained/unbiased estimation, such as the Cramèr-Rao and
Chapman-Robins bounds, in the sense that it provides a universal benchmark for any admissible estimator.

Such an estimator might be chosen from the class of risk-aware estimators {X̂
∗
µ}µ, or even from many other

estimator classes (possibly more computationally friendly), such as linear estimators, deep neural networks,

adaptive estimators, convex combinations of X̂
∗
0 and X̂

∗
∞, etc. However, under the setting of Theorem 1,

any estimator outside the family of risk-aware estimators {X̂
∗
µ}µ calls for Pareto improvement. Further,

estimators achieving the lower bound h(P) must be equivalent to X̂
∗
µ
⋆ (note that µ⋆ might not be unique).

4 Hedgeable Risk Margins

As expected, the Bayesian lower bound h(P) is achieved within the class of risk-aware estimators {X̂
∗
µ}µ.

In this section, we are interested in answering the following question: Where are the estimators that achieve
the lower bound with respect to the risk aversion parameter µ localized, and how does the width of such
a localization area relate with the generative model P(X,Y )? To this end, we now introduce a function

that measures the total projection onto ∆̂X of the transformed risk-averse µ-parameterized stochastic curve

generated by X̂
∗
µ for all µ ≥ 0, defined as

C(Y ) ,

∫ +∞

0

〈
Σ†

X|Y
dX̂

∗
τ (Y )

dτ
, ∆̂X(Y )

〉
dτ. (26)

5



As we will see, C(Y ) is actually nonnegative and expresses the margin to potentially counteract or hedge
against risk, as the latter is quantified by the sev functional; hereafter, we suggestively refer to C(Y ) as the
hedgeable risk margin associated with observation Y . By letting σmin(Y ) be the smallest non-zero eigenvalue
of ΣX|Y , we have the following result.

Theorem 2 (Expected Hedgeable Risk Margin). For fixed generative model P(X,Y ), C(Y ) may be
expressed as

C(Y ) =
∥∥∆̂X(Y )

∥∥2
Σ

†
X|Y

≥ 0, (27)

and its expected value satisfies the standard bounds

E
{
E2
L(Y )

}
≤ E{C(Y )} ≤ E

{
E2
U (Y )

}
, (28)

where

EU(L)(Y ) ,





∥∥∆̂X(Y )
∥∥
2√

σmin(max)(Y )
, if σmin(Y ) > 0

0, if not

. (29)

Proof of Theorem 2. In case σmin(Y ) = 0 (which happens if and only if σmax(Y ) = 0), the situation is trivial
and the result holds. Therefore, in what follows we may assume that σmin(Y ) > 0. In that case, to obtain
an expression for (26) we have to differentiate (6) with respect to µ which for brevity may be written as

X̂
∗
µ = ζ(µ)(X̂

∗
0 + µR), where ζ(µ) , (I + 2µΣX|Y )−1 . By fixing an observation Y , we obtain the linear

µ-varying system

dX̂
∗
µ

dµ
= −2ζ(µ)ΣX|Y X̂

∗
µ + ζ(µ)R. (30)

Then, given that the commutator
[
ζ(µ),ΣX|Y

]
= 0, (30) can be written as

dX̂
∗
µ

dµ
= ζ(µ)2(R − 2ΣX|Y X̂

∗
0). (31)

Now, from (7) we have

X̂
∗
∞ = UKU

⊤
X̂

∗
0 +

1

2
UD

†
ΣX|Y

U
⊤
R, (32)

where
D

†
ΣX|Y

= diag
({

(σi(Y ))−1}
i∈N

+

r

,0
)

(33)

and
K = diag

({
0}

i∈N
+

r

,1
)
. (34)

Thus,

U
⊤
R = DΣX|Y

(
2U⊤

X̂
∗
∞ − 2KU

⊤
X̂

∗
0

)

= 2DΣX|Y
U

⊤
X̂

∗
∞. (35)

From (31), and (35), we have:

dX̂
∗
µ(Y )

dµ
= 2UΛ(Y )2DΣX|Y

U
⊤∆̂X, (36)

where

Λ(Y )2 = diag
({

(1 + 2µσi(Y ))−2}
i∈N

+

r

,1
)
. (37)

6



Therefore, the integrand reads:

〈
Σ†

X|Y
dX̂

∗
µ(Y )

dµ
, ∆̂X

〉

= 2∆̂X
⊤
UΛ(Y )2(D†

ΣX|Y
)DΣX|Y

U
⊤∆̂X, (38)

from which it follows that

C(Y ) = [U⊤∆̂X]⊤D†
ΣX|Y

U
⊤∆̂X. (39)

Thus, provided the assumptions from [15] we obtain

E

{ ∥∥∆̂X‖22
σmax(Y )

}
≤ E{C(Y )} ≤ E

{ ∥∥∆̂X‖22
σmin(Y )

}
, (40)

and we are done.

