
A Hybrid Model of Evolutionary Algorithms and Branch-and-Bound for
Combinatorial Optimization Problems

José E. Gallardo, Carlos Cotta, Antonio J. Fernández
Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga

ETSI Informática, Campus de Teatinos
29071 - Málaga - Spain

{pepeg,ccottap,afdez}@lcc.uma.es

Abstract- Branch-and-Bound and evolutionary algo-
rithms represent two very different approaches for tack-
ling combinatorial optimization problems. These ap-
proaches are not incompatible though. In this paper, we
consider a hybrid model that combines these two tech-
niques. To be precise, it is based on the interleaved ex-
ecution of both approaches, and has a heuristic nature.
The multidimensional 0-1 knapsack problem has been
chosen as benchmark. As it will be shown, the hybrid
algorithm can produce better results at the same com-
putational cost, specially for larger problem instances.

1 Introduction

Branch-and-bound techniques (BnB) [LW66] constitute a
well-known approach for solving combinatorial optimiza-
tion problems to optimality. Essentially, BnB techniques
produce upper and lower bounds that eventually converge
to the optimal solution. To this end, an implicit enumera-
tion scheme is used: the algorithm starts with a problem (or
node) that represents the whole search space; subsequently,
it proceeds iteratively by picking a node, and dividing it into
mutually excluding subproblems that represent a partition of
the original search space. Upper and lower bounds are com-
puted for these subproblems; then, they are successively di-
vided until they can be trivially solved, or until their upper
bound is lower than the best known solution (maximization
assumed). Thus, the search performed by the algorithm can
be represented as a tree. This tree can be traversed in several
ways. The most efficient (in terms of the number of itera-
tions) is best-first, i.e., expanding firstly the most promis-
ing –according to the upper bound– nodes. However, the
memory requirements can make this strategy unrealistic for
large problem instances. The alternative is using a depth-
first traversal. This strategy does not require large amounts
of memory, but can expand much more nodes than best-first.

On the other hand, evolutionary algorithms (EAs)
[Bäc96, BFM97] have a completely different philosophy:
tentative solutions are iteratively generated, aiming at pro-
ducing better and better solutions. Their performance is
probably, yet not provably, good: near-optimal solutions
can be typically found at an acceptable computational cost
in many combinatorial optimization problems. It must be
noted that –despite the underlying algorithmic template of
EAs being fairly the same in these different problems– the
need for exploiting problem-knowledge has been repeatedly
shown in theory and in practice [Cul98, Dav91, WM97].

Problem-knowledge can be incorporated to an EA in
many ways. A popular option is the hybridization of the

algorithm with some problem-specific technique. In this
sense, we here present a model for hybridizing EAs with
BnB techniques. The goal is combining synergistically
these two different solving approaches, exploiting the ca-
pability of BnB for identifying provably good regions of the
search space, and the power of EAs for exploring these. Be-
fore detailing how this is precisely achieved, let us firstly
describe the underlying search techniques that will be com-
bined. This will be done in the context of the multidimen-
sional 0-1 knapsack problem (MKP).

2 Exact and Evolutionary Approaches to the
MKP

The MKP is a generalization of the classical 0-1 knapsack
problem, so it is worth describing the latter in the first place.
Subsequently, the algorithmic approaches considered for
tackling the MKP will be shown.

2.1 The Multidimensional 0-1 Knapsack Problem

An instance of the classical 0-1 knapsack problem is defined
by a knapsack of capacity b, and a set of n objects O =
{o1, · · · , on}. Each of these objects oj has a value pj and
a weight rj . The problem amounts to selecting a subset
S ⊆ O of objects, such that their combined weight does not
exceed the knapsack capacity, and their value is maximal.

