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Abstract -
This paper proposes a new method for island model

GP. The proposed method applies a traditional ge-
netic operator to an aborigine and a depth-dependent
crossover to the immigrants according to their ages,
which show how long they survive in the island. This
method can provide both local and global search
strategies. The experimental results have shown that
our approach works effectively.

I. Introduction

According to the building block hypothesis and Koza’s
schema theorem, one of the reasons why GP works ef-
fectively is that small building blocks are combined by
crossover to construct a bigger building block [1]. Thus,
for the purpose of effective search in GP, both local search
strategy, which can create new schemata and can optimize
schemata, and global search strategy, which can combine
schemata into bigger building blocks, have to be provided.

Island model is a coarse-grained parallel strategy for
evolutionary algorithms. In the island model, a popu-
lation is divided into subpopulations (demes), and some
of the individuals are exchanged periodically (i.e. migra-
tion), as shown in Fig.1. In this method, each deme can
grow its original schemata and global search ability is ex-
pected to be provided by combining the schemata of dif-
ferent demes by crossover. Tanese demonstrated that the
island model GA has the ability to find fitter individuals
than the traditional GA [2]. Also, other papers reported
the superiority of the island model GA and GP [3]-[5].
For instance, Miki et al adopted a new method that pro-
vides high local search ability in each subpopulation in
the island model GA, and succeeded in establishing more
effective search [6]. Similar result is expected by providing
both local and global search ability in the genre of island
model GP.

In the tree-expressed GP, it is considered that there
is a relationship between the locality of the search and
the depth of the node to which a genetic operation is
applied. Rosca and Ballard hypothesized that the far-
ther away the genotypic change occurs from the root node
(i.e. the depth of crossover point is large), the smaller is
the corresponding change in the phenotype [7]. Igel et al
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Fig. 1. Island Model

showed that this hypothesis is valid for selected test prob-
lems experimentally [8]. In the normal crossover of GP,
the node selection ratio, i.e. the probability of selecting a
node as a crossover point, is chosen to be uniform. Since
the number of nodes of depth d tends to increase with
d, the crossover point becomes deep, especially when the
tree has grown to be a large size. Thus, GP with normal
crossover tends to incline on the local search as the tree
grows.

Ito et al proposed a new method, i.e. the depth-
dependent crossover, to overcome this problem [9]. With
this method, the depth selection ratio for a crossover is
higher for a node closer to the root node (i.e. crossover
point tends to be shallow). According to the Rosca and
Ballard’s hypothesis, this method puts emphasis on global
search. They stated that this method works as protec-
tion against destructive crossover and accumulates build-
ing blocks, but it generated very large programs. In their
experiment, the effectiveness of this method was proved
to be problem-dependent.

According to Rosca and Ballards’ hypothesis, the nor-
mal crossover is inclined on local search ability, whereas
the depth-dependent crossover is inclined on global search
ability. Hence, we consider that the combination of these
two would work effective, especially in the island model
GP, in which aborigines and immigrants have different
roles. We propose a new index, i.e. immigrant age, which
indicates how long an individual has survived in the deme.
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Our approach is to apply a crossover method to the indi-
vidual’s immigrant age. The effectiveness of the proposed
method is empirically shown by several experiments.

II. Method

A. Immigrant age

In the island model GP, different schemata grow on each
deme. Thus, schemata of newly migrated individuals and
their descendants are considered to be rare in the deme.
Therefore, it would be useful to discriminate those new
individuals from the others. We propose a new index, i.e.
immigrant age, that shows how long an individual has
survived in the deme. The definition of immigrant age is
described below:

• Immigrant age of an individual in the initial genera-
tion is zero.

• Immigrant age of a migrated individual is reset to
zero.

• Immigrant age of a individual is increased by one
when the genetic operation except crossover is ap-
plied.

• When crossover is applied, the younger age of its par-
ents is taken as offspring’s immigrant age, and is in-
creased by one.

When running a GP application, the loss of population
diversity would often be a problem that causes the decline
of the searching ability. In the island model GP, immi-
grants and their descendants would play an important role
in keeping the population diversity. We can discriminate
those individuals by means of the immigrant age. We con-
sider that the younger the immigrant age of an individual
is, the more plausibly it has rare schemata which may be
important for effective search.