At this point it is worth attributing geometric meaning in the above result; by integrating (36) in (0, µ)
we obtain:

X̂
∗
µ(Y ) = X̂

∗
0(Y ) +UG(µ)U⊤∆̂X, (41)

where

G(µ) = diag
({

2µσi(Y )(1 + 2µσi(Y ))−1}
i∈N

+

r

,0
)
. (42)

We observe that the risk-aware estimator shifts the conditional mean estimator by the transformed difference
∆̂X. Thus, motivated by the one dimensional case we may interpret ∆̂X as the direction of asymmetry
of the posterior (for the given observation), and note the following: referring to (38), [U⊤∆̂X]i being large
enough for most of i ∈ N

+
n implies that large estimation errors incurred by the conditional mean estimator

are mostly due to the built-in riskiness of the posterior. In this case, the projection from (38) decreases with
µ over a long width before fading-out.

To put it differently, large projections indicate enough margin with respect to µ to potentially hedge
against risk, justifying the meaning ascribed in C(Y ). Inequality (40) implies that, on average, the infor-
mation regarding the active risk-aware estimates -and subsequently those that achieve the lower bound- is
completely embodied to the limit points of the curve. Thus, recalling (9) and (8), we expect that "near" a
skew symmetric generative model those risk-averse estimates which actively account for risk will be limited.
Further, highly skewed models compress the active risk-aversion range. To see that consider ||∆̂X||22 6= 0
and then take

〈
Σ†

X|Y
dX̂

∗
µ(Y )

dµ
,

∆̂X

||∆̂X||2

〉
= 2∆̂X

⊤
UΛ(Y )2(D†

ΣX|Y
)DΣX|Y

U
⊤ ∆̂X

||∆̂X||2

=
2

||∆̂X||2

r∑

i=1

1

(1 + 2µσi)
2 [U

⊤∆̂X]2i

<
1

µρmin||∆̂X||2

r∑

i=1

[U⊤∆̂X]2i . (43)

Thus, by choosing ǫ > 0 we may write

µ∗ <

√
E{
∑r

i=1[U
⊤∆̂X]2i }

ǫρmin

√
E{||∆̂X||22}

+O

(
Var(||∆̂X||22)

ǫ(E{||∆̂X||22})
3
2

)
, with

||∆̂X||22 − E{||∆̂X||22}

E{||∆̂X||22}
→ 0, (44)

where ρmin is such that essinfσmin(Y ) ≥ ρmin.
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5 Lower Bound Characterization

As we saw earlier, provided a generative model, there exist risk-aware estimators that result in both good
(even optimal) performance on average, and an adequate level of robustness; a standard example is the

efficient frontier family {X̂
∗
µ}µ, and in particular for µ ≡ µ∗ (see Theorem 1). But still, how far can

the trade-off incurred by any member of the efficient frontier class {X̂
∗
µ}µ be from achieving the ultimate

lower bound mse(X̂
∗
0)sev(X̂

∗
∞), and how is this distance related to the assumed generative model? We

answer these questions by showing that the difference between the parameterization mse(X̂
∗
µ)sev(X̂

∗
µ) and

mse(X̂
∗
0)sev(X̂

∗
∞) is bounded from above and below by functions of another positive, risk margin-related,

model-dependent functional.

Theorem 3 (Uncertainty Bound Characterization). Suppose that there exists ρmax ≥ 0, such that

esssupσmax(Y ) ≤ ρmax. Then, the products mse(X̂
∗
µ)sev(X̂

∗
µ), µ ∈ [0,∞] and mse(X̂

∗
0)sev(X̂

∗
∞) satisfy the

uniform upper bound

mse(X̂
∗
µ)sev(X̂

∗
µ)−mse(X̂

∗
0)sev(X̂

∗
∞)≤U(P), (45)

where

U(P) =
(
(ρmax)

2mse(X̂
∗
0) + ρmaxsev(X̂

∗
∞)
)
d(P)2 + (ρmax)

3d(P)4, (46)

and d(P) , 2
√
E{C(Y )}. If, further, there exists ρmin > 0, such that essinf σmin(Y ) ≥ ρmin, then the same

products satisfy the lower bound

L(P , µ)≤mse(X̂
∗
µ)sev(X̂

∗
µ)−mse(X̂

∗
0)sev(X̂

∗
∞) (47)

where

L(P , µ) =
(
α(µ)mse(X̂

∗
0) + ρminµ

2α(µ)sev(X̂
∗
∞)
)
d(P)2 + (ρmin)µ

2α(µ)2d(P)4, (48)

and α(µ) = (1/4)ρ2min(1 + 2µρmax)
−2.

Proof of Theorem 3. To begin with, under the setting of the theorem, let us integrate (36) in (µ, µ′), obtaining

X̂
∗
µ − X̂

∗
µ
′ = (µ− µ′)UH(µ, µ′)U⊤∆̂X, (49)

where

H(µ, µ′) = diag

({
2σi(Y )(

1 + 2µσi(Y )
)(
1 + 2µ′σi(Y )

)
}

i∈N
+

r

,0

)
.

