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Abstract—We investigate a method to deal with congestion of
sectors and delays in the tactical phase of air traffic flow and
capacity management. It relies on temporal objectives given for
every point of the flight plans and shared among the controllers in
order to create a collaborative environment. This would enhance
the transition from the network view of the flow management to
the local view of air traffic control. Uncertainty is modeled at
the trajectory level with temporal information on the boundary
points of the crossed sectors and then, we infer the probabilistic
occupancy count. Therefore, we can model the accuracy of the
trajectory prediction in the optimization process in order to
fix some safety margins. On the one hand, more accurate is
our prediction; more efficient will be the proposed solutions,
because of the tighter safety margins. On the other hand, when
uncertainty is not negligible, the proposed solutions will be more
robust to disruptions. Furthermore, a multiobjective algorithm
is used to find the tradeoff between the delays and congestion,
which are antagonist in airspace with high traffic density. The
flow management position can choose manually, or automatically
with a preference-based algorithm, the adequate solution. This
method is tested against two instances, one with 10 flights and 5
sectors and one with 300 flights and 16 sectors.

I. INTRODUCTION

Nowadays, delays in air traffic management are a major
problem, which is mainly caused by capacity limits, particu-
larly in Europe where the flight density is high. This relates
directly to the regulations taken in Air Traffic Flow and
Capacity Management (ATFCM), because their impact on the
trajectories are more consequent than the ones taken in Air
Traffic Control. According to [1], the Network Manager is
responsible for planning the demand issued by the airlines on
the air traffic infrastructures, including runways and control
sectors. This is done in the strategic and the pre-tactical phase,
where the different actors are implied in the Collaborative
Decision Making process. Then, the ATFCM daily plan is
published, which describes a set of tactical measures, e.g.,
routeing scenarios or regulations, and the departure slots are
assigned to the aircraft operators. The latter consist in intervals
of 15 minutes that are supposed to encompass the uncertainty
at the boarding phase. Thereafter, the evolution of the flight
is assured through the Flow Management Position (FMP),
linking every control centers to the Network Manager. This
position is responsible for implementing local procedures, to
monitor their effect and to provide the relevant information to
the Network Manager. In return, the Enhanced Tactical Flow

Management System is responsible for providing the predicted
occupancy count for each sector. Then, the network manager
and the flow management position will agree if the activation
of regulations is required or not.

As a matter of fact, the sector occupancy is calculated from
a trajectory prediction with potential errors. Nevertheless, if
the predicted sector occupancy is higher than the capacity,
regulations can be activated and generate delays. This will
effectively disrupt the initial slot allocation and generate
delays. The major drawback from this procedure is that the
effect of regulations becomes effective a few hours later and
will drastically impact the workload. In some cases, when
uncertainty about the future is high, ineffective regulations
might be issued. This is the main reason for the introducing
of the Short-term ATFCM measures in the process. These are
intended to solve small disruptions locally in time and space,
and encompass minor ground delays, flight level capping and
minor rerouting. In the following, we present adaptive target
times of arrival as a mean to stabilize the network impacted
by small disruptions.

This paper introduces an original methodology to tackle
uncertainty regarding aircraft trajectories and airspace sector
crossings. To propagate the uncertainty, we can infer the
probability of sector congestion with a closed-form equation.
Then, the probabilistic model is used within an optimization
algorithm for scheduling all flights at boundaries of the sectors
in order to minimize the expected cumulated delays and the
expected sector congestion. To the best of our knowledge, the
novelty of this work is to provide the inference mechanism to
propagate the uncertainty from the trajectories to the sectors
and to use the resulting probabilistic model as a black-box for
multiobjective optimization.

