
Base Station Switching Problem for Green Cellular
Networks with Social Spider Algorithm

James J.Q. Yu, Student Member, IEEE and Victor O.K. Li, Fellow, IEEE
Department of Electrical and Electronic Engineering

The University of Hong Kong
Email: {jqyu, vli}@eee.hku.hk

Abstract—With the recent explosion in mobile data, the energy
consumption and carbon footprint of the mobile communications
industry is rapidly increasing. It is critical to develop more
energy-efficient systems in order to reduce the potential harmful
effects to the environment. One potential strategy is to switch off
some of the under-utilized base stations during off-peak hours.
In this paper, we propose a binary Social Spider Algorithm
to give guidelines for selecting base stations to switch off. In
our implementation, we use a penalty function to formulate the
problem and manage to bypass the large number of constraints
in the original optimization problem. We adopt several randomly
generated cellular networks for simulation and the results indi-
cate that our algorithm can generate superior performance.

Index Terms—Green cellular network, base station switching,
social spider algorithm, evolutionary computation, swarm intel-
ligence.

I. INTRODUCTION

With the growing concern on the global climate change,
it becomes critical to develop energy-efficient systems in all
industries. In particular, the information and communication
technology (ICT) sector was estimated to contribute to more
than 830 million tons of carbon dioxide emission in 2013,
which is approximately 2% of the global carbon dioxide
emission, and this number is expected to double by the year
2020 [1]. With the fast growing mobile data communication
demand, the wireless cellular networks are playing a more im-
portant role in ICT sector than ever before. Thus a promising
approach to reduce the global green house gas emission is
to reduce the energy consumption of the cellular networks.
It is also very important from the economical perspective of
network operators as a significant portion of the operational
expenditure is due to electricity consumption.

Designing green cellular networks, especially green base
stations, is a recent hot research topic. There are at least two
mainstream approaches. With the development of smart grid
technology, one approach is to utilize renewable energy for
base station operation [2]. Another approach is to manage the
operation profile of the base stations. As the network operators
need to deploy their base stations to support the peak mobile
data traffic, it is inevitable that during a major portion of the
day a large number of the base stations are under-utilized. This
phenomenon can be observed from real mobile data usage
profile [3]. Unfortunately, the energy consumption of an idle
base station is nearly the same as one under full load [4]. So
an under-utilized base station must be switched off in order to

save energy, and there naturally rises a problem: Which base
stations should be switched off to save the most amount of
energy while maintaining adequate service for end users?

Such energy-efficient design of wireless cellular networks
has attracted significant attention recently. However, most of
the existing efforts focus on the formulation of the problem
[3][5]. This paper focuses on designing an swarm intelligence
algorithm based on the Social Spider Algorithm (SSA) [6].
In this paper, we concentrate on the modifications on the
original problem to make it solvable with metaheuristics, and
the implementation of a metaheuristic.

The rest of the paper is organized as follows. In Section
II we briefly introduce the current progress on green cellular
network design. In Section III we elaborate on the original op-
timization problem and our modifications. Section IV presents
the detailed implementation of our proposed algorithm. Sec-
tion V introduces the random network generation protocol,
and the simulation results are presented with analysis and
discussion. Finally we conclude in Section VI with potential
future research.

II. BACKGROUND

Green cellular network design is a recent hot research topic,
and much work has been carried out. Chiaraviglio et al.
initially proposed the idea of dynamic base station operation
based on the data traffic profile in [7]. Later they extended their
work and set up an analytical model to control the base station
switching profile [5]. Oh and Krishnamachari also proposed a
similar model in [8], and devised a simple base station switch-
ing policy. They further developed a complete system model
for this problem and proposed a distributed algorithm to solve
it [3]. In this work, both the algorithm design and the practical
implementation, including a distributed base station switching
protocols were elaborated, and the preliminary simulation
results indicate a satisfactory energy-saving performance. All
the above work focus on base station operations in the same
type of networks, i.e. macro cellular networks. There are also
some researchers concentrating on the cooperative operation
considering network sharing. Fehske et al. investigated the
possibility of deploying small and low power base stations
alongside conventional ones from a deployment perspective in
[9]. Marsan and Meo evaluated the energy savings achieved
with the energy-aware cooperative management of the cellular
access networks of different operators over the same area in

ar
X

iv
:1

50
2.

00
20

0v
1

 [
cs

.N
I]

 1
 F

eb
 2

01
5

[10]. In [11], Rost and Fettweis discussed the energy-efficient
operation based on the cooperative transmission in multi-hop
systems. Niu et al. introduced the concept of cell zooming
for energy savings. In their implementation, the cell size is
adaptively adjusted according to different control variables.

III. PROBLEM FORMULATION

In this paper, we adopt the system model formulated in
[3] as it is a simple yet generalized wireless cellular network
model. In this model, the system load is formulated as follows:

ρb(t) =

∫
Ab

γ(x, t)

rb(x, t)
dx, (1)

where ρb(t) represents the system load of base station b at time
t, Ab represents b’s coverage, γ(x, t) represents the traffic load
of user equipment x at t, and rb(x, t) represents the service
rate of x from b at t. This system load stands for the fraction of
time needed to serve all the data transmission load in the base
station’s coverage. For simplicity, we omit the time variable
in the following notations.