Subsequently, consider the difference

|mse(X̂
∗
µ)−mse(X̂

∗
µ
′)| =

∣∣E
{
(X̂

∗
µ − X̂

∗
0 + X̂

∗
µ
′ − X̂

∗
0)

⊤(X̂
∗
µ − X̂

∗
µ
′)
}∣∣.

After substituting µ′ = 0 and subsequently applying (49) and Lemma 2, we get

Λmse(µ) , mse(X̂
∗
µ)−mse(X̂0)

= E
{
(X̂

∗
µ − X̂

∗
0)

⊤(X̂
∗
µ − X̂

∗
0)
}
. (50)

Additionally, recalling the QCQP reformulation of the sev-constrained MMSE estimation problem in [15],
we may write

|sev(X̂µ)− sev(X̂µ
′)| (51)

=
∣∣E{(X̂∗

µ − X̂
∗
∞ + X̂

∗
µ
′ − X̂

∗
∞)⊤ΣX|Y (X̂

∗
µ − X̂

∗
µ
′)}
∣∣.
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Thus, by substituting µ′ = +∞, (51) yields

Λsev(µ) , sev(X̂
∗
µ)− sev(X̂

∗
∞)

= E
{
(X̂

∗
µ − X̂

∗
∞)⊤ΣX|Y (X̂

∗
µ − X̂

∗
∞)
}
. (52)

From (49), Lemma 1 and Theorem 2, it is easy to show that

Λmse(µ) ≤
ρmax

4
d(P)2 and Λsev(µ) ≤

ρ2max

4
d(P)2, (53)

Therefore, from (53), we may write

mse(X̂
∗
µ)sev(X̂

∗
µ)−mse(X̂

∗
0)sev(X̂

∗
∞) = Λsev(µ)mse(X̂

∗
0) + Λmse(µ)sev(X̂

∗
∞) + Λmse(µ)Λsev(µ)

≤ U(P), ∀µ ∈ [0,+∞]. (54)

Lastly, when a ρmin exists, again from (49) and Theorem 2 we may also fairly easily find that

Λmse(µ) ≥ ρminµ
2α(µ)d(P)2 and (55)

Λsev(µ) ≥ α(µ)d(P)2, (56)

and thus in a similar manner obtain the lower bound L(P , µ). Enough said.

Theorem 3 implies that for sufficiently small ε > 0 for which d(P) < ε, it is true that, uniformly over
µ ∈ [0,+∞],

mse(X̂
∗
µ)sev(X̂

∗
µ) ≃ h(P) ≃ mse(X̂

∗
0)sev(X̂

∗
∞). (57)

In other words, when d(P) is very small, we can select the risk aversion parameter µ almost freely and
still achieve simultaneously both a good average performance and an adequate level of robustness; this is
of course a feature of (near-)skew-symmetric models. On the contrary, highly skewed models displace the
optimal trade-off h(P) away from the ultimate lower bound, thus rendering the exchangeability between mse
and sev highly nontrivial. Given fixed values of ρmin and ρmax, Theorem 3 also implies that the optimal trade-
off h(P) is fully characterized by three numbers: d(P), the minimum mse and the minimum sev. Next, we
show that d(P) admits simultaneously well-defined and intuitive topological and statistical interpretations,
within a rigorous framework.

6 Risk Margins as Complete Metrics and Measures of Skewness in

High Dimensions

In what follows, denote the product of state and observable spaces as S , R
n ×R

m, and let P(S) be the set
of all Borel probability measures on S. Also recall the risk margin-related functional d : P(S) → R+ defined
in Theorem 3 as

d(P) ≡ 2
√
EPY

{C(PX|Y )}

= 2

√
EPY

{∥∥∆̂X(PX|Y )
∥∥2
Σ

†
X|Y

}
, (58)

where we now explicitly highlight the dependence on the generative model P ≡ P(X,Y ). Then, we consider
the space

PS(S) , {P ∈ P(S)|d(P) < ∞}, (59)

as well as the feasibility set

F , {α ≥ 0|d(P) = α, for some P ∈ PS(S)} ⊆ R+. (60)
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Our discussion will concentrate on endowing PS(S) with a topological structure based on appropriate
handling of the functional d, resulting among other things in a meaningful and intuitive topological inter-
pretation for the latter.

Indeed, for every number α ∈ F , take an arbitrary element Pα ∈ PS(S) such that d(Pα) = α. Then, we
may construct a measure-valued multifunction C : F ⇒ PS(S) as

C(α) , {P ∈ P(S)|P ∼ Pα}, (61)

which in turn defines an equivalence class of Pα for each α ∈ F , as well as consider any selection of the
multifunction C, say C : F → PS(S), i.e., a measure-valued function such that C(·) ∈ C(·) on F . Next, we
define a set of equivalence class representatives as

R = range(C). (62)

Based on our construction, one may always choose C(·) = P(·) on F , in which case R = {Pα}α∈F . There
is a bijective mapping between R and the collection of equivalence classes {C(α)}α∈F . Therefore, we may
define the canonical projection map

Π(P) = argmin
P̃∈R

|d(P)− d(P̃)| ∈ R, (63)

which maps every Borel measure P in PS(S) to its representative Π(P) in R and equivalently, to its corre-
sponding equivalence class. In other words, the canonical map Π separates or partitions PS(S) on the basis
of the values of the risk margin statistic d(P), for each P ∈ PS(S).