The paper is organized as follows: first, we present a
literature survey on the formulations and the techniques used
to solve the related air traffic flow management problem. Then,
we present the motivation of the paper and the mathematical
formulation of the uncertainty model. Finally, we give the ex-
perimental results that validate the model and the optimisation
process, followed by a discussion on the possible extensions
of the model and sketches further directions of research.
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II. RELATED WORK

The Operational Research community has studied many
variants of the air traffic flow management problem in the pre-
tactical phase since the beginning of the 90s. To our knowl-
edge, the most comprehensive formulation is the Air Traffic
Flow Management Rerouting Problem [2], which integrates all
phases of a flight, different costs for ground and air delays,
rerouting, continued flights and cancellations. Instances of the
size of the National Airspace of the United States were used to
validate the approach. Recently, [3] recognized the importance
of dealing with uncertainty by minimizing directly the proba-
bility of congestion with the concept of chance constraint. Be-
sides, a multiobjective optimization approach has been used in
air traffic control by [4] to minimize an aggregated complexity
metric over sectors, designed and validated by Eurocontrol.
In this study, the dimensions of the multiobjective problem
represent the complexity for each sector and thus, they use
the weighted sum as a scalarization method to aggregate the
complexity over all sectors. Consequently, the multiobjective
problem is transformed into a mono-objective problem and
the weights are used to generate different trade-offs between
sectors. Also, [5] use the multiobjective approach to model
the trade-off between sector congestion and delays. In this
case, the objective function space is in two dimensions and
the decision space consists of the takeoff time of the flights
and the chosen routes. A multiobjective genetic algorithm is
used to generate a pool of solutions with a diversity measure
in order to distribute them uniformly on the Pareto front. From
the Optimal Control community, [6] proposes a solution to the
dynamic problem when weather disruptions occur. They apply
network regulation strategies to a dynamical model represent-
ing the problem as a network of queues with load-dependent
service rates on sector boundaries. This macroscopic view, also
known as Eulerian Model, is well-adapted for instances of the
size of the National Airspace System. The purpose of the given
algorithm is to change the incoming throughput or to reroute
flows when a sector capacity degradation occurs. Besides, a
study of the uncertainty was conducted by [7] with an analysis
of the prediction error of the time of arrival of the aircraft. The
main hypothesis of the study is that the random variable of
the prediction error follows a Gaussian distribution.

To the best of our knowledge, this article is the first to tackle
the problem of optimization of the air traffic flow and capacity
management with a probabilistic model used to monitor the
flights in real-time and a multiobjective algorithm to find the
adequate actions to respond to disruptions.

III. MOTIVATION

The goal of this work is to propose an automated method
to enhance the robustness of the network to small disruptions
in the tactical phase in ATFCM. To do so, the temporal
uncertainty of flight trajectories are modeled in a dynamical
way since the estimated time over (ETOs) can be updated, i.e.,
via a data-link transmission between ground control and the
flight management system of the aircraft or with updates from
a ground trajectory prediction. Through a monitoring process,

any change in the sector capacities will result in the evaluation
of the congestion from these temporal trajectories. If need be,
an optimization process is launched to change the trajectories
of the aircraft according to the magnitude of the disruption. For
this part, a multiobjective algorithm is used to find multiple
plans, which give the tradeoff between generated delays and
congestion reduction. This is a way for the FMP to be able to
choose manually or automatically the most adapted solution
to the disruption.

The main novelty of this paper is to consider the uncertainty
at a trajectory level by the intermediate of the target time of
arrival on the waypoints, then to propagate the uncertainty
into the sectors by using a closed-form equation and finally,
to use the probability marginals in order to infer the expected
cost of delays and the expected cost of congestion. Then, the
targets are tuned with a multiobjective algorithm to reduce the
expected cost of congestion, if it is higher than a threshold.
Also, we include ground delays since the actions on airborne
flights are clearly restricted by justified economic reasons from
the airlines.

A dynamic and stochastic approach can generate a plan
that is robust to changes as long as the uncertainty is well-
estimated. An optimal schedule of a deterministic approach
is characterized by the tightness between the target times
of arrival. To minimize the delays, it should imply that an
aircraft enters in the sector as soon as another aircraft leaves
it. The difference in time between these targets will be of
the same order than the time discretization, e.g., one minute.
With a probabilistic approach, we use safety margins that are
function of the presence of uncertainty in the system. The
main difference with robust approaches, which considers the
worst-case scenario, is that the plan is not too conservative.
In effect, the probability that the worst case arises might be
so low that it will lead to a suboptimal behavior. Instead, it
is more interesting to consider the scenarios proportionally to
their probability of occurrence.

