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Abstract— Control barrier functions are widely used to
synthesize safety-critical controls. The existence of Gaussian-
type noise may lead to unsafe actions and result in severe
consequences. While studies are widely done in safety-critical
control for stochastic systems, in many real-world applications,
we do not have the knowledge of the stochastic component
of the dynamics. In this paper, we study safety-critical con-
trol of stochastic systems with an unknown diffusion part
and propose a data-driven method to handle these scenarios.
More specifically, we propose a data-driven stochastic control
barrier function (DDSCBF) framework and use supervised
learning to learn the unknown stochastic dynamics via the
DDSCBF scheme. Under some reasonable assumptions, we
provide guarantees that the DDSCBF scheme can approximate
the Itô derivative of the stochastic control barrier function
(SCBF) under partially unknown dynamics using the universal
approximation theorem. We also show that we can achieve the
same safety guarantee using the DDSCBF scheme as with SCBF
in previous work without requiring the knowledge of stochastic
dynamics. We use two non-linear stochastic systems to validate
our theory in simulations.

I. INTRODUCTION

Safety-critical control is playing an important role in real-
world control problems. In these applications, one must solve
a control problem not only to achieve control performance
objectives, but also to provide control actions with guaran-
teed safety [7]. Safety-critical control arises in a variety of
practical applications including industrial robotics, medical
robotics as well as self-driving vehicles. Since the notion
of safety-critical control was first introduced in [14], there
has been extensive research in safety verification problems,
e.g., using discrete approximations [19] and computation of
reachable sets [9].

Recently, control barrier functions (CBFs) have been
widely used to deal with safety-critical control [1]. Quadratic
programming (QP) problems are used to solve safety-critical
control with constraints from CBFs, together with control
Lyapunov functions (CFLs) for achieving stability objectives
[2]. The authors show that the safety criteria can be trans-
formed into linear constraints of the QP problems. By taking
the derivative of the CBF, the control inputs can be treated as
the decision variables of the QP problem so that we can find
a sequence of actions that can guarantee safe trajectories. The
authors in [20] then show that finding safe control inputs by
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solving QP problems can be extended to an arbitrary number
of constraints and any nominal control law. Consequently,
safety-critical control using QP with CBF conditions have
been applied in a wide range of applications such as lane
keeping [3] and obstacle avoidance [5]. However, for many
applications in robotics [10], the derivative of the CBFs is not
dependent on the control input, and thus the control action
can not be directly solved using a QP. To address this issue,
CBFs have been extended to exponential control barrier
functions (ECBF) to handle high relative degree constraints
using input-output linearization [17], [26].

On the other hand, models used to design controllers
are imperfect and this imperfection may lead to dangerous
behavior. Consequently, designing controllers considering
uncertainty is important in practical applications. In [23] and
[24], a bounded disturbance is considered for the model,
in which the time derivative of the barrier function is
separated into the time derivative of the nominal barrier
function and a remainder that can be approximated using
neural networks. For systems driven by Gaussian-type noise,
stochastic differential equations (SDEs) are usually used to
characterize the effect of randomness. Studies for stochastic
stability of diffusion-type stochastic differential equations
have seen a variety of applications in verifying probabilistic
quantification of safe set invariance [13]. Control barrier
functions for stochastic systems have also been studied in
recent years. The authors in [22] applied the strong set-
invariance certificate from [6] to high-order stochastic control
systems using stochastic reciprocal control barrier functions
(SRCBFs) and [21] investigates the worst-case safety verifi-
cation utilizing stochastic zeroing control barrier functions
(SZCBFs) regardless of the magnitude of noise. In [25],
the authors proposed the stochastic control barrier function
(SCBF) with milder conditions at the cost of sacrificing the
almost sure safety.

However, in some practical scenarios, we do not have
precise information about the Brownian motion that is af-
fecting the system. In this case we cannot calculate the
generator of the control barrier functions that is used in
the corresponding QP problem. In [16], the authors propose
a method of estimating the value of the generator of a
given function at a specific point within the domain. In this
paper, we extend this idea to the whole state space and use
a data-driven method to approximate the generator of the
control barrier function globally. We propose a data-driven
stochastic control barrier function (DDSCBF) framework
for controlling stochastic systems with unknown diffusion
parts. We show that under some reasonable assumptions, the
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DDSCBF scheme can approximate the Itô derivative of a
stochastic control barrier function (SCBF) as in our previous
work and we can achieve the same safety probability as with
SCBF in previous work [25]. We also validate our approach
using two non-linear SDEs.