Let us now define another related functional dS : PS(S)× PS(S) → R+ as

dS(P ,P ′) ,
√∣∣EPY

{C(PX|Y )} − EP′
Y

{C(P ′
X|Y )}

∣∣

=

√∣∣(d(P))2 − (d(P ′))2
∣∣. (64)

It is easy to see that the pair (R, dS) is a metric space. In fact, it is immediate that, for every P ∈ R and
P ′ ∈ R,

dS(P ,P ′) = 0 ⇐⇒ d(P) = d(P ′) ⇐⇒ P ≡ P ′, (65)

dS(P ,P ′) = dS(P
′,P), and for another P ′′ ∈ R

dS(P ,P ′′) =
√∣∣(d(P))2 − (d(P ′))2 + (d(P ′))2 − (d(P ′′))2

∣∣

≤
√∣∣(d(P))2 − (d(P ′))2

∣∣+
√∣∣(d(P ′))2 − (d(P ′′))2

∣∣

= dS(P ,P ′) + dS(P
′,P ′′). (66)

Since (R, dS) is indeed a metric space, dS induces a topology on the representative set R, which we suggestively
call the (hidden) skewed topology on R. Similarly, (PS(S), dS) is a pseudometric space. In this case, we say
that dS induces the (hidden) skewed pseudometric topology on PS(S). In fact, we may prove more.

Theorem 4. The metric space (R, dS) is Polish, and the pseudometric space (PS(S), dS) is pseudoPolish.

Before stating the proof of the theorem, we provide the following Lemma:

Lemma 3. The functional d is surjective, i.e., F = R+.

Proof of Lemma 3. Consider the simple case of a totally hidden state vector X and suppose that

P(X,Y ) = P(X) = Π
n
i=1P(Xi)

, (67)

where P(Xi)
∼ gamma(κi, θi). Then

d(PX) = ‖∆̂X(PX)‖
Σ

†
X

= 2

∥∥∥∥∥∥∥




[
E{Xi} −

E{X3
i } − E{X2

i }E{Xi}}

2σ2
i

]1

r
0n−r




∥∥∥∥∥∥∥
Σ

†
X

. (68)
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Since the skewness of P(Xi)
is given by 2√

κi

, (68) reads

d(PX) = 4

√
1

κiσ
2
i

. (69)

As a result, for any α ≥ 0, we can always find κi > 0 and σi = κiθ
2
i > 0 such that

d(PX) = 4

√
1

κ3
i θ

4
i

= α. (70)

In other words, for any α ≥ 0, d(P) = α has always a solution within PS(S) which concludes the proof.

Proof of Theorem 4. In order to prove separability for (R, dS), take any P0 ∈ R and its corresponding image
through d, d(P0) = α0. Since F is separable, there exist rationals {αn}

∞
n=1 s.t. αn → α0. Further, due to

Lemma 3, there exists {Pn}
∞
n=1 ∈ R with d(Pn) = αn. Thus,

αn → α0 ⇒ d(Pn) → d(P0)

⇒ d(Pn)
2 → d(P0)

2

⇒

√
|d(Pn)

2 − d(P0)
2| → 0

⇒ dS(Pn,P0) → 0 (71)

To show that (R, dS) is complete, take {Pn}
∞
n=1 ∈ R to be Cauchy. Then, since (∀ε > 0)(∃N = N(ε) > 0)

s.t.

n,m > N(ε) ⇒ dS(P ,P ′) < ε

⇒

√
|d(Pn)

2 − d(P0)
2| < ε

⇒

√
|α2

n − α2
m| < ε , (72)

{αn}
∞
n=1 ∈ F is Cauchy and hence it converges to some α0 ∈ F . Since d is onto, the same process followed

in (71) yields Pn → P0. For the metric space (P(S), dS), separability follows by fixing a collection of
representatives R and subsequently choosing P0 ∈ R. Then, a countable basis for (R, dS) also separates
(P(S), dS) since for any P∗ ∼ P0 we have

dS(Pn,P
∗) ≤ dS(Pn,P0) + dS(P0,P

∗)

≤ dS(Pn,P0) + 0 (73)

which implies that Pn → P∗. Lastly, given that P0 is arbitrary, (73) shows completeness for (P(S), dS) since
convergence of a Cauchy sequence in (R, dS) extends to convergence to an equivalence class in (P(S), dS).

Therefore, there is a standard topological structure induced by dS (and thus by d) on PS(S) with a
complete description and favorable properties in terms of separation, closeness and limit point behavior.