The MKP generalizes the previous definition by consid-
ering m different knapsacks, each of them with a possibly
different capacity bi. The subset of objects selected must
fit simultaneously within all m knapsacks. Furthermore,
objects have a different weight rij within each knapsack1.
This way, the problem can be formalized as follows:

maximize

∑n
j=1 pjxj ,

subject to
∑n

j=1 rijxj ≤ bi, i = 1, . . . , m,

xj ∈ {0, 1}, j = 1, . . . , n.

and

pj > 0, rij ≥ 0, bi ≥ 0

Thus, vector ~x describes the objects selected in the solu-
tion. The problem is strongly-NP [GJ79], and does not

1An alternative interpretation of the problem is considering these knap-
sacks as different resources, being bi the available amount of resource i,
and rij the consumption of resource i by object j.



admit a fully polynomial time approximation scheme (FP-
TAS) [KS81]. It can be regarded as a general statement of
binary integer programming with non-negative coefficients.
Many real-world problems can be formulated as the MKP,
e.g., capital budgeting, project selection, (see [SM89] for
instance).

2.2 A BnB Approach to the MKP

The BnB algorithm considered carries out a standard ex-
ploration of the search tree for this kind of problems (see
[BM80]). More precisely, the linear relaxation of each node
is solved (i.e., the corresponding subproblem is solved as-
suming variables can take fractional values in the inter-
val [0,1]) using linear-programming (LP) techniques. If
all variables take integral values, the subproblem is solved.
This is not generally the case though, and some variables
are non-integer in the LP-relaxed solution; in the latter situ-
ation, the variable whose value is closest to 0.5 is selected,
and two subproblems are generated, fixing this variable to
0 or to 1 respectively. The LP-relaxed value of the node is
used as its upper-bound, so that nodes whose value is below
the best-known solution can be pruned from the search tree.

The tree can be traversed in different ways as mentioned
in Section 1. If a depth-first strategy is used, the memory
required grows linearly with the depth of the tree; hence
large problems can be considered. However, the time-
consumption can be excessive. On the other hand, a best-
first strategy minimizes the number of nodes explored, but
the size of the search tree (that is, the number of nodes kept
for latter expansion) will grow exponentially in general. A
third option is using a breadth-first (or level-order) traver-
sal. In principle, this option would have the drawbacks
of the previous two strategies, unless a heuristic choice is
made: keep at each level just the best k nodes. This implies
sacrificing exactness, but provides a very effective heuristic
search approach. The name beam search has been coined to
denote this strategy. We have precisely used this approach
in our hybrid model.

2.3 An EA for the MKP

The MKP has been tackled via EAs in many works, e.g.,
[KBH94, Rai98, CB98, CT98, Got00, RG04]. Among
these, the EA developed by Chu and Beasley [CB98] re-
mains as one of the cutting-edge approaches for solving the
MKP. This EA uses the natural codification of solutions,
namely binary n-dimensional strings ~x, representing the in-
cidence vector of a subset S of objects on the universal set
O (i.e., (xj = 1) ⇔ oj ∈ S).

Of course, infeasible solutions could be encoded in this
way, so a repairing algorithm is used. To do so, an initial
pre-processing of the problem instance is performed off-
line. The goal is obtaining a heuristic precedence order
among variables: they are ordered for decreasing pseudo-
utility values (see [CB98] for details). Variables near the
front of this ordered list are more likely to be latter included
in feasible solutions (and analogously, variables near the
end of the list are more likely to be excluded from feasible

initialize Ri =
∑n

j=1 rijxj , ∀i ∈ {1, · · · , n};

/* DROP phase */
for j = n down to 1 do

if (xj = 1) and
(∃i ∈ {1, · · · ,m} : Ri > bi) then

set xj ← 0;
set Ri ← Ri − rij ,∀i ∈ {1, · · · ,m}

end if
end for

/* ADD phase */
for j = 1 up to n do

if (xj = 0) and
(∀i ∈ {1, · · · ,m} : Ri + rij ≤ bi) then

set xj ← 1;
set Ri ← Ri + rij ,∀i ∈ {1, · · · ,m}

end if
end for

Figure 1: Repairing/improving algorithm used in the EA.

solutions).
Once the heuristic ordering is produced, a two-phase re-

pairing algorithm is applied to each solution (see Figure 1).
In the first phase, variables are examined in increasing or-
der of pseudo-utility, and changed to 0 while the solution is
infeasible. In the second phase, variables are examined in
reverse order and changed to 1 as long as feasibility is kept.
Therefore, the goal of the first phase is attaining feasibility,
while the goal of the second phase is improving the quality
of solutions.