Notation: We denote the n-dimensional Euclidean space
by Rn. We denote R the set of real numbers, and R≥0 the
set of nonnegative real numbers. Given a, b ∈ R, we define
a ∧ b := min(a, b). Let Cb(·) be the space of all bounded
continuous functions/functionals f : (·) → R. A continuous
and strictly increasing function α : R≥0 → R≥0 is said to
belong to class K if α(0) = 0.

For a given set A ⊆ Rn, we denote by Ac the complement
of the set A (i.e., Rn\A); denote by Ā (resp. ∂A) the closure
(resp. boundary) of A.

For any stochastic processes {Xt}t≥0 we use the short-
hand notation X := {Xt}t≥0. For controlled process under
some u, we use Xu in short for {Xu

t }t≥0. For any stopped
process {Xt∧τ}t≥0, where τ is a stopping time, we use the
shorthand notation Xτ . We denote the Borel σ-algebra of a
set by B(·).

II. PRELIMINARIES AND PROBLEM DEFINITION

A. System Description

Given a state space X ⊆ Rn and a (compact) set of
control values U ⊂ Rp, consider a continuous-time stochastic
dynamical system

dXt = (f(Xt) + g(Xt)u(t))dt+ b(Xt)dWt, X0 = x, (1)

where u : R≥0 → U is a bounded measurable control signal;
W represents a d-dimensional standard Wiener process; f :
X → Rn is a locally Lipschitz non-linear vector field; g :
X → Rn×p and b : X → Rn×d are smooth mappings.

Note that from a modelling point of view, we usually do
not specify in a priori a Wiener process [18]. In addition, for
the purpose of verifying dynamical behaviors in probability
laws, it is not necessary to restrict ourselves to a specified
probability space. We consider the following natural sense
of solution concept.

Definition II.1 (Weak solutions). For each fixed signal
u, the system (1) admits a weak solution if there exists
a filtered probability space (Ω†,F †, {F †t },P†), where a
Wiener process W is defined and a pair (Xu,W ) is adapted,
such that Xu solves the SDE (1).

Data-driven methods allow us to collect information of
solutions only in the state space. However, we are unclear
about the base probability space (Ω†,F †,P†) where the
Wiener process W is defined. We transfer information to the
canonical space in the following standard way, which gives
us the convenience to study the probability law of the weak
solutions and the probabilistic behavior in the state space.

Define Ω := C([0,∞);Rn) with coordinate process
Xt(ω) := ω(t) for all t ≥ 0 and all ω ∈ Ω. Define
Ft := σ{Xs, 0 ≤ s ≤ t} for each t ≥ 0, then the smallest
σ-algebra containing the sets in every Ft, i.e. F :=

∨
t≥0 Ft,

turns out to be same as B(Ω). For a weak solution Xu of

(1) given a valid u, the induced measure (law) Px,u on F is
such that Px,u(A) = P† ◦ (Xu)−1(A) for every A ∈ B(Ω).
The canonical probability space for Xu is then (Ω,F ,Px,u).
We also denote Ex,u by the associated expectation operator
w.r.t. Px,u. When g ≡ 0, Px,u and Ex,u are simplified to
Px and Ex.

We also do not exclude explosive solutions1 in general.
As a matter of fact, for g ≡ 0, under the assumptions on f
and b, for any x ∈ X , there exists a stopping time τex such
that Px[τex > 0] = 1 and a unique local weak solution X of
(1) for all t ∈ (0, τex) such that τex =∞ (exists globally) or
limt↗τex ‖Xt‖ =∞ (explodes within finite time).

Definition II.2 (Infinitesimal generator of X). Consider a
fixed signal u. Let Xu be the weak solution to (1). The
infinitesimal generator A of Xu is such that

Ah(x) = lim
t↓0

Ex,u[h(Xu
t )]− h(x)

t
, x ∈ X , (2)

for all test functions h ∈ C2(Rn) such that the limit exists
at x.

Remark II.3. Note that the solutions X of (1) are diffusion
processes. Given each valid test function h ∈ C2(Rn) and
control input u ∈ U ,

Ah(x) = ∇h(x) · (f(x) +g(x)u) +
1

2
tr
[
(bbT )(x) · hxx(x)

]
(3)

and Ah is a continuous function.