Under these structural considerations, it is then immediate to observe that for any given Borel measure

P ∈ PS(S) we have that d(P) = |(d(Π(P)))2 − 0|1/2 = dS(Π(P),P0), and therefore we may interpret d(P)
as the distance of P relative to all equivalent to each other skew-symmetric Borel measures on S (i.e., with

‖∆̂X‖2 = 0 almost everywhere), which are precisely the measures for which risk-neutral and risk-aware

estimators, X̂0 and X̂∞ respectively, coincide and thus the corresponding mse and sev are simultaneously
minimal. This fact is significant, not only because it provides a clear topological meaning for the (expected)
risk margin analyzed earlier in Section 4 (Theorem 2), but also because d(P) induces a similar interpretation
to the optimal trade-off h(P) via Theorem 3, and consequently completely characterizes the general mse/sev
trade-off of the uncertainty principle of Theorem 1.
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Figure 1: Normalized (mse)/(sev) and their corresponding product in case of state-dependent noise.

Simultaneously, both functionals d and dS admit a convenient and intuitive statistical interpretation, as
well. To see this, let us consider the simplest case of a totally hidden, real-valued state variable, say X .
We have P ≡ PX|0 ≡ PX , where 0 denotes a fictitious trivial observation. Then, denoting the mean and

variance of X as µ and σ2, respectively, d(P) may be expressed as

d(P) = 2
1

σ

∣∣∆̂X(PX)
∣∣

= 2
1

σ

∣∣∣∣E{X} −
E{X3} − E{X2}E{X}

2σ2

∣∣∣∣

= 2
1

σ

∣∣∣∣
2σ2µ− E{X3}+ E{X2}µ

2σ2

∣∣∣∣

=

∣∣∣∣
2σ2µ− E{X3}+ (µ2 + σ2)µ

σ3

∣∣∣∣

=

∣∣∣∣
−E{X3}+ µ3 + 3σ2µ

σ3

∣∣∣∣, (74)

or, equivalently,

d(P) =

∣∣∣∣E
{(

X − µ

σ

)3}∣∣∣∣, (75)

which is nothing but the absolute value of Pearson’s moment coefficient of skewness (i.e., excluding direc-
tionality). In other words, Pearson’s moment cofficient of skewness may be interpreted itself as the difference
of a pair of optimal estimators; these are the mean of X (in the MMSE sense), and the maximally risk-
averse estimator of X, optimally biased towards the tail of the distribution PX . Further, via our topological
interpretation of d(P), Pearson’s moment coefficient of skewness expresses, in absolute value, the distance
(in a topologically consistent sense) of the distribution of X relative to any non-skewed distribution on the
real line, with the most obvious representative being N (0, 1).

Consequently, the risk margin functional d (intuitively a scalar quantity) may be thought as a measure
of skewness magnitude in multiple dimensions, corresponding to a consistent non-directional generalization
of Pearson’s moment skewness coefficient, also fully applicable the hidden state model setting, and tacitly
exploiting statistical dependencies of both the conditional and marginal measures PX|Y and PY . In the
same fashion, the risk margin (pseudo)metric dS may be conventiently thought as a measure of the relative
skewness between (filtered) distributions.

Of course, skewness directionality, while informative, is a much more complicated concept in multiple
dimensions as compared to the case of random variables on the line, where directionality reduces to the
sign of a centered third-order moment. Nonetheless, while directionality is naturally not captured by the
distance-related functionals d and dS, it is embedded in the random vector ∆̂X, and is optimally exploited

by the family of optimal risk-aware estimations {X̂
∗
µ}µ, for each observation Y .
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Figure 2: Measure of skewness as a function of the parameter sX .

7 Numerical Simulations and Discussion

Our theoretical claims are now justified through indicative numerical illustrations, along with a relevant
discussion. We justify our claims by presenting the following working examples: First, we consider the
problem of inferring an exponentially distributed hidden state X , with E{X} = 2 while observing Y = X+v
[15]. The random variable v expresses a state-dependent, zero-mean, normally distributed noise, whose

(conditional) variance is given by E{v2|X} = 9X2. Fig. 1 shows mse(X̂
∗
µ), sev(X̂

∗
µ), as well as their product

mse(X̂
∗
µ)sev(X̂

∗
µ), all with respect to the risk-aversion parameter µ. The former two have been normalized

with respect to their corresponding minimum values while the product results after the aforementioned
normalization step. From the figure, it is evident that the optimal trade-off (in the sense implied by Theorem
1) is attained close to the origin; note, though, that such an optimal µ∗ does not correspond to the value of
µ for which (normalized) mse and sev curves intersect.

Next, we consider the problem of estimating another real-valued hidden state X while observing Y =
X × W , with (X,W ) ∼ Lognormal(0,S), S = diag(sX , 0.25). The variable sX > 0 defines a parametric
family of probability measures whose skewness increases with sX . We would like to examine the impact of
our theoretical results by varying the skewness of the aforementioned model. However, we are not aware
that by increasing sX the posterior skewness alters as well. In addition, even if skewness varies with sX , the
way it does so is not apparent. For these reasons, we employ our new distance/skewness measure to trial the
model with respect to sX . This experiment is shown in Fig. 2 where we verify that at least for the examined
sX -values, the average posterior skewness increases.