Since this EA just explores the feasible portion of the
search space, the fitness function can be readily defined as
f(~x) =

∑n
j=1 pjxj .

3 Hybrid Models

In this section we present a hybrid model that integrates an
EA with a BnB algorithm. Our aim is to combine the advan-
tages of both approaches and, at the same time, reduce their
drawbacks working alone. Firstly, in the following subsec-
tion, we briefly discuss some related works existing in the
literature regarding the hybridization of EA techniques and
BnB algorithms.

3.1 Related Work

Cotta et al. [CANT95] used a problem-specific BnB ap-
proach for the traveling salesman problem based on 1-trees
and the Lagrangean relaxation [VJ82], and made use of an
EA to provide bounds in order to guide the BnB search.
More specifically, two different approaches for the integra-
tion were analyzed. In the first model, the genetic algorithm
played the role of master and the BnB was incorporated as
a slave. The primary idea was to build a hybrid recombi-
nation operator based in the BnB philosophy. More pre-
cisely, the BnB was used in order to build the best possible
tour within the (Hamiltonian) subgraph defined by the union



of edges in the parents. This recombination procedure was
costly, but provided better results than blind edge recombi-
nation. The second model proposed consisted of executing
in parallel the BnB algorithm with a certain number of EAs
which generated a number of different high-quality solu-
tions. The diversity provided by the independent EAs con-
tributed to make that edges suitable to be part of the optimal
solution were likely included in some individuals, and non-
suitable edges were unlikely taken into account. Despite
these approaches showed encouraging results, the work in
[CANT95] described only preliminary results.

Another relevant research was developed by Nagar et al.
[NHH96], combining a BnB tree search and an EA which
was used to provide bounds for solving flowshop schedul-
ing problems. Later, a hybrid algorithm, combining ge-
netic algorithms and integer programming BnB approaches
to solve MAX-SAT problems was described by French et
al. [FRW01]. This hybrid algorithm gathered information
during the run of a LP-based BnB algorithm, and used it
to build the population of an EA population. The EA was
eventually activated, and the best solution found was used
to inject new nodes in the BnB search tree. The hybrid algo-
rithm was run until the search tree was exhausted, and hence
it is an exact approach. However, in some cases it expands
more nodes than the BnB algorithm alone.

More recently, Cotta and Troya [CT03] presented a
framework for the hybridization along the lines initially
sketched in [CANT95], i.e., based on using the BnB al-
gorithm as a recombination operator embedded in the EA.
This hybrid operator is used for recombination: it intelli-
gently explores the possible children of solutions being re-
combined, providing the best possible outcome. The result-
ing hybrid algorithm provided better results than pure EAs
in several problems where a full BnB exploration was un-
practical on its own.

In [GCF05], we presented another hybrid algorithm that
keeps some similarities with the new one that we describe in
Section 3.2. One of the differences with the algorithm pre-
sented in this paper is that in [GCF05] we used an EA that
enabled the appearance of duplicated individuals in the pop-
ulation. Also, the BnB algorithm in [GCF05] was less so-
phisticated and did not make use of the linear relaxation of
the problem to obtain upper bounds (as we do now). More-
over, the search tree was traversed by expanding firstly the
more promising nodes, and node bounds were not employed
to guide the search of the EA. Last, but not least, the for-
mer approach was intended to be a complete anytime algo-
rithm. However, it may be worth trading completeness for
improved accuracy, as it will be shown henceforth.

3.2 Our Hybrid Algorithm

One way to do the integration of evolutionary techniques
and BnB models is via a direct collaboration that consists
of letting both techniques work alone in parallel (i.e., let
both processes perform independently), that is, at the same
level. By doing so, both processes will share the solution
(see Fig. 2) so that we can obtain the following benefits:

• The BnB can use the current solution to purge the

Promising regions

Lower bounds

BnB 
Algorithm 

EA

Figure 2: A model for algorithmic collaboration.

problem queue, deleting those problems whose upper
bound is smaller than the one obtained by the EA.