B. Applied Operation

In the traditional method, the genetic operator to be ap-
plied is determined stochastically according to a certain
ratio after the selection. However, it would not take the
full advantage of the island model (even if plural methods
of crossovers are used). We propose a new method for de-
termining the operation to be applied, which is described
below:

• Select an individual by using the traditional method.
• If the immigrant age of the selected individual is less

than the threshold (i.e. a fixed constant), always
apply the depth-dependent crossover and not apply
the mutation.

• Otherwise, determine the operator stochastically as
the traditional method; apply a normal crossover if
needed.

By applying the depth-dependent crossover to the ”deme-
young” individuals, rare schemata are protected from the

destructive crossover or mutation, and rare schemata from
other demes and deme-original schemata are combined
to make a bigger building block is facilitated. By ap-
plying the traditional method to ”deme-old” individuals,
the optimization of schemata and the construction of new
schemata are maintained. We consider that this method
integrates both local and global search strategies, and
takes full advantage of the island model.

Deme

depth-dependent
crossover

traditional
crossover mutation
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Fig. 2. Proposed method

C. Depth-Dependent Crossover

We applied Ito’s depth-dependent crossover [9]. The al-
gorithm of Ito’s depth-dependent crossover is summarized
below:
STEP1. Given a tree, determine the depth d for applying
the depth-dependent crossover.
STEP2. Select randomly a node of which depth is equal
to d in STEP1.
STEP3. Apply the canonical crossover for the nodes cho-
sen in STEP2.
The depth selection ratio is derived by using the following
equations:

{ thresholdi = 1/2i for i = depth,
thresholdi = thresholdi+1 ∗ 2

for i = 0, 1, ..., depth− 1.

where thresholdi is the depth selection ratio at the ith
depth, and depth is the depth of a tree. thresholdi is
an accumulated value from the deepest node. The above
equations represent that the depth selection ratio is set to
be 1.0 for a root node. The depth selection ratio is half
of its parent node’s ratio. When determining the depth d
for the depth-dependent crossover, we pick up a number
i between 0 and the maximum depth in proportion to the
thresholdi value.

In Fig.3, the depth selection ratio of a root node is
50.0% following the above definition. Note that the
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threshold value of a root node in the figure is accumu-
lated from the deepest node.
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Fig. 3. Depth-Dependent Crossover

III. Experiments

A. Test problems

Three types of test problems were used to examine the
performance of the proposed method; i.e. 11-multiplexer
problem, ant problem, and inter-twined spiral problem.

The task of the 11-MX (11-multiplexer) problem is to
decode an address encoded in binary and to return the
binary data value of the register at that address [1]. An
11-multiplexor problem has 3 binary-valued address lines
(a0 − a3) and 8 data registers (d0 − d7) of binary values.
The fitness of the 11-MX is an error rate for total inputs.
Two different function sets were used in this problem.
One is the function set that Koza used, which consists of
{and, or, not, if} (Koza’s function set). The other is the
set of logical elements, which consists of {and, or, not,
nand, xor} (logical function set). The set of terminals
used in this problem is {a0 − a3, d0 − d7}.

The ant problem is the task of navigating an artificial
ant so as to find all 89 foods lying along an irregular trail
on 32 ×32 world (Santa Fe trail) [1]. The ant’s goal is to
traverse the entire trail (thereby eating all of the foods)
within limited energy. The fitness of the ant is the ratio
of which the ant could not eat 89 foods. The function
set used in this problem was {if-food-ahead, prog2,
prog3}, and the terminal set was {left, right, move}.

We also experimented an extended version of this prob-
lem, i.e. the ant problem with random obstacles to test
the robustness of the evolved program that GP. In this
problem, an obstacle is placed randomly on the correct
pathway of the problem. Foods are also added to create
the guideway so as not to lose the trait of Santa Fe trail.
The food-adding policy is as follows; Place the food on the
trail so that every corner of the right pathway has a food
that leads the ant to the right direction. For example, if an
obstacle is placed in a straight trail, place two foods that
form a parallel line with the right path (food1 and food2

in Fig.4). Add another food to lead the ant back to the
original trail (food3 in Fig.4) if necessary. If an obstacle is
placed on the corner of the right pathway, place one food
that leads the ant to turn to the right direction (food4
in Fig.4). The difficulty of this problem depends on the
place where the obstacle was placed. Therefore, the seed
values for generating the random value to determine the
place of the obstacle are kept at the same value over the
methods. In other words, seed value of nth run is same for
all the methods in comparison (of course, random value
for genetic operations are not affected by this).