Fig. 3 illustrates how the profiles of mse(X̂
∗
µ), sev(X̂

∗
µ), and their product mse(X̂

∗
µ)sev(X̂

∗
µ) scale

with sX . As above, we normalize mse(X̂
∗
µ) and mse(X̂

∗
µ)sev(X̂

∗
µ) with respect to their minimum possible

value, respectively, and sev(X̂
∗
µ) with respect to its maximum one. First, although the average performance

deteriorates faster as the skewness increases (e.g., for the most skewed model, depicted in cyan), a 15%
deterioration of mse corresponds to a 20% safety improvement, indicating that, there might be particular
models allowing for an even more advantageous exchange.

Further, Fig. 3 shows that, for the smallest skewness level (blue), almost all risk-aware estimates achieve
a near-optimal bound. As the skewness increases, the optimal -with respect to the product- estimators

become strongly separated from each other within the class {X̂
∗
µ}µ. In this one-dimensional example, there

is a unique optimal value for µ⋆ with respect to the product; however, this might be only an exception to
the rule, especially for higher-dimensional models. Note that a graphical representation of the product like
the one depicted in Fig. 3 is all that we need to do to at least approximately determine the optimal value
for µ (a single parameter).

Lastly, Fig. 4 presents the course of the upper bound U(P) with respect to the skewness parameter sX .
To clarify its behavior close to zero, we sample sX additionally at 0.01 and 0.1. Expectedly, while d(P)
approaches zero, the bound approaches zero as well regardless of the chosen limit ρmax, and the values

mse(X̂
∗
0), and sev(X̂

∗
∞).
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Figure 3: Up (Center): mse (sev) percent increase (decrease) relative to risk-aversion parameter µ for
different skewness levels. Down: Normalized trade-off relative to risk-aversion parameter µ for different
skewness levels.

Figure 4: The bound U(P) as a function of the parameter sX . In this example ρmax = 10.

8 Conclusion

This work quantified the inherent trade-off between mse and sev by lower bounding the product between the
two over all admissible estimators. Provided a level of performance (resp. risk), the introduced uncertainty
relation reveals the minimum risk (resp. performance) tolerance for the problem and assesses how effective
any estimator is with respect to the optimal Bayesian trade-off. Projecting the risk-averse stochastic µ-
parameterized curve on the link between the MMSE and the maximally risk-averse estimator, we defined as
analyzed the so-called hedgeable risk margin of the model. Its significance stems from the fact that it admits
both a rigorous topological and an intuitive statistical interpretations, fitting our risk-aware estimation
setting. In particular, the risk margin functional induces a new measures of the skewness of the conditional
evidence regarding the state provided the observables. Connecting the dots, we showed that the optimal
trade-off is order-equivalent to this new measure of skewness, thus fully characterizing our uncertainty
principle from a statistical perspective.
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9 Appendix

9.1 Maximally Risk-Averse MMSE estimator

First, recall that

ΣX|Y , E

{
(X − E{X | Y })(X − E{X | Y })⊤ | Y

}
= UΛU

⊤, (76)

which implies

U
⊤ΣX|Y U = E

{
(U⊤

X −U
⊤
E{X | Y })(U⊤

X −U
⊤
E{X | Y })⊤ | Y

}

= Λ, (77)

where we assume that Λ conserves only r non-zero eigenvalues, i.e,

Λ = diag
({

σi(Y )
}
i∈N

+

r

,0
)
. (78)

From (77) and (78) we may infer that

[U⊤(X − E{X|Y })]2i = 0 , i = r + 1, ..., n, (79)

or equivalently that

[U⊤
X ]i = [U⊤

E{X|Y }]i , i = r + 1, ..., n. (80)

Recalling (5), (6) we have

X̂
∗
µ

= (I + 2µΣX|Y )−1[E{X | Y }+ µ
(
E{‖X‖22X | Y } − E{‖X‖22 | Y }E{X | Y }

)
]

= U
(
I+ 2µΛ

)−1








[
E{[U⊤

X]i|Y }
]1
r[

E{[U⊤
X]i|Y }

]r+1

n


+ µ




[
E{||X||22[U

⊤
X]i|Y } − E{||X ||22|Y }[U⊤

E{X|Y }]i}
]1
r[

E{||X||22|Y }[U⊤
X]i − E{||X||22|Y }[U⊤

E{X|Y }]i

]r+1

n








= U
(
I+ 2µΛ

)−1








[
E{[U⊤

X]i|Y }
]1
r[

E{[U⊤
X]i|Y }

]r+1

n


+ µ



[
E{||X||22[U

⊤
X]i|Y } − E{||X||22|Y }[U⊤

E{X|Y }]i}
]1
r

[[0]i]
r+1
n








(81)

where the latter holds since (80), indicates that

E{‖X‖22[U
⊤
X]i | Y } − E{‖X‖22 | Y }[U⊤

E{X | Y }]i

= E{‖X‖22 | Y }[U⊤
X]i − E{‖X‖22 | Y }[U⊤

E{X | Y }]i

= E{‖X‖22 | Y }[U⊤
E{X | Y }]i − E{‖X‖22 | Y }[U⊤

E{X | Y }]i

= 0 , i = r + 1, ..., n. (82)