B. Set Invariance and Control

Definition II.4 (Control strategy). A control strategy is a
set-valued function from the state space X to a subset of
control values in U:

κ : X → 2U . (4)

We use a boldface u to indicate a set of constrained
control signals. A special set of such signals is given by
a (deterministic) control strategy as defined below.

Definition II.5 (State-dependent control). We say that a
control signal u conforms to a control strategy κ for (1),
and write u ∈ uκ, if

u(t) ∈ κ(Xt), ∀t ≥ 0, (5)

where X satisfies (1) with u as input. The set of all control
signals that conform to κ is denoted by uκ.

For stochastic dynamical systems with controls as given
in (1), we define a probabilistic set invariance property for
the controlled processes.

Definition II.6 (Controlled probabilistic invariance). Con-
sider a system (1), a set of control signals u, and p ∈ [0, 1].
A set C ⊆ X is said to be controlled p-invariant under u for
system (1) with a specified x ∈ C if, for all u ∈ u,

Px,u[Xu
t ∈ C, 0 ≤ t <∞] ≥ p. (6)

1See [4, Section 5.5] for details.



C. Problem Formulation
For the rest of this paper, we consider a safe set of the

form
C := {x ∈ X : h(x) ≥ 0}, (7)

where h ∈ C2(Rn). We also define the boundary and interior
of C explicitly as below

∂C := {x ∈ X : h(x) = 0}, (8)

C◦ := {x ∈ X : h(x) > 0}. (9)

The objective of this paper is to control the stochastic
system (1) with an unknown diffusion term to stay inside
the safe set. The problem is defined as follows.

Problem II.7. Given system (1) with the b unknown, a
compact set C ⊆ X defined by (7), a point x ∈ C◦, and
a p ∈ [0, 1], design a (deterministic) control strategy κ such
that under uκ, the interior C◦ is controlled p-invariant for
the resulting solutions to (1).

Remark II.8. In this paper, we assume we have full knowl-
edge of the drift term of the system, i. e., f and g in (1). For
uncertainty in drift term, refer [23], [24] for detail.

III. WORST-CASE PROBABILISTIC QUANTIFICATION VIA
STOCHASTIC CONTROL BARRIER FUNCTION

There witnesses a surge of applications of control synthe-
sis for probabilistic safety problems using stochastic control
barrier functions. Two commonly-used types of stochastic
control barrier functions, reciprocal type (SRCBF) [6] and
zeroing type (SZCBF) [21], are investigated. The recent work
[25] identified the pros and cons of SRCBF and SZCBF and
proposed a middle-ground type SCBF2 as in [25, Definition
III.6].

Note that the function h in (7) is already a potential SCBF
candidate. We need to further impose a condition on the drift
term of its Itô derivative along the sample paths, i.e. Ah, to
make it effective.

Due to the lack of information of the diffusion term
in (1), we are unable to capture the correction term in
the Itô derivative of the nominal barrier function h along
sample paths. In other words, the second term in (3) is
unknown. We use a data-driven method to approximate the
function Ah, and impose similar barrier conditions on the
approximated Âh for safety-critical control. Based on the
partial observation of data, we show in this section that a
degree of robustness in the barrier condition is necessary
to balance the inaccuracy of data. A similar approach can
be applied to derive the robustness for the other types of
stochastic control barrier functions.

We suppose that data is sampled without control inputs.
Then for each x, the law Px process X is independent of
u. We further define the stopping time

τ := inf{t ≥ 0 : Xt ∈ ∂C}

for each sampled process. Let C denote a finite subset of C.

2We use this acronym for the specified notion in [25, Definition III.6]
rather than the general type of stochastic control barrier functions.

A. Probability Estimation based on Partially Observed Data

We make the following assumptions for the rest of deriva-
tion. We show in the next subsection that the assumptions
are feasible for compact C.

Assumption III.1. Let Âh be the approximation of Ah
based on the training set C. We assume that

(i) For any y ∈ C and any ε > 0, there exists an x ∈ C
such that3

Ey,u sup
t∈[0,τ ]

|Âh(Xu
t )−Ah(Xu

t )|

≤Ex,u sup
t∈[0,τ ]

|Âh(Xu
t )−Ah(Xu

t )|+ ε.
(10)

(ii) For any ς ∈ (0, 1], there exists a probability measure
P with marginals Px for all x ∈ C such that

E sup
x∈C
|Ah(x)− Âh(x)| ≤ ς. (11)

Furthermore, we assume that both Âh and Ah are Lipschitz
continuous on the compact set C.