obstacle

food2food1

food4

food3

food

Fig. 4. Obstacles and Pathway

The task of inter-twined spirals is to distinguish two
intertwined spirals [10]. The x-y-coordinates of 97 points
from each spiral are given as shown in Fig.5. The problem
involves learning to classify each point as to which spiral
it belongs. The fitness of this problem is an error rate for
the all 194 points. The function set used in this problem
was {+ ,-, *, /, sin, cos, tan, log, ln}, and the terminal
set used was {x, y, �}.

Fig. 5. Inter-Twined Spirals
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B. Settings

The experiments have been executed in our PC-cluster
that consists of 8 calculating nodes. Each calculating node
contains AMD Athlon 900MHz as a processor and 512MB
of memory. Parameter settings used in the experiments
are shown in the table.

TABLE I

GP Parameters

Ant 11-MX Spiral
No. of demes 8 8 8

Subpopulation size 512 512 512
Grow method grow grow grow
Selection method tournament tournament tournament
Tournament size 4 4 4
Crossover ratio 0.7 0.7 0.7
Mutation ratio 0.2 0.2 0.2
Migration freq. 10 10 10
Threshold 5 5 5

Each of the experiments has been run for twenty times
using the traditional and the proposed method.

IV. Results and Discussion

The fitness graphs of all the experiments are shown in
Fig.6-9. As you can see from the graphs, the proposed
method outperformed the traditional method in all of the
experiments , except in the 11-MX problem with Koza’s
function set. In 11-MX problem with Koza’s function set,
significant difference can not be found. For the ant prob-
lem (Fig.6) and 11-MX with logical function set (Fig.7),
we can observe that the difference of performance is not
that much in the forepart, but it becomes bigger as the
evolution proceeds. In the initial stage, the size of trees
is not so large, and the schema size is relatively small as
well, so that the normal crossover works effectively. But
when the trees and schemata grow large, most of the nor-
mal crossover would become destructive or neutral. This
results in the stagnation of the evolution as seen in the
graphs (especially clearly shown in Fig.6). On the other
hand, the proposed method succeeds in combining bigger
schemata to keep the evolution ongoing.

Significant difference could not be found in 11-MX with
Koza’s function set, while the superiority of the proposed
method was evident in 11-MX with logical function set.
Since Koza’s function set reduces the search space and the
size of the solution tree, the solution seems to have been
acquired before the global search ability of the traditional
method got worse.

In the fitness graph of the ant problem with random
obstacles (Fig.8), we can see that two methods performed
similarly until about 170th generation. However, while
the fitness keeps on fluctuating with almost the same am-
plitude for the traditional method, the proposed method
resulted in lowering the fitness values with generations. In
other words, the proposed method succeeded in acquiring
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Fig. 6. Fitness vs. Generation(Ant Problem)
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Fig. 7. Fitness vs. Generation (11-MX)

more robust individuals.
Generations when a solution was acquired for the ant

problem and the 11-MX problem with logical functions
are shown in the TABLE II. It is interesting that the su-
periority of the proposed method is clear for the average
and worst generations, while no significant difference can
be found for the best generations. The influence of bloat
might give a good explanation to this fact. When the abil-
ity of search is reduced, trees tend to bloat, so as to grow
the introns since most operations work destructively. The
bloat itself also causes the reduction of the search ability,
increasing the possibility of neutral operations and falling
in vicious cycle. In some runs, solutions were acquired
”luckily” before falling in this cycle, but in other cases
the search ability was reduced spirally.

Superiority of the proposed method is more clearly
shown when the success generation are compared. For
example, for the ant problem, the proposed method was
successful in acquiring the right solution within 100 gen-
erations in 90% of the runs, and even the worst run only
needed 110 generations. On the other hand, the tradi-
tional method succeeded only 60% within 100 generations,
and failed with 10% even after 300 generations.

By these experiments we can confirm that the proposed
method performed effectively, especially in the difficult
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Fig. 8. Fitness vs. Generation (Ant Problem with random
Obstacles)
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Fig. 9. Fitness vs. Generation (Inter-twined Spirals Problem)

problems.