Applying multiobjective optimization in this context is a
way to gather multiple schedules, each corresponding to a
trade-off between minimizing the use of regulations and reduc-
ing the complexity. Here, this latter refers to the probabilistic
occupancy count of a sector, which is a refinement of the
deterministic one used today. A monitoring process raises an
alarm when the occupancy count reaches 90% of the capacity
at any time. Since it is a scalar value for the entire sector, it
does not account for the geometries of the trajectories. As
a matter of fact, increasing the number of flights by one
in the sector might increase drastically the workload of the
controllers depending on the current airspace. If the traffic is
organized, the increase will be small, but if the flights have
many crossing trajectories or have any flight level changes, the
disruption might be significant. Consequently, the occupancy
count is not sufficient alone to evaluate the impact of the
number of flights on the workload of the controllers and so,
additional air traffic control tools are necessary to manage
locally and spatially the trajectories.
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Figure 1. Bayesian Network for a flight plan

IV. MATHEMATICAL FORMULATION

A. Notations

Essentially, the mathematical formulation will rely on the
probability theory and stochastic optimization. Here, the
events are target times of arrival at georeferenced points.
Let us consider flight plan f ∈ F with n waypoints de-
noted by Xf

1 , . . . , X
f
n and associated to n random variables

T f1 , . . . , T
f
n , where T fi represents the time of overfly of flight

f over waypoint Xf
i , and let us call pfi the probability density

of T fi , dropping the superscript f when there is no ambiguity.
According to standard definition, the marginal probability
is Pr [Ti ∈ ∆t] =

∫
∆t
pi(τ) dτ . This simply refers to the

probability for a flight to be over Xi during the time interval
∆t. Also, because we consider the flight plan as an ordered
sequence, the joint probability density function from point Xi

to Xj is expressed by pi:j(ti:j), where ti:j ∈ Rj−i+1 is a
vector with time values for every points of the sub-sequence.
Finally, the conditional probability is:

Pr [Tj ∈ ∆t|Ti = ti] =

∫
∆t

pj|i(τ |ti)dτ (1)

where pi|j(τ |tj) is the conditional probability that the flight
is over Xj during the time interval ∆t given that the flight is
over the point Xi at time ti.

B. Trajectory Model

Let’s define an uncertainty model for any trajectory. Figure
1 gives a simple Bayesian Network where an arrow between Ti
and Ti+1 shows that the former influences the latter, or more
precisely, that the two random variables are not independent.
The joint density function of Ti and Ti+1 is:

pi,i+1(ti, ti+1) = pi+1|i(ti+1|ti) · pi(ti) (2)

This equality represents the propagation of the information in
the same direction than the sequence of waypoints. As a first
physical constraint, in order to respect the arrow of time along
the sequence, we impose:

pi,j(ti, tj) = 0, if ti ≥ tj , ∀j > i

Now, let’s generalize the joint distribution for an arbitrary
number of waypoints:

p1:N (t1:N ) =

N∏
i=2

pi|i−1(ti|ti−1)p1(t1) (3)

This is the markovian uncertainty model for the flight plan.
On the one hand, p1(t1) is the density function associated
to the arrival of the flight in the airspace. On the other
hand, pi|i−1(ti, ti−1) is the density function, which contains
information on the intents of the pilot to arrive at a point given
the time of arrival on the previous points.

C. Sector Model
Here, we give the closed-form equation for computing the

exact probability that a sector is congested, which requires
Sts,f , the Bernoulli random variable that the flight f is in the
sector s at time t, and Sts,f its complementary. Notice that
{Sts,f : t ∈ Ω} is a stochastic process where Ω is the time
horizon.

Then, the probability to not be in the sector during the time
interval ∆t = [tmin, tmax] is the probability to enter after tmax
or the probability to exit before tmin. Because of the arrow of
time constraint, these two events are mutually exclusive and
one obtain:

Pr(S∆t
s,f ) = Pr(T fi > tmax) + Pr(T fj ≤ tmin)

=
[
1− Pr(T fi ≤ tmax)

]
+ Pr(T fj ≤ tmin)

= 1− F fi (tmax) + F fj (tmin)

=⇒ Pr(S∆t
s,f ) = F fi (tmax)− F fj (tmin) (4)