We apply the approximated function Âh and show the
worst-case safety probability of the controlled process under
policy generated by the following robust scheme.

Proposition III.2. Suppose we are given arbitrary ς >
0, ε > 0 and training set C. Let Âh be generated as in
Assumption III.1. Suppose that supu∈U Âh(x) ≥ ς + ε for
all x ∈ C. Let υ(x) = {u ∈ U : Âh(x) ≥ ς + ε}. Then for
any x ∈ C◦ and u ∈ uυ , we have

Px,u[Xu
t ∈ C◦, 0 ≤ t <∞] ≥ h(x)

supy∈C h(y)

Proof. Let c = supy∈C h(y) and set V = c−h. Then for all
x ∈ C◦, we have V (x) > 0 and ÂV (x) ≤ −(ς + ε). Note
that

Ex,u[V (Xu
τ∧t)] = V (x) + Ex,u

[∫ τ∧t

0

AV (Xu
s )ds

]
(12)

and by assumption,

Ex,u
[∫ τ∧t

0

AV (Xu
s )ds

]
=Ex,u

[∫ τ∧t

0

AV (Xu
s )− ÂV (Xu

s ) ds

]
+ Ex,u

[∫ τ∧t

0

ÂV (Xu
s ) ds

]
≤
∫ τ∧t

0

Ex,u|AV (Xu
s )− ÂV (Xu

s )| ds− (ς + ε) · (τ ∧ t)

≤
∫ τ∧t

0

E sup
s∈[0,τ ]

|AV (Xu
s )− ÂV (Xu

s )| ds− ς · (τ ∧ t)

≤
∫ τ∧t

0

E sup
x∈C
|AV (x)− ÂV (x)| ds− ς · (τ ∧ t) ≤ 0,

(13)

3Note that τ < τex with probability 1.



where the fifth line of the above is to transfer information
from arbitrary x ∈ C to the data used in C. The mismatch
of measure provides an extra error of ε. Hence, by (12), we
have

Ex,u[V (Xu
τ∧t)] ≤ V (x), ∀t ≥ 0. (14)

On the other hand, for all t ≥ 0,

Ex,u[V (Xu
τ∧t)] ≥ Ex,u[1{τ≤t}V (Xu

τ∧t)]

≥ Px,u[τ ≤ t] ·Ex,u[V (Xu(τ)]

> c ·Px,u[τ ≤ t].
(15)

Therefore, by (14) and (15), we have

Px,u[τ ≤ t] < V (x)

c
, ∀t ≥ 0. (16)

Sending t→∞ we get Px,u[τ <∞] ≤ V (x)
c for all x ∈ C◦.

Rearranging this we can obtain the conclusion.

Remark III.3. Note that (ii) in Assumption III.1 indicates
that the error of estimation should converge in L1, and
cannot be replaced by in probability in the sense that, for
every ς , there exists a δ = δ(ς) such that

P
[
sup
x∈C
|Ah(x)− Âh(x)| > δ

]
< ς.

The latter is not sufficient to show the last line of (12) in
general.

B. Feasibility of Assumptions

Note that for the compact set C and for sufficiently dense
training data, the conditions in Assumption III.1 can be
satisfied theoretically. We will show that both (i) and (ii)
of Assumption III.1 require the selection of the training
data but separately. Before proceeding to the explanation,
we introduce the following concepts.

Definition III.4. (Weak convergence of measures and pro-
cesses): Given any separable metric space (S, ρ), a sequence
of probability measure {Pn} on B(S) is said to weakly
converge to P on B(S), denoted by Pn ⇀ P, if for
all f ∈ Cb(S) we have limn→∞

∫
S f dPn =

∫
S f dP.

A sequence {Xn} of continuous processes Xn with law
Pn is said to weakly converge (on [0, T ]) to a continuous
process X with law P, denoted by Xn ⇀ X , if for all
f ∈ Cb(C([0, T ];Rn)) we have limn→∞En[f(Xn)] =
E[f(X)].