V. Verification

The proposed method performed better than the tradi-
tional method in our experiments. In this section, we try
to verify the basis of it experimentally. For this purpose,
we have done another experiment to examine how ”decent
individuals” are created in the island GP. The definition
of a ”decent individual” is the individual fitter than any
of the individuals of the previous generations in the deme.
Immigrants are excluded from the definition. Thus, a de-
cent individual is created only when the crossover or the
mutation operators work effectively.

We selected 11-MX with logical function set as a target
problem. In this experiment, except for reproducing 1%
of individuals as elites, either crossover or mutation is
applied at the same probability to produce the individuals
for the next generation (i.e. both of the probabilities of
crossover and mutation are set to be 50% each). This
experiment has been run for 10 times, and we took the
following statistics for all the decent individuals:

• Applied genetic operation.
• The depth-ratio to which the operation has been ap-

TABLE II

Success Generation

Best Worst Average
11-MX L1 Trad. Method 74 241 130.9

11-MX L1 Prop. Method 80 135 103.1
Ant Trad. Method 32 N.A.(in 300) 90.9 2

Ant Prop. Method 22 110 55.2

1L stands for logical function set

2Average of the runs that acquired the solution within 300 generations

plied (this value would be 0 if the operation is applied
to the root node, 1 if applied to the deepest node).

• Immigrant age.

We observed how decent individuals are produced change-
ably as the evolution proceeds.

The ratio of crossover-produced individuals is shown in
Fig.10. If the possibilities of producing decent individuals
are equal for the two operations, this value would remain
near 0.5 (shown as the dotted line in the graph), since
reproduced individuals have no chance to become decent.
Note that this graph took the fitness value as the X-axis,
not the generation, so as to remove the variance of the
runs. This is to show the transition of the evolution more
clearly. For example, in order to express ”the initial stage
of evolution”, the expression ”the fitness of the best indi-
vidual is worse than n” would be more suitable than the
expression ”the generation is less than n”. Since the elite
strategy is adopted, the fitness value of the best individual
does not get worse. Therefore, the improvement of best
fitness values means the progress of generations. Fitness
values are divided into a set of groups of the same width,
and the average value of each group is shown in the graph.
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Fig. 10. Ratio of Crossover vs. Fitness

As can be seen from Fig.10, there is no significant dif-
ference in the ability of producing decent individuals in
the initial stage, the crossover is clearly superior to the
mutation after that initial stage. In the final stage, about
70% of decent individuals are produced by crossover.

The depth-ratio of a node to which the operation is ap-
plied is shown in Fig.11. This graph also took the grouped
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fitness values as the X-axis. Note that the possibility of
selecting shallow nodes was low, since only the traditional
crossover was used in this experiment. From this graph,
we can see that the operation at relatively deep nodes is
effective in the initial stage, but the importance of apply-
ing the operation to shallower nodes increases as the evo-
lution proceeds. Building block hypothesis can provide
some good explanation to this result. The initial stage
is the period at which new building blocks are built and
relatively small schemata are accumulated, so that oper-
ations at deeper node are more effective. But after small
schemata are produced enough, the crossover at shallower
nodes is needed to accumulate them. This also explains
the reason why the crossover becomes more important.
Fig.11 also shows that the mutation of shallow nodes are
effective as the evolution proceeds. This fact indicates
that the adoption of the depth-dependent mutation may
work effectively as well.
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Fig. 12. Immigrant Age vs. Generation

The immigrant age of decent individuals is shown in
Fig.12. Note that the X-axis is the grouped generations.
It is remarkable that the average values of the immigrant
age are always kept small. This graph shows that immi-
grants and their descendants constantly play an important
role in producing decent individuals.

VI. Conclusion

This paper presented a new method in the island model
GP that adopts the depth-dependent crossover to the
”deme-young” individuals and the traditional crossover
to others. The effectiveness of our approach was shown
by the experiments, especially in several difficult prob-
lems. We also showed that the effective depth of opera-
tions changes as the evolution proceeds.

The future research will include investigating of the ef-
fects of the operation depth to improve the search ability
of our method, adopting immigrant age as one of the fac-
tors in the selection, and applying our method to a more
complex real-world problem.
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