• The BnB can inject information about more promis-
ing regions of the search space into the EA population
in order to guide the EA search.

The hybrid algorithm starts by running the EA in order
to obtain a first approximation to the solution. In this initial
phase, the population is randomly initialized and the EA ex-
ecuted until the solution is not improved for a certain num-
ber of iterations.

Afterwards, a version of the BnB algorithm that expands
the search tree in a breadth-first way is executed (i.e., every
node in a level is explored before moving to the next). To
avoid an excessive memory consumption (and to save the
computational time of computing the LP-relaxed solution
for some nodes), in each level of the search tree we only
consider the k more promising nodes. The EA is then
executed during the transition of levels in the search tree
(i.e., when the search tree grows in depth). For executing
the EA, the population initialization takes into account the
set of k nodes in the current level of the search tree of the
BnB algorithm. Note that these nodes actually represent
schemata, i.e., they are partial solutions in which some
bits are fixed but another ones are indeterminate. These
schemata are converted in full solutions as follows:

for each schemata s in the BnB node-list do
for i = 1 up to n do

if si =* then
set xi ← Rand{0,1};

else
set xi ← si

end if
end for
repair x
inject x in the population

end for

The resulting solutions are incorporated into the EA pop-
ulation. The intended goal of this process is to lead the EA
search to these regions of the search space (recall that the



Figure 3: Sketch of the hybrid algorithm.

nodes in the queue represent subsets of the search space
considered promising by the BnB; hence, the EA is used
for finding probably good solutions in this region).

The EA evaluation function in this stage is modified to
be

f(~x) =
n∑

j=1

pjxj +
z(~x)

2
, (1)

where z(~x) is the upper bound of the best open node (i.e.,
currently considered in the BnB algorithm) that is compat-
ible2 with ~x, or 0 in case no node is compatible. Doing so,
those EA individuals that belong to the more promising re-
gions will obtain better aptitude value, and as consequence,
it is expected that the exploration will probably be focused
on those regions. The 1/2 factor in this equation is a mere
scale term, adjusted in preliminary experiments.

Upon stabilization of the EA, control is returned to the
BnB algorithm. The lower bound for the optimal solution
obtained by the EA is then compared to the current incum-
bent in the BnB, updating the latter if necessary. This may
lead to new pruned branches in the BnB search tree. This is
repeated until the search tree is exhausted, or a time limit is
reached. The whole process is illustrated in Figure 3.

4 Experimental Results

We have tested our algorithms with problems available at
the OR-library [Bea90] maintained by Beasley. We took
two instances per problem set. Each problem instance is
characterized by a number m of constraints (or knapsacks),
a number n of items and a tightness ratio, 0 ≤ α ≤ 1.
The closer to 0 the tightness ratio the more constrained the
instance. To be precise, the capacity of the i-th knapsack is

2A node is compatible with respect to a solution if all bits specified in
the node coincide with those in the solution.

bi = α

n∑

j=1

rij . (2)

We solved these problems on a Pentium IV PC
(1700MHz and 256MB of main memory) using the EA,
three different BnB algorithms –using depth-first, best-first,
and beam search (k = 100)–, and the hybrid algorithm (all
of them coded in C). A single execution for each instance
was performed for the three BnB methods (since these are
exact methods) whereas ten independent runs per instance
were carried out for the EA and hybrid algorithms. The
algorithms were run for 600 seconds in all cases. For the
EA and the hybrid algorithm, the size of the population was
fixed at 100 individuals that were initialized with random
feasible solutions. With the aim of maintaining some diver-
sity in the population, duplicated individuals were not al-
lowed in the population. The crossover probability was set
to 0.9, binary tournament selection was used, and standard
uniform crossover operator was chosen.