The following proposition demonstrates a compactness of
weak solutions starting from a compact set in a weak sense as
in Definition III.4. We provide the rephrased version based on
[11, Theorem 1] and [12, Corollary 1.1, Chap 3] as follows.
A detailed explanation can be found in [15].

Proposition III.5. Given any compact set C and its asso-
ciated first-hitting time τ , given any sequence of stopped
weak solutions {(Xn)τ}∞n=1 with Xn(0) = xn, there exists
a subsequence {(Xnk)τ} and a process X with X(0) = x
such that xnk

→ x and (Xnk)τ ⇀ Xτ .

1) Justification of Assumption III.1(i): We observe that
for each x in a compact set C, for any fixed T > 0, the
quantity supt∈[0,τ∧T ] |Ah(·)− Âh(·)| is a bounded function
on the canonical space generated by C with measure Px. In
view of Definition III.4 and Proposition III.5, the quantity{

Ex sup
t∈[0,τ∧T ]

|Ah(Xu
t )− Âh(Xu

t )|

}
x∈C

forms a compact set (in the conventional sense). By the
boundedness assumption on C, we have τ < ∞ Px-a.s. for
every x ∈ C. Therefore, sending T to infinity, we still have
the compactness for{

Ex sup
t∈[0,τ ]

|Ah(Xu
t )− Âh(Xu

t )|

}
x∈C

.

By choosing C sufficiently dense in C, for each given ε > 0,
we are able to build the ε-net with centers in C such that for
any arbitrary y ∈ C, there exists an x ∈ C such that Ah−Âh
are weakly ε-close to each other in the sense of (10).

We then verify the feasibility of (ii) of Assumption III.1.
2) Approximating Ah over a finite set: Note that, follow-

ing the procedure as in [16], we are able to approximate Ah
by some Ãh at one single point x ∈ Rn at a time, whose
precision is measured under the corresponding probability 4

Px := ⊗∞i=1P
x. However, to fit the assumption, we need the

precision to be measured in L1 sense.
By [16, Theorem 6], for each x ∈ Rn, we can utilize

Lipschitz continuity of f, g, b and the relation

Ã1h(x) =
Ex[h(Xu

τs)]− h(x)

τs
at some deterministic sampling time τs to obtain the first-step
approximation

|Ã1h(x)−Ah(x)| ≤ δ, (17)

where δ = C1τs + C2
√
τs, and C1, C2 > 0 are constants

generated by Lipschitz continuity. The precision δ can be
arbitrarily small.

Since Ã1h(x) has used Ex[h(Xu
τs)], the authors in [16]

then applied the law of large numbers (LLN) to approximate
Ex[h(Xu

τs)] by 1
n

∑n
i=1 h(X

u,(i)
τs ) with i.i.d. h(X

u,(i)
τs ) draw

from Px at the marginal time τs. The approximation

Ãh =
1
n

∑n
i=1 h(X

u,(i)
τs )− h(x)

τs
creates errors in probability w.r.t. Px as in [16, Theorem 12],
i.e., for each β ∈ (0, 1], there exists a δ̃ such that

Px[|Ah(x)− Ãh(x)| ≤ δ̃] > 1− β.

Note that the only place that we introduce Px is when we
use LLN. We need to leverage the convergence in the L1

sense, i.e.,

Ex
∣∣∣∣∣ 1n

n∑
i=1

h(Xu,(i)
τs )−Ex[h(Xu

τs)]

∣∣∣∣∣→ 0. (18)

4In [16], the authors used P, but in our context it is recast to be Px. The
uniqueness of Px is by Kolmogrov’s extension theorem.



This is indeed the case as an existing result, even though it is
seldom mentioned. Combining (18) and (17), we can easily
obtain that for each x ∈ Rn, for any δ > 0, there exists a
sufficiently large n such that

Ex
∣∣∣Ãh(x)−Ah(x))

∣∣∣ ≤ δ. (19)

We provide the proof for the L1 convergence of LLN in the
Appendix.

Repeating the same process for x over a finite set C gives

sup
x∈C

E
[
|Ah(x)− Ãh(x)|

]
≤ δ, (20)

where E is the associated expectation w.r.t. P := ⊗x∈CPx.
3) Optimization error: For any η > 0, we assume there

exists an optimizer that can learn an approximation Âh based
on data

{
Ãh(x) : x ∈ C

}
such that

sup
x∈C
|Âh(x)− Ãh(x)| < η. (21)

4) Generalization error: By continuity of Âh(x) and
Ah(x), there exists some x∗ ∈ C such that

sup
x∈C
|Âh(x)−Ah(x)| = |Âh(x∗)−Ah(x∗)|.