When (tmax − tmin)→ 0, we obtain the values for Sts,f .
Now, inference on the presence of many flights in a given

sector during an interval can be undertaken. To do so, let Kt
s

be the random variable of the number of flights in the sector
s at time t. Then, by using a multi-index notation, we have:

Pr(Kt
s = n) =

∑
|a|=n

∏
f∈F

Pr(Sts,f )af · Pr(Sts,f )1−af (5)

where a =
(
a1, a2, . . . , aNts

)
∈ {0, 1}Nts , |a| := a1 + · · · +

aNts and N t
s = |

{
i|Pr(Sts,i) 6= 0

}
|. Again, {Kt

s : t ∈ Ω}
corresponds to a stochastic process and these are depicted with
diamonds on the graphical model.

D. Poisson Binomial Distribution
Since [8], we know that the congestion model (eq. 5)

is a Poisson Binomial distribution. This model is close to
the one proposed by [7], except that they are interested by
the parameters of a Gaussian distribution around the error
of prediction to correct the occupancy count. Here, we are
interested in the expected number of aircraft in the sector, and
so, we need to compute the probability mass function. As an
example, if we consider three flights, the equation becomes:

Pr(Kt
s = 1) = Pr(Sts,1) Pr(Sts,2) Pr(Sts,3)

+ Pr(Sts,1) Pr(Sts,2) Pr(Sts,3)

+ Pr(Sts,1) Pr(Sts,2) Pr(Sts,3)



As a first remark, the number of conjunctions (products) is
determined by the number of combinations

(
N
n

)
where N is the

total number of flights crossing the sector and n is an arbitrary
number of flights. Consequently, the associated computational
burden attains its maximum value at n = N/2 and decreases
when n goes to 0 or N . Consequently, we need to rely on
the characteristic function, as demonstrated by [9]. From this
work, we know that the probability can be expressed by:

Pr(Kt
s = n) =

1

N t
s + 1

Nts∑
l=0

exp(−iwln) ·

Nts∏
f=1

[
1− Pr(Sts,f ) + Pr(Sts,f ) exp(iwl)

]
where i =

√
−1 and w = 2π

Nts+1 . Therefore, this equation
can be computed efficiently with the use of a Fast Fourier
Transform.

E. Flight Intents

At this point, one would like to manipulate the flight
intents more directly, i.e., for the generation of the conditional
probabilities and during the optimization process. To do so,
let γi+1 be the target time of arrival on the waypoint Xi+1

of an arbitrary flight. Now, we make the assumption that the
flights have a unique target time of arrival on each waypoint.
Then, the conditional probability can be parameterized as
pi+1|i(ti+1|ti; γi+1). An acceptable constraint on the space of
possible conditional probabilities is to restrain it to unimodal
functions where their mode is centered at the target value.
Furthermore, we require that its support is bounded to denote
the physical constraints of the aircraft, i.e. its flight envelope
and its finite amount of fuel. Good candidates for such prop-
erties are triangular and gamma probability density functions,
already used in project management tools, like PERT, for
characterizing the length of a task in a scheduling problem.
Then, as depicted on the graphical model, the rectangular
nodes act as interfaces between the optimization algorithm
and the model for computing the expected cost functions. This
corresponds to a black-box optimization approach.

F. Optimization Formulation

Now, we have all the elements to define our multiobjective
optimization problem. Because of the stochastic context, one
way to define the cost functions is to use their expected values.
For the expected cost of delays, let φf : Ω→ R+ be the cost
of delays function for the flight f . Then, the expected cost of
delays for this flight is:

Eφf (T fnf ; γ|f ) =

∫
Ω

φf (τ) · pf
nf

(τ ; γ|f )dτ

where nf is the number of waypoints in the flight plan f and
so, pf

nf
refers to the marginal density function associated to the

arrival point Xf
nf

. The inequality ensures that the cost function
is bounded for the values in the support of the probability
density function. When aggregating these individual functions

in order to obtain the associated objective function, one
question that immediately arises is equity. In this work, we
define the same cost function for every flight and use the
super-linear trick from [2], in order to penalize exponentially
any delays. As a consequence, we avoid the case where a flight
will be constantly penalized for the benefit of the others. So,
we use φ(τ) = (τ − Af )β+ where Af is the scheduled time
of arrival of flight f , β > 1 is the super-linear coefficient and
the plus index refers to the positive part. One can also find
other relevant cost functions without changing the optimization
formulation. In our work, we use:

C1(γ) =
∑
f∈F

[∫
Ω

(τ −Af )2
+ · p

f
nf

(τ ; γ|f )dτ

]
(6)

as the first objective. Here, γ|f denotes the vector of intents
restricted to the ones concerning the flight f . Notice that
pf
nf

(τ ; γ|f ) is the resulting marginal density function obtained
from marginalizing the joint probability distribution obtained
with eq. 2 where all the components of γ|f are implied in the
propagation of the uncertainty. Because F is finite and the
support of pf

nf
is bounded, we know that C1 is finite for any

targets.
In the same manner, we define the cost of congestion of

sector s by ψs : N×Ω→ R+ with the number of flights and
the time as arguments. The expected cost of congestion is:

Eψs(·,t)(K
t
s) =

Nts∑
n=Cts+1

ψs(n, t) · Pr(Kt
s = n)

where Cts is the capacity of the sector s at time t. Let Ω̄ be the
temporal interval from now to the upper bound of the support.

C2(γ) =

∫
Ω̄

∑
s∈S

Nτs∑
n=Cτs+1

(n− Cs)λ · Pr(Kτ
s = n; γ)dτ

Again, Pr(Kt
s = n; γ) is the resulting probability distribution

of the inference done with equation 5, which depends on the
intents γ. Here, the parameter λ denotes the risk aversion
of the controllers when exceeding the capacity. Because S
is finite and the stochastic process will eventually converge
toward zero, C2 is finite for any targets.
C1 and C2 are the two criteria of our bi-objective optimiza-

tion problem. Let D ⊆ Rn be the decision space and f : D →
R2 be the vector-valued cost function. Let x ∈ D be a point in
our decision space, each dimension of f(x) = (C1(x), C2(x))
denotes a cost associated to the decision. When there is a
heavy demand on the airspace, the two costs are antagonist,
i.e., reducing the delays will induces more flights in the
airspace and, as a consequence, will increase the congestion
probability. This idea is captured by the relation of Pareto
dominance. Let x, y ∈ D be two decisions, then x dominates
y, denoted by x ≺ y, iff Ci(x) ≤ Ci(y), ∀i ∈ {1, 2} and
∃j ∈ {1, 2} | Cj(x) < Cj(y).



G. Constraints

From the optimization algorithm point of view, the intents
shall be bounded with the flight envelope. However, assigning
a value to a target will impact the bounds of the subse-
quent targets. To obtain independent decision variables, the
optimization algorithm works with flight durations in sectors.
These bounds are hard constraints, which cannot be violated
in order to find better solutions and define feasible intervals.
There is a distinction between feasible intervals and probable
intervals defined by the supports of the marginal distributions.
So, for a given point, a probable interval must be a subset
of the feasible interval. Therefore, we only consider box
constraints γi ∈

[
γi, γi

]
, which are easily taken into account

in evolutionary algorithms in general. As in [4], an en-route
flight can have a maximum of speed up rate of 1 minute per
20 minutes and a maximum slow down rate of 2 minutes per
20 minutes. During experimentations, we notice that en-route
speed changes are insufficient to reduce the cost of congestion,
considering that the mean duration in sectors is around 20
minutes. Also, we add the possibility to increase the distance
in sectors by a factor δ and we introduce the possibility for
ground delays. So, we obtain the intervals:

γi ∈
[
β · Vi,i+1

di,i+1
,
α · Vi,i+1

δ · di,i+1

]
(7)

where Vi,i+1 is the mean speed and di,j is the orthodromic
distance between i and i+1. In this study, we choose α = 0.9
and β = 1.05 and δ = 1.05.