Execution results for BnB algorithms are shown in Ta-
bles 1-3. The first three columns indicate the tightness ratio
(α), and the sizes (m and n) for a particular instance. The
next column reports results for the best solution found as
well as the time (in seconds) consumed to find it. Specif-
ically for the EA and hybrid algorithms, in Tables 4 and
5 we also show the mean of the values obtained and stan-
dard deviations, and the average time to obtain the best so-
lution. For clarity, the best results obtained globally (ex-
cluding ties) are written in bold face. Since the EA and the
hybrid algorithm are stochastic techniques, we have consid-
ered the mean value for comparisons between them. When
comparing to the deterministic BnB algorithms, we have
considered the best solution though.

As it can be seen, the hybrid algorithm provides better re-
sults for the largest problem instances ({10, 30} × 500 and
30 × 250), regardless of the tightness ratio. For the small-
est problem instances, the pure EA performs better. This



0 100 200 300 400 500 600
1.154

1.155

1.156

1.157

1.158

1.159

1.16
x 10

5

time (s)

be
st

 s
ol

ut
io

n 
fo

un
d

EA

hybrid algorithm

beam search 

0 100 200 300 400 500 600
3.0685

3.069

3.0695

3.07

3.0705

3.071

3.0715
x 10

5

time (s)

be
st

 s
ol

ut
io

n 
fo

un
d

hybrid 

EA 

beam search 

Figure 4: Evolution of the best solution in the evolutionary algorithm (EA), beam search, and the hybrid algorithm during
600 seconds of execution. (Left) problem instance with α = .25, m = 30, n = 500. (Right) problem instance with
α = .75, m = 10, n = 500. In both cases, curves are averaged for ten runs for the EA and the hybrid algorithm.

α m n solution t
100 23064 126.04

0.25 10 250 59187 481.25
500 117733 334.37
100 21946 3.82

30 250 56702 21.10
500 115857 268.09
100 60633 0.64

0.75 10 250 149685 19.12
500 307072 10.13
100 60603 16.54

30 250 149595 216.10
500 300473 465.43

Table 1: Results of the BnB algorithm with depth-first ex-
ploration.

α m n solution t
100 23064 16.61

0.25 10 250 59187 35.60
500 117779 429.34
100 21946 1.37

30 250 56824 468.12
500 115857 153.64
100 60633 0.21

0.75 10 250 149704 293.28
500 307072 594.92
100 60603 2.64

30 250 149595 23.75
500 300473 134.43

Table 2: Results of the BnB algorithm with best-first explo-
ration.

α m n solution t
100 23057 2.37

0.25 10 250 59133 8.25
500 117772 67.23
100 21946 1.09

30 250 56824 14.35
500 115795 554.37
100 60633 0.29

0.75 10 250 149641 0.54
500 307013 31.67
100 60603 5.03

30 250 149595 45.43
500 300512 198.73

Table 3: Results of the BnB algorithm with beam-search.

α m n best mean ± σ t
100 23064 23064 ± 0 17.5

0.25 10 250 59187 59180.3 ± 7.4 342.4
500 117772 117743.6 ± 21.8 277.6
100 21946 21946 ± 0 2.1

30 250 56824 56767.0 ± 53.9 250.2
500 115894 115847.7 ± 31.4 303.9
100 60633 60633 ± 0 1.1

0.75 10 250 149704 149704 ± 0 91.7
500 307050 307032.3 ± 20.6 175.4
100 60603 60603 ± 0 68.9

30 250 149601 149594.4 ± 4.8 197.5
500 300531 300484.9 ± 23.1 199.8

Table 4: Results of Chu and Beasley’s EA.