For any θ > 0, by choosing C to be sufficiently dense in
C and the Lipschitz continuity of Âh(x) and Ah(x) on C,
there exists some y ∈ C such that

|Âh(x∗)− Âh(y)| ≤ θ, |Ah(x∗)−Ah(y)| ≤ θ.

It follows that

E
[
sup
x∈C
|Âh(x)−Ah(x)|

]
=E

[
|Âh(x∗)−Ah(x∗)|

]
=E

[
|Âh(y)−Ah(y) + Âh(x∗)− Âh(y)

+Ah(y)−Ah(x∗)|]

≤E
[
|Âh(y)−Ah(y)|

]
+ 2θ

=E
[
|Âh(y)− Ãh(y) + Ãh(y)−Ah(y)|

]
+ 2θ

≤E
[
sup
y∈C
|Âh(y)− Ãh(y)|

]
+ E

[
|Ãh(y)−Ah(y)|

]
+ 2θ

≤η + sup
y∈C

E
[
|Ãh(y)−Ah(y)|

]
+ 2θ

≤η + δ + 2θ ≤ ς,

where ς is from Assumption III.1(ii), provided that we
choose η, δ, and θ sufficiently small.

Remark III.6. The final C should be chosen based on all of
the above criteria such that (i) and (ii) of Assumption III.1
can both be satisfied.

IV. DATA-DRIVEN STOCHASTIC CONTROL BARRIER
FUNCTION SCHEME FOR SAFETY-CRITICAL CONTROL

In this section, we describe how do we use supervised
learning to implement the DDSCBF scheme and do safety-
critical control for stochastic systems with an unknown
diffusion part. We use a neural network to approximate the
derivative of an SCBF. The detail of data collecting and
training is explained below.

Given an SDE as in (1), we have

Ah(x) = Lfh(x) + Lgh(x)u+
1

2
tr
[
(bbT )(x) · hxx(x)

]
.

Since the only unknown part in the SDE is b, the unknown
part in Ah(x) is only 1

2 tr
[
(bbT )(x) · hxx(x)

]
. As we can

see, this term is a function of x only, so we can define a
function ∆(x) = 1

2 tr
[
(bbT )(x) · hxx(x)

]
and accordingly

Ah(x) = Lfh(x) + Lgh(x)u+ ∆(x).

We use supervised learning to learn ∆(x) (and hence some
Âh(x)) that approximates Ah(x).

Next we describe how to obtain the training data. We use
a sampling method to collect data in order to learn ∆(x).
First we sample a set with N initial points {x1, x2, ..., xN}.
At the initial point xi for i ∈ {1, 2, ..., N}, we sample n
one-step transitions and reach to the next stage xij for j ∈
{1, 2, ..., n}. We reset the point back to xi after each one-
step transition. According to [16], Ãh(xi) can be estimated
numerically by

Ãh(xi) =

1
n

n∑
j=0

h(xij)− h(xi)

∆t
. (22)

As a result, obtain ∆̃(xi) by

∆̃(xi) = Ãh(xi)− (Lfh(xi) + Lgh(xi)u).

We then add {xi, ∆̃(xi)} into a data set D, constructing a
data set D is of dimension N . Next we use learning to fit
the data set. The process of collecting training data is shown
as in shown as in Algorithm 1.

Once we have collected the data set D, we construct
a neural network N (x) and specify a loss function L
using minimum square error (MSE). We use supervised
learning to find the parameters of the network such that the
1
N

∑N
i L(N (xi), ∆̃(xi)) is minimized. This implies that the

neural networkN (x) will approximate the function ∆(x). So
the derivative of the SCBF Ah(x) will be approximated by
Âh(x) := Lfh(x)+Lgh(x)u+N (x). As a result, we can use
this approximated derivative of SCBF as QP constraints to
guarantee safety-critical control for stochastic systems with
unknown diffusion part as in [25]. The overall theoretical
analysis of guarantees is shown in III.2 under Assumption
III.1.



Algorithm 1 Data-driven learning algorithm of SCBF

Require: An SDE as in (1), the number of initial points N ,
the number of trajectories sampled at each initial point
n, an empty data-set D, a time step ∆t, an initial neural
network N (x).