Further, notice that from (78) and (81) we obtain

lim
µ→∞

U
(
I+ 2µΛ

)−1




[
E{[U⊤

X]i|Y }
]1
r[

E{[U⊤
X]i|Y }

]r+1

n


 = U

[
0r[

U
⊤
E{X | Y }

]r+1

n

]
(83)
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and

lim
µ→∞

U
(
I+ 2µΛ

)−1

µ



[
E{||X||22[U

⊤
X]i|Y } − E{||X||22|Y }[U⊤

E{X|Y }]i}
]1
r

[[0]i]
r+1
n




=




1
2σ1(Y )

(
E{||X||22[U

⊤
X]1|Y } − E{||X ||22|Y }[U⊤

E{X|Y }]1}
)

...
1

2σr(Y )

(
E{||X||22[U

⊤
X]r|Y } − E{||X||22|Y }[U⊤

E{X|Y }]r}
)

...
0




=
1

2
Σ†

X|Y

(
E

{
‖X‖22X | Y

}
− E

{
‖X‖22 | Y

}
E{X | Y }

)

=
1

2
Σ†

X|Y R(Y ) (84)

which yields

X̂
∗
∞(Y ) =

1

2
Σ†

X|Y R(Y ) +U

[
0r[

U
⊤
E
{
X|Y

}]r+1

n

]
, (85)

and concludes the proof �

9.2 Proof of lemma 1

Consider X̂
∗
µ and X̂

∗
µ
′ being minimizers of (4) with µ 6= µ′. Then we may write:

mse(X̂
∗
µ
′) + µ′ sev(X̂

∗
µ
′) ≤ mse(X̂

∗
µ) + µ′ sev(X̂

∗
µ) , (86)

and

mse(X̂
∗
µ) + µ sev(X̂

∗
µ) ≤ mse(X̂

∗
µ
′) + µ sev(X̂

∗
µ
′) . (87)

By adding (86) and (87) we obtain:

(µ− µ′)sev(X̂
∗
µ) ≤ (µ− µ′)sev(X̂

∗
µ
′) , (88)

which shows that sev(X̂µ) decreases w.r.t. µ. Furthermore, from either (86) or (87) we obtain that mse(X̂µ)

is increasing. For example, by assuming µ− µ′ > 0, (86) reads:

mse(X̂
∗
µ
′)−mse(X̂

∗
µ) ≤ µ′(sev(X̂

∗
µ)− sev(X̂

∗
µ
′)) ≤ 0 (89)

�

9.3 Proof of lemma 2

To begin with let us recall that

dX̂
∗
µ(Y )

dµ
= 2UΛ(Y )2DΣX|Y

U
⊤∆̂X. (90)

By integrating (90) in (µ, µ′) we obtain

X̂
∗
µ − X̂

∗
µ
′ = (µ− µ′)UH(µ, µ′)U⊤∆̂X , (91)
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where

H(µ, µ′) = diag

({
2σi(Y )(

1 + 2µσi(Y )
)(
1 + 2µ′σi(Y )

)
}

i∈N
+

r

,0

)
. (92)

To show Lipschitz for mse(X̂
∗
µ) in [0,+∞), consider the absolute difference

|mse(X̂
∗
µ)−mse(X̂

∗
µ
′)| =

∣∣E
{
‖X̂

∗
µ‖

2
2 − 2X̂

∗⊤
0 X̂

∗
µ − ‖X̂

∗
µ
′‖22 + 2X̂

∗⊤
0 X̂

∗
µ
′

}∣∣, (93)

and subsequently add and subtract X̂
∗⊤
µ
′ X̂

∗
µ within the expectation to obtain

|mse(X̂
∗
µ)−mse(X̂

∗
µ
′)| =

∣∣E
{
(X̂

∗
µ − X̂

∗
0 + X̂

∗
µ
′ − X̂

∗
0)

⊤(X̂
∗
µ − X̂

∗
µ
′)
}∣∣. (94)

Thus, by employing (91) and (92) we may write

|mse(X̂
∗
µ)−mse(X̂

∗
µ
′)| =

∣∣E
{
(X̂

∗
µ − X̂

∗
0 + X̂

∗
µ
′ − X̂

∗
0)

⊤(X̂
∗
µ − X̂

∗
µ
′)
}∣∣

= 4|µ− µ′|
∣∣∣E
{
∆̂X

⊤
U
(µ
2
H(µ, 0) +

µ′

2
H(µ′, 0)

)
H(µ, µ′)U⊤∆̂X

}∣∣∣. (95)

For κ ∈ {µ, µ′} we have

[
U

⊤∆̂X
]⊤κ

2
H(κ, 0)H(µ, µ′)

[
U

⊤∆̂X
]
≤ max

{{
[
κ

2
H(κ, 0)H(µ, µ′)]i,i

}

1≤i≤r

, 0

}
||∆̂X||22

= max

{
[
κ

2
H(κ, 0)H(µ, µ′)]i,i

}

1≤i≤r

||∆̂X||22 . (96)