α m n best mean ± σ t
100 23064 23057.7 ± 2.1 2.5

0.25 10 250 59166 59161.7 ± 7.5 76.8
500 117772 117764.3 ± 15.7 165.1
100 21946 21946 ± 0 1.1

30 250 56824 56824 ± 0 174.6
500 116014 115911.8 ± 52.4 253.5
100 60633 60633 ± 0 0.6

0.75 10 250 149704 149696.3 ± 12.8 26.4
500 307050 307038.9 ± 16 187.9
100 60603 60603 ± 0 48.6

30 250 149601 149595.4 ± 1.9 433.7
500 300531 300491.5 ± 20.7 266.9

Table 5: Results of the hybrid algorithm. Entries in italics
indicate that the hybrid algorithm provided the best results
ex aequo with another algorithm(s).

may be due to the lower difficulty of the latter instances;
the search overhead of switching from the EA to the BnB
may not be worth in this case. The hybrid algorithm just
starts being advantageous in larger instances, where the EA
faces a more difficult optimization scenario. With respect to
the BnB algorithms, notice that the hybrid algorithm always
provides better solutions than beam search, and similar or
better solutions than that of the other BnB algorithms. Of
course, the results of these latter algorithms must be taken as
just indicative, since no hybridization with depth-first BnB
or best-first BnB has been attempted here.

Figure 4 shows the evolution of the best value found by
the different algorithms for two specific problem instances.
Note that the hybrid algorithm always provides here better
results than the original ones, specially in the case of the
more constrained instance (α = .25).

5 Conclusions and Future Work

We have presented a hybridization of an EA with a BnB
algorithm. The EA provides lower bounds that the BnB al-
gorithm can use to purge the problem queue, whereas the
BnB guides the EA to look into promising regions of the
search space.

The resulting hybrid algorithm has been tested on large
instances of the MKP problem with encouraging results:
the hybrid EA produces better average results than the con-
stituent algorithms on specific instances. This indicates the
synergy of this combination, thus supporting the idea that
this is a profitable approach for tackling difficult combinato-
rial problems. In this sense, further work will be directed to
confirm these findings on different combinatorial problems,
as well as to study alternative models for the hybridization
of the BnB with EAs.

Another very interesting line for future developments
refers to the parallelization of the hybrid algorithm. Several
possibilities can be considered here. On one hand, any of
the constituent algorithms can be internally parallelized; for
instance, the EA can use an island-based model, or we can
distribute the evaluation of nodes in the current level among
a number of computers. This can lead to improved results

due to the numerical speed-up in the BnB part, and the al-
gorithmic speed-up in the EA component [CP00]. On the
other hand, a fully asynchronous functioning of both com-
ponents (EA and BnB) with occasional communication is a
very appealing option for dealing with large-scale optimiza-
tion tasks.

Acknowledgements

This work was partially supported by Spanish MCyT under
contracts TIC2002-04498-C05-02 and TIN2004-7943-C04-
01. Thanks are due to one of the anonymous reviewers for
useful comments that have enhanced the readability of the
article.

Bibliography

[Bäc96] T. Bäck. Evolutionary Algorithms in Theory
and Practice. Oxford University Press, New
York NY, 1996.

[Bea90] J.E. Beasley. Or-library: distributing test prob-
lems by electronic mail. Journal of the Op-
erational Research Society, 41(11):1069–1072,
1990.

[BFM97] T. Bäck, D.B. Fogel, and Z. Michalewicz.
Handbook of Evolutionary Computation. Ox-
ford University Press, New York NY, 1997.

[BM80] E. Balas and H. Martin. Pivot and Complement
- a heuristic for 0-1 programming. Management
Science, 26(1):86–96, 1980.

[CANT95] C. Cotta, J.F. Aldana, A.J. Nebro, and J.M.
Troya. Hybridizing genetic algorithms with
branch and bound techniques for the resolu-
tion of the TSP. In D.W. Pearson, N.C. Steele,
and R.F. Albrecht, editors, Artificial Neural
Nets and Genetic Algorithms 2, pages 277–280,
Wien New York, 1995. Springer-verlag.

[CB98] P.C. Chu and J.E. Beasley. A genetic algo-
rithm for the multidimensional knapsack prob-
lem. Journal of Heuristics, 4:63–86, 1998.

[CP00] E. Cantú-Paz. Efficient and Accurate Parallel
Genetic Algorithms, volume 1 of Genetic Algo-
rithms and Evolutionary Computation. Kluwer
Academic Publishers (now Springer-Verlag),
2000.