1: Initialize neural network
2: Sample N initial points {x1, x2, ..., xN}
3: for i in N do
4: for j in n do
5: Get xij from xi using Euler-Maruyama method

according to (1) using ∆t [8]
6: Calculate h(xij)
7: end for
8: Estimate Ãh(xi) using (22)
9: Calculate training data using

∆̃(xi) = Ãh(xi)− (Lfh(xi) + Lgh(xi)u) (23)

10: Add training data into data-set, D ← {xi, ∆̃(xi)}
11: end for

V. SIMULATION RESULTS

A. Example 1

In the first example, we test our result using an inverted
pendulum. The system is an SDE of the form

d

[
θ

θ̇

]
=

[
θ̇

g
l sin θ

]
dt+

[
0
1
ml2

]
udt+

[
0.1θ

0

]
dW,

with the state x = [θ, θ̇]T , gravitational acceleration g =
10 and length ` = 0.7. We assume that the diffusion part
b(x) = [0.1θ, 0]T is unknown to us. Consider the control
barrier function

h(x) = c− xTPx,

where

P =

[√
3 1

1
√

3

]
.

So
h = 0.2−

√
3θ2 − 2θθ̇ −

√
3θ̇2.

Accordingly, we have

Lfh(x) + Lgh(x)u = −(2
√

3θ + 2θ̇)θ̇

− (2θ + 2
√

3θ̇) · g
l

sin θ − 2θ + 2
√

3θ̇

ml2
u.

We follow Algorithm 1 to obtain training data. We randomly
sample 200 points within state space and at each point xi, we
simulate 50000 one-step transitions to get to the next point
xij . The time step of the transition is t = 0.01s. Then we
estimate Âh(xi) using (22). As a result, the training data is
obtained according to (23). We use a neural network with
two hidden layers, with 100 and 30 nodes for each layer,
respectively, to fit the training data. We train the network

with 500 epochs and compare the training result with the
analytic result calculated as

1

2
tr
[
(bbT )(x) · hxx(x)

]
=

1

2
tr

([
0.1θ 0

]
·
[
−2
√

3 −2

−2 −2
√

3

]
·
[
0.1θ

0

])
= −
√

3 · (0.1θ)2.
(24)

The result of learning is shown in the Figure 1. The black
dots are the training data, the yellow curve is the analytic
result calculated as in (24) and the red dots are the neural
network output for validation after training.
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Fig. 1. Training result of 1
2
tr
[
(bbT )(x) · hxx(x)

]
. The black dots

are the training data. The yellow curve is the analytic result, which
is the true value −

√
3 · (0.1θ)2 and the red dots are the output of

the neural network after training.

We also test the control result of applying the DDSCBF
scheme. We compare the safe rate using the real SCBF, the
DDSCBF scheme and CBF on the unknown system. For each
case, we randomly sample 1000 trajectories and compute the
safe rate. As shown in the Table I, the system is sensitive
to the noise that all the trajectories are unsafe when using
CBF. But after applying the DDSCBF scheme, the success
rate of the system is over 90%.

Success rate

SCBF 92%
DDSCBF 91%
CBF 0%

TABLE I: The success rate of using SCBF, DDSCBF scheme
and CBF for pendulum system over 1000 runs.

B. Example 2

In the second example, we test our result using a non-
linear system given by the following stochastic differential
equation:

d

[
ẋ1
ẋ2

]
=

[
−0.6x1 − x2

x31

]
dt+

[
0
x2

]
udt+

[
0

b(x2)

]
dW.



The control objective is to reach the origin (0, 0) and the
safe region is defined as

h = −x22 − x1 + 1 > 0.

The generator of h is calculated as

A(h) = 0.6x1 + x2 − 2x31x2 − 2x22u− b(x2)2.

We use the same number of sample points and number of
transitions at each point as in the first example. The structure
of the neural network is also the same as in the first example.
The training result is shown in the Figure 2.
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Fig. 2. Training result of 1
2
tr
[
(bbT )(x) · hxx(x)

]
for b(x2) =

0.1x2. The black dots are the training data. The yellow curve is
the analytic value and the red dots are the output of the neural
network after training.

b(x2) = 0.1x2 b(x2) = 0.15x2

SCBF 86.8% 84.3%
DDSCBF 85.2% 83%
CBF 77.3% 57.5%

TABLE II: The success rate of using SCBF, learned SCBF
and CBF for non-linear system over 1000 runs under differ-
ent noise with b(x2) = 0.1x2 and b(x2) = 0.15x2.