Further, since

[H(κ, 0)]i,i =
κσi(Y )

1 + 2κσi(Y )

<
1

2
, (97)

and

[H(µ, µ′)]i,i =
2σi(Y )

(1 + 2µσi(Y ))(1 + 2µ′σi(Y ))

< 2σi(Y ) , (98)

(95), and (96) yield

∣∣mse(X̂
∗
µ)−mse(X̂

∗
µ
′)
∣∣ ≤ 4|µ− µ′| E

{
max
1≤i≤r

σi(Y )
∥∥∆̂X

∥∥2
2

}

= 4|µ− µ′| E
{
σmax(Y )

∥∥∆̂X
∥∥2
2

}
(99)
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Continuity of mse(X̂
∗
µ) to +∞ follows after applying µ = +∞ in (90), and from the fact that

∣∣mse(X̂
∗
µ)−mse(X̂

∗
∞)
∣∣ = |E{(X̂

∗
µ + X̂

∗
∞ − 2X̂

∗
0)

⊤(X̂
∗
µ − X̂

∗
∞)}|

=
∣∣E{(X̂∗

µ − X̂
∗
0 − (X̂

∗
0 − X̂

∗
∞))(X̂

∗
µ − X̂

∗
∞)}

∣∣

=

∣∣∣∣∣E{∆̂X
⊤
Udiag

({ 1
(
1 + 2µσi(Y )

)2
}
i∈N

+

r

,0

)
U

⊤∆̂X}

∣∣∣∣∣

≤ E

{
max
1≤i≤r

{
1

(1 + 2µσi(Y ))2

}
||∆̂X||22

}

≤
1

4µ2E

{
||∆̂X||22

σmin(Y )
2

}
(100)

In a similar fashion, we may show Lipschitz for sev(X̂
∗
µ) in [0,+∞) by considering the absolute difference

|sev(X̂
∗
µ)− sev(X̂

∗
µ
′)| = E

{
‖X̂

∗
µ‖

2
ΣX|Y

− 2X̂
∗⊤
∞ ΣX|Y X̂

∗
µ − ‖X̂

∗
µ
′‖2ΣX|Y

+ 2X̂
∗⊤
∞ ΣX|Y X̂

∗
µ
′

}
, (101)

which after adding and subtracting X̂
∗⊤
µ
′ ΣX|Y X̂

∗
µ within the expectation reads

|sev(X̂µ)− sev(X̂µ
′)| =

∣∣E{(X̂∗
µ − X̂

∗
∞ + X̂

∗
µ
′ − X̂

∗
∞)⊤ΣX|Y (X̂

∗
µ − X̂

∗
µ
′)}
∣∣. (102)

After applying (91) for the appearing differences and subsequently declaring

d(µ) = diag

({
1

1 + 2µσi(Y )

}

i∈N
+

r

,0

)
, (103)

and

D(µ, µ′) = diag

({
2σi(Y )

2

(1 + 2µσi(Y ))(1 + 2µ′σi(Y ))

}

i∈N
+

r

,0

)
, (104)

equation (102) yields

|sev(X̂µ)− sev(X̂µ
′)| = |µ− µ

′

|
∣∣∣E
{[

U
⊤∆̂X

]⊤(
d(µ) + d(µ′)

)
D(µ, µ′)

[
U

⊤∆̂X
]}∣∣∣. (105)

For κ ∈ {µ, µ′} we may write

[U⊤∆̂X]⊤d(κ)D(µ, µ′)[U⊤∆̂X] ≤ max

{{
[d(κ)D(µ, µ′)]i,i

}

1≤i≤r

, 0

}
||∆̂X||22

= max

{
[d(κ)D(µ, µ′)]i,i

}

1≤i≤r

||∆̂X||22

≤ max
i≤i≤r

{σi(Y )
2}||∆̂X||22 , (106)

for each term inside the expectation. Therefore (105), and (106) yield

|sev(X̂µ)− sev(X̂µ
′)| ≤ 4|µ− µ′| E

{
σmax(Y )

2∥∥∆̂X
∥∥2
2

}
(107)
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Lastly, continuity of sev(X̂
∗
µ) to +∞ results from the fact that

|sev(X̂
∗
µ)− sev(X̂

∗
∞)| =

∣∣E{(X̂∗
µ − X̂

∗
∞)⊤ΣX|Y (X̂

∗
µ − X̂

∗
∞)}

∣∣

≤ E

{∣∣∣∣∣[U
⊤∆̂X]⊤diag

({
σi(Y )

(
1 + 2µσi(Y )

)2

}

i∈N
+

r

,0

)
[U⊤∆̂X]

∣∣∣∣∣

}

≤ E

{
max
1≤i≤r

{
σi(Y )

(1 + 2µσi(Y ))2

}
||∆̂X||22

}

≤ E

{
max
1≤i≤r

{
σi(Y )

(2µσi(Y ))2

}
||∆̂X||22

}

≤
1

4µ2E

{
||∆̂X||22
σmin(Y )

}
(108)
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