[CT98] C. Cotta and J.M. Troya. A hybrid genetic al-
gorithm for the 0-1 multiple knapsack problem.
In G.D. Smith, N.C. Steele, and R.F. Albrecht,
editors, Artificial Neural Nets and Genetic Al-
gorithms 3, pages 251–255, Wien New York,
1998. Springer-Verlag.

[CT03] C. Cotta and J.M. Troya. Embedding branch
and bound within evolutionary algorithms. Ap-
plied Intelligence, 18(2):137–153, 2003.



[Cul98] J. Culberson. On the futility of blind search:
An algorithmic view of “no free lunch”. Evolu-
tionary Computation, 6(2):109–128, 1998.

[Dav91] L. Davis. Handbook of Genetic Algorithms.
Van Nostrand Reinhold, New York NY, 1991.

[FRW01] A.P. French, A.C. Robinson, and J.M. Wilson.
Using a hybrid genetic-algorithm/branch and
bound approach to solve feasibility and opti-
mization integer programming problems. Jour-
nal of Heuristics, 7(6):551–564, 2001.

[GCF05] J.E. Gallardo, C. Cotta, and A.J. Fernández.
Solving the multidimensional knapsack prob-
lem using an evolutionary algorithm hybridized
with branch and bound. In Artificial Intel-
ligence and Knowledge Engineering Applica-
tions: A Bioinspired Approach, number 3562 in
Lecture Notes in Computer Science, pages 21–
30, Berlin Heidelberg, 2005. Springer-Verlag.
In press.

[GJ79] M.R. Garey and D.S Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Co., San Francisco
CA, 1979.

[Got00] J. Gottlieb. Permutation-based evolutionary al-
gorithms for multidimensional knapsack prob-
lems. In J. Carroll, E. Damiani, H. Haddad,
and D. Oppenheim, editors, ACM Symposium
on Applied Computing 2000, pages 408–414.
ACM Press, 2000.

[KBH94] S. Khuri, T. Bäck, and J. Heitkötter. The
zero/one multiple knapsack problem and ge-
netic algorithms. In E. Deaton, D. Oppenheim,
J. Urban, and H. Berghel, editors, Proceedings
of the 1994 ACM Symposium on Applied Com-
putation, pages 188–193. ACM Press, 1994.

[KS81] B. Korte and R. Schrader. On the existence of
fast approximation schemes. In O.L. Mangasar-
ian, R.R. Meyer, and S. Robinson, editors, Non-
linear Programming 4, pages 415–437. Acad-
emic Press, 1981.

[LW66] E.L. Lawler and D.E. Wood. Branch and
bounds methods: A survey. Operations Re-
search, 4(4):669–719, 1966.

[NHH96] A. Nagar, S.S. Heragu, and J. Haddock. A com-
bined branch and bound and genetic algorithm
based for a flowshop scheduling algorithm. An-
nals of Operation Research, 63:397–414, 1996.

[Rai98] G.R. Raidl. An improved genetic algorithm for
the multiconstraint knapsack problem. In Pro-
ceedings of the 5th IEEE International Confer-
ence on Evolutionary Computation, pages 207–
211, 1998.

[RG04] G.R. Raidl and J. Gottlieb. Empirical analy-
sis of locality, heritability and heuristic bias in
evolutionary algorithms: A case study for the
multidimensional knapsack problem. Technical
Report TR 186–1–04–05, Institute of Computer
Graphics and Algorithms, Vienna University of
Technology, 2004.

[SM89] H. Salkin and K. Mathur. Foundations of Inte-
ger Programming. North Holland, 1989.

[VJ82] A. Volgenant and R. Jonker. A branch and
bound algorithm for the symmetric traveling
salesman problem based on the 1-tree relax-
ation. European Journal of Operational Re-
search, 9:83–88, 1982.

[WM97] D.H. Wolpert and W.G. Macready. No free
lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67–
82, 1997.