We use a CLF to control the deterministic system, i.e.,
(
¯
x2) = 0 and the result is shown in Figure 3a. Also the

control using CLF and CBF for the deterministic system is
shown in Figure 3b. We can see that CBF will guarantee a
safe trajectory for the deterministic system. However, when
the system has a diffusion part of b(x2) = 0.1x2, the noise
will make the trajectory unsafe using CBF as shown in
Figure 3c. By using our DDSCBF scheme, the trajectory
is within the safe region as shown in Figure 3d.

As in the first example, in order to test the performance of
our DDSCBF scheme, we randomly sample 1000 trajectories
and compute the safe rate under different noise for b(x2) =
0.1x2 and b(x2) = 0.15x2. The result is presented in
Table II.
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Fig. 3. Simulation result of Example 2. (a): Control of system using
CLF with b(x2) = 0. (b): Control of deterministic system using
CLF and CBF with b(x2) = 0 . (c): Sample trajectory of uncertain
system using CBF with b(x2) = 0.1x2. (d): Sample trajectory of
uncertain system using DDSCBF scheme with b(x2) = 0.1x2.

VI. CONCLUSION

In this work, we study safety-critical control of stochastic
systems with unknown diffusion parts. We use supervised
learning to approximate the derivative of SCBF for safety
control of SDEs and show that our DDSCBF scheme can
approximate the derivative of SCBF with guarantee. We also
validate our result using two non-linear SDEs. Extension of
this work in the future will be mainly in two aspects. The
first one is to study uncertainty in not only the diffusion part,
but also in the drift part. We will also compare results using
different learning method such as Gaussian regression. Also,
the computation efficiency of DDSCBF scheme is much
lower when applied to systems with higher relative degree.
So the second direction in the future will be focused on SDEs
with unknown part with high relative degree.
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APPENDIX

We prove the L1 convergence of LLN as in (18). We first
introduce the following theorem as we will use in the final
proof.

Definition A.1 (Backward martingale). A backward martin-
gale is a stochastic process {X−n}n=1,2,··· such that, for
each n, X−n is L1 integrable and F−n-measurable, and
satisfies

E[X−n−1 | F−n] = X−n. (25)

Theorem A.1 (Backward martingale convergence theorem).
For every backward maringale, as n→∞,

X−n → E[X−1 | F−∞] P-a.s. and in L1. (26)

Theorem A.2 (Kolmogorov’s 0-1-law). Let F1,F2, · · ·
be independent σ-fields and denote by F∞ =

∩∞n=1σ (∪∞k=nFk) the corresponding tail field. Then

P[A] ∈ {0, 1}, ∀A ∈ F∞.

Proof of (18): Let Yi = X
u,(i)
τs for i ∈ {1, 2, · · · }. Then {Yi}

is L1 integrable and i.i.d. w.r.t. Px. Let Sn =
∑n
i=1 Yi be

the finite sum and let X−n = Sn

n be the average. Then the
σ-field F−n = σ{Sn, Sn+1, · · · } is a decreasing filtration.
Due to the independence of {Yi}, we have

Ex[X−1 | F−n] = Ex[Y1 | Sn, Sn+1, · · · ]
= Ex[Y1 | Sn, Yn+1, Yn+2, · · · ]
= Ex[Y1 | Sn].

(27)

Notice that Ex[Yi | Sn] = Ex[Yj | Sn] by symmetry for
i, j ∈ {1, · · · , n}, then

nEx[Yi | Sn] =

n∑
i=1

Ex[Yi | Sn] = Ex[Sn | Sn] = Sn. (28)

Combining the above, we have

Ex[X−1 | F−n] =
Sn
n

= X−n,

which verifies that {X−n} is a backward martingale. By the
backward martingale convergence theorem, we immediately
have

Sn
n
→ Ex[Y1 | F−∞], Px-a.s. and in L1.

By Kolmogorov’s 0-1 law, we have that all A in the tail field
F−∞ have probability either 0 or 1, which in turn implies
that the conditional expectation Ex[Y1 | F−∞] must be a
constant (by the definition of conditional expectation) and
should be equal to the average Ex[Y1] = Ex[Y1].
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