H. Monte-Carlo Simulation

In order to verify experimentally the inference equations,
we rely on Monte-Carlo approximation. First, we need to be
able to sample from the flight model of each flight (see eq.
3). Because of the structure of our graphical model, a simple
forward sampling technique can be used with the conditional
probabilities of the model. A sample is expressed as a vector
x

(k)
f ∼ pf1:N (t1:N ) with a time of overflight for each point of

the flight f . Then, we can construct an indicator function per
flight to represent the fact that the flight is in the sector at time
t. We will denote these by s

(k)
f (t) = χ

[x
(k)
f,in,x

(k)
f,out]

(t), where
χ is the indicator function. Then, we can count the number of
flight in the sector for any time: s(k)(t) =

∑
f∈F s

(k)
f (t). To

determine if the sector is congested, we use again the indicator
function with the set C of values higher than the capacity:
c(k)(t) = χC(s(k)(t). Finally, the Monte-Carlo approximation
is given by: cK(t) = 1

|K|
∑
k∈K c

(k)(t) where K is the set
of Monte-Carlo simulations. At this point of the research,
the proof of convergence of the Monte-Carlo Routine toward
the inference equation for the probability of congestion is
unknown. The main difficulty comes from the fact that the
closed-form equation concerns one timestamp at a time instead
of the Monte-Carlo routines, which generete time intervals.
Therefore, in this study, we solely verify experimentally that
the two methods return the same result.
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Figure 2. Comparative of computation time for Poisson Binomial

V. EXPERIMENTS

In this section, we describe the experiment on reducing
the congestion with a multiobjective optimization algorithm
and a probabilistic model. The first goal is to numerically
validate the theoretical model defined above, and to assess
the propagation of the uncertainty from the trajectories to
the sector. The second goal is to assess whether NSGA-II
can actually solve the multiobjective optimization problem.
According to [10], the chosen variation operators, simulated
binary crossover operator (SBX) and the polynomial mutation,
are well suited for bounded continuous design variables.
Thereafter, we choose a population size of 100 individuals,
a crossover probability of 0.8 with an expanding coefficient
of 20 for the SBX operator, a mutation probability of 0.2 and
an expanding coefficient of 20 for the polynomial mutator.
Also, the maximum number of generations allowed is 400.

A. Assumptions

First of all, we discretize the temporal horizon of the prob-
abilistic model in order to compute numerically the integrals.
We choose a time step of one minute because we believe that
it is under the order of magnitude of the precision in real
world. This choice affects the accuracy of the evaluation of the
uncertainty and therefore and can be used to control the trade-
off between accuracy and computational burden. Thereafter,
we assume that the feasible interval length for the first point
is from 5 minutes to 60 minutes and the support length of
the probability distribution cannot be less than 15 minutes.
For the next points, we consider solely flights with constant
level flight above FL300 with a true airspeed of 460 knots
(MACH 0.78). With α = 0.9 and β = 1.05, the flight can
lower its speed to 414 knots (MACH 0.72) and increase it to
483 knots (MACH 0.82). For the conditional probability, we
assume that the flight management system of the aircraft tries
to maximize the probability to arrive at the next point at the
given target. A way to encode it is to take a probable interval
and to map a triangular distribution over it where the intent is
the mode of the distribution. In our case, we choose a probable
interval length equals to a confidence interval of 95% on the
distribution obtained in [7], that is a length of 24 minutes.
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Figure 3. Marginals probability over five waypoints

B. Experimental Setting

The chosen instance for this study, implies 10 flights and
5 sectors disposed as a X, with a central sector that every
flight must cross. The capacities are three flights for the central
one, two for the northwest and southeast ones and one for the
southwest and northeast ones. The underlying decision space
consists in a 60 dimensional space with the departure nodes.
A second instance was used to assess the performance of the
inference algorithm in the probabilistic algorithm. The instance
comprises 300 flights, regrouped in 10 flows, each crossing 4
sectors. These are defined on a 4x4 grid and the flows arrives
from the north and the east, including the diagonals from
northwest and southeast. The model was coded in C++ and
simulated on a 2.2GHz processor. For the algorithm using
the characteristic function, we used the FFTW library [11].
The time required to simulate the model, i.e., for a function
evaluation, is around 113ms with the direct method for the
first instance and 3 seconds for the second with the FFT
algorithm. As a matter of fact, we can see from on the log-scale
of figure 2 that the FFT algorithm is clearly faster than the
direct one. For NSGA-II, we used the Paradiseo Library also
in C++. This solver can be freely downloaded on the INRIA’s
forge at : http://paradiseo.gforge.inria.fr/. In order to assess
the performance of the algorithm, we used the hypervolume
indicator implemented in PISA [12]. To verify the model,
we used the Monte-Carlo routine defined previously. The
associated results are depicted on the different figures with
crosses.

C. Analysis

Now, we will analyze each step of the methodology. First,
we need to compute the marginal probabilities over the way-
points, as depicted on Figure 3, with the trajectory model
defined by equation 3. We can see that the value of the modes
decreases and the supports of the distributions increase with
time. This simply translates the fact that uncertainty on the
target time of arrival increases with time. Then, we notice
that the mean difference between the modes of the marginals is
around 7 minutes higher than the expected 30 minutes required
for crossing a sector. As a matter of fact, when the lower bound
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Figure 4. Probability to be in different sectors
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Figure 5. Probability of congestion

of the probable interval is lower than the feasible interval, the
probability is skewed with a heavy tail toward the future, i.e.,
there is more room for losing time with the coefficient on
speed and on distance.

Then, with equation 4, we compute the stochastic process
for a flight to be in a sector over time, as depicted on Figure
4. We can see that the values of modes decrease with time.
Also, there is more uncertainty when the coordination between
sectors occurs, that is to say the overlapping regions of the
different curves grow in time. We can also visualize the fact
that the probability for an aircraft to be in one of the sectors
is equal to 1 by summing the probability at every timestamp.
Besides, we can expect that the function defining the stochastic
process will be unimodal since there is no reason for the
probability to vary while the aircraft is inside the sector.

Thereafter, we need to compute the probability that the
sector is congested at a given time, using equation 5. Figure
5 shows the stochastic process associated to the northeast
sector. Again, even if the instance is symmetric in distance,
the probability for this sector to be congested decreases with
time since the variance of the marginals increases with time. It
means that some aircraft will cross the sector before the others
without any regularization. As a matter of fact, this model is a
way to quantify the effectiveness of regularizations. Combined
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Figure 6. Pareto Front

with an optimization algorithm, we are able to put priority on
actions affecting events that will occur before others, or at
least, on events with more confidence of occurrence without
the use of a discount factor.

When all these distributions are known, the probabilistic
model can compute the expected cost of delays and congestion
using equations 6 and 7 respectively. One way to understand
the cost functions from a computational point of view is to add,
for all possible timestamps on the temporal horizon, the cost
function at a given timestamp multiplied by the probability at
this timestamp. Consequently, minimizing the probability of
congestion for every timestamp will effectively minimize the
expected cost of congestion.

Now, we can analyze the Pareto front obtained with the last
population of 11 runs, depicted on figure 6. At the first glance,
the runs generate different fronts, which cover a large region,
especially when minimizing the expected cost of congestion.
So, minimizing the delays is relatively easy when we do not
consider congestion. This is why the upper part of the Pareto
fronts overlap. But, when we try to minimize the congestion,
it seems that the algorithm falls in local optima. To verify this
explanation, we used the hypervolume indicator, which gives
the volume determined by the area enclosed by the Pareto front
and the worst possible point. Figure 7 confirms the premature
convergence since the hypervolume indicator stabilizes around
generation 150 for each run. In future work, we will tune
the parameters of the algorithm according to the hypervolume
indicator. We expect to find good parameters, maybe by simply
increasing the exploration ratio, to avoid these local optima.

VI. DISCUSSION

One clear limit of this work is that the proposed theoretical
framework has been validated on a single instance, assessing at
the same time both the uncertainty model and the optimization
process. Further experiments are mandatory to draw any firm
conclusion regarding either the model or the optimization
algorithm, and these experiments must involve several other
instances. Here, the second instance was created to assess
the computation time of the probabilistic model. We notice
that the mean cost functions decrease during the optimization,
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Figure 7. Hypervolume Indicator

but further investigation is necessary to understand how the
algorithm impact decision variables that are not related to the
disruption. We think that the second instance is a good starting
point to create different variant of disruptions and to assess that
the approach is able to tackle the problem.

Even if the algorithm returns many solutions, a human
operator will not be able to understand each of them in real-
time. Consequently, the multiobjective algorithm shall return
only a subset of interesting solutions. All the difficulty comes
from the definition of what is an interesting solution. One way
to circumvent this difficulty is to use the diversity operator
used in several population-based multiobjective algorithms.
A diversity operator is used to filter solutions, but at the
same time, to preserve the shape of the pareto front. This
prevents from having solutions in the same region. A necessary
parameter is the size of the archive containing the solutions.
Here, we used the crowding distance measure, inherent to
NSGA-II with an archive size of 100 solutions.

The triangular distribution is an interesting choice because
its variance increases as the mode approaches the bounds. In
our case, the cost function is very similar to the variance
formula, the target replaces the mean and we take only the
positive part. Hence, we verified experimentally that the cost
function increases as the target approaches the boundaries.
This is relevant for the optimization algorithm since we
penalize any target that would be close to the boundaries of
the feasible set.

Regarding the optimization algorithm, there is very little
hope to ever formally prove its convergence. Hence methods
from experimental sciences must be used here. Statistics over
many random instances of the size of a real operational context
are the way to go, assessing how often and in which contexts
the method can fails. This validation method will also provide
insights on the actual computation burden that is required for
large-scale instances.

The choice of NSGA-II was motivated by the fact that we
still do not fully understand all the properties underlying the
probabilistic model. Hence, instead of trying to guess possibly
wrong assumptions, we have chosen to use a robust and
general optimization algorithm. Nevertheless, it is important in



the future to compare NSGA-II with other, more recent multi-
objective optimization algorithms (e.g., as already mentioned,
MO-CMA-ES [13]). Therefore, an extensive statistical study
is needed, in order to find the most suited algorithm for this
kind of problem.

Moreover, the formulation of the tactical planning problem
shall also be extended to include more operational constraints.
Also, experiments and data mining shall be done in an
operational context in order to model more accurately the
underlying uncertainty. The uncertainty could represent the
expected errors of the trajectory prediction. This would create
a smooth transition between both phases. Since we are in
an online context, particle filters could also be used at the
trajectory level in order to estimate the probability to be
at the next points and therefore, estimate the probability of
congestion. With recent statistical studies on real trajectories,
we know that the uncertainty is different from one phase to
another. Indeed, there is important uncertainty on the real
departure time and on the climbing phase. Afterward, the
uncertainty is low in en-route phase and so, the values used
here are certainly too high. In the following, we should
configure the model to reflect the uncertainty for the different
phases.

Finally, we have mentioned the use of stochastic processes
for the probability that the flight is in a sector and for the
probability of congestion. We believe that there are interesting
issues that can be addressed with the novel techniques from
this domain.

VII. CONCLUSION

This article has introduced a probabilistic model to handle
the propagation of the uncertainty from the trajectories to the
sectors. The prerequisites of the model are the marginal of the
initial arrival in the airspace, the policy of the flight manage-
ment system when trying to stick to the target schedule, and
the potential external disruptions. Thereafter, the probability
for a flight to be in a sector can be computed. From there
on, the closed-form equation to compute the probability of
congestion, can be derived.

Then, some general formulations for the expected cost of
delays and the expected cost of congestion were given. We
used a well-known trick to ensure equity that was naturally
integrated in the model. Finally, because the congestion mea-
sure is clearly not the only criterion that should be used to
decide for a schedule, the well-known multiobjective algorithm
NSGA-II was proposed to solve the bi-objective problem of
minimizing both the congestion and the cumulated delays of
the flights, i.e., to approximate the non-dominated solutions
of the Pareto front. These solutions are then proposed as
alternatives for the decision maker, namely here the multi-
sector planner.

Furthermore, in order to illustrate how the theoretical model
can be useful in practice, we presented some results on
two instances. The results were analyzed to discover the
consequences of some previous assumptions and to assess

of the computation time of the inference mechanism. One
is the choice of triangular distributions, which is commonly
used in project management. On-going and further work
will of course investigate other MOEAs to replace NSGA-
II, and, more importantly, several different instances. One
crucial issue is how well (or bad) this algorithm scales with
the problem complexity (number of flights and number of
sectors). Nevertheless, we are confident that further studies
will demonstrate the robustness of the proposed approach
of using multiobjective evolutionary algorithms to solve the
stochastic and dynamic optimization problem of air traffic flow
and capacity management.
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