With this system model, we further formulate our Base
Station Switching Problem (BSSP) as follows. We consider
that the system load for a wireless cellular network remains
constant in a short time interval. An optimization problem may
be formulated as follows:

min
∑
b∈B

ab

s.t. 0 ≤ ρb ≤ ρb, ∀b ∈ B
, (2)

where B is the collection of all available base stations, ab ∈
{0, 1} is the active indicator of b, and ρb is the maximum
allowed system load for b. When a base station b is switched
off, its traffic load will be handled by all its active neighboring
base stations Nb = {Nb,1, Nb,2, · · · , Nb,n}, and we use ρb→i

to denote the amount of transferred traffic load from b to the
i-th neighbor base station in Nb.

From (2) we can see the fitness evaluation function is very
simple, but the rigid constraints may potentially obstruct the
generation of feasible solutions to the problem. In order to
alleviate the effort in designing an algorithm that can easily
generate solutions satisfying all the constraints, we transform
the constraint in (2) into a penalty function. The new fitness
function is described as follows:

min
∑
b∈B

(ab + |B| × Pb), (3)

where Pb is the penalty value for b. In order to define Pb, we
first analyze the possible scenarios a base station may come
across during the switching operation:

1) b is switched off, and |Nb| = 0. In this case, both b
and all its neighboring base stations are switched off
and the traffic load originally handled by b cannot be
served anymore. Pb is defined as 1 + ρb for all such
base stations.

2) b is switched off, and |Nb| > 0. In this case, b is switched
off, but it has some active neighboring base stations. The

traffic load of b is handed over to Nb and the transferred
load to Nb,i is ρb→i. Pb is defined as 0 for all such base
stations.

3) b remains active, and a number of its neighboring base
stations are switched off. We use Sb to denote the
collection of the neighboring inactive base stations. Then
the system load for b is ρb +

∑
s∈Sb

ρs→b. If this
new system load is larger than ρb, Pb is defined as
1 + ρb +

∑
s∈S ρs→b − ρb. Otherwise, Pb = 0 for all

such base stations.
This penalty function is designed according to the design

principles that are critical for a successful penalty function
stated in [12]:

1) The fitness values shall improve as the solutions ap-
proach feasible regions of the search space.

2) The unfeasible solutions are guaranteed to be assigned
with fitness values inferior to the fitness value of the
worst feasible solution.

Thus, any solutions with fitness values larger than |B| are
unfeasible ones to the original optimization problem (2).

It is noted that BSSP is NP-complete as it can be reduced
from a vertex-covering problem, which has been shown to be
NP-complete [13].

IV. ALGORITHM DESIGN

In this section, we will first briefly introduce SSA. Then the
detailed implementation of our proposed methodology will be
presented.

A. Social Spider Algorithm

SSA is a recently proposed general-purpose swarm intel-
ligence algorithm. It mimics the foraging behavior of the
social spiders to perform optimization task. In SSA, the
search space of the optimization problem is formulated as
a hyper-dimensional spider web, and each position on the
web represents a feasible solution. Besides the solution space,
the spider web also serves as the transmission media of the
vibrations generated by the spiders.

The spiders are the basic operating agents of SSA. Each
spider holds a memory consisting of its current position on
the web, the fitness value of its current position, and the
vibration (position and intensity) it was following in the
previous iteration. The first two pieces of information describe
the characteristic of this spider, and the last one helps the
algorithm guide the movement of this spider.

Based on biological observations, spiders are found to
be extremely sensitive to vibrations. They can accurately
sense the strength and the direction of vibrations, and can
even separate different vibrations propagated on the same
web[14]. SSA utilizes this characteristic of the spiders and
established a vibration-based information-loss communication
system among spiders. In SSA, a spider generates a new
vibration whenever it moves to a different position from the
previous one. The vibration will then propagate over the spider
web and be sensed by others. By this means, the spiders

share their personal information to form a collective social
knowledge.

The vibrations are defined by two properties in SSA,
namely, the source position and the source intensity. When
a spider moves to a new position, it generates a vibration at
its current position. We define the intensity of a vibration in
the range [0,+∞), and the value of the intensity is calculated
as follows:

I =

{
1/(Cmax − f(s)) for maximization

1/(f(s)− Cmin) for minimization
, (4)

where I is the intensity of the vibration at its source position,
f(s) is the fitness value of the source position, Cmax is a
confidently large constant selected such that all possible fitness
values of the maximization problem are smaller than Cmax,
and Cmin is a confidently small constant such that all possible
fitness values of the minimization problem are larger than
Cmin.

(4) provides the method of calculating the source intensity
of the vibration. However, as a kind of energy, the vibration
attenuates over time and distance during the process of prop-
agation. This physical phenomenon is also taken into consid-
eration in SSA from two aspects, i.e., time and distance. As
a swarm intelligence algorithm, SSA performs the searching
task in an iterative manner. The vibrations are attenuated with
each iteration as follows:

I(t+ 1) = I(t)× ra, (5)

where I(t) is the source vibration intensity at iteration t,
and ra is a user-defined vibration attenuation parameter. This
design can prevent the algorithm from pre-mature convergence
as a non-decaying vibration on the web can potentially attracts
all spiders to move continuously towards it, thus facilitating the
exploitation searching behavior but obstructing the exploration
of the whole search space.

Another attenuation factor besides the time is the propaga-
tion distance. In SSA, the vibration attenuation over distance
is defined as follows:

I(p) = I(s)× exp(− D(s, p)

Dmax × ra
), (6)

where s and p are the source position and receiving position
of the vibration, respectively, I(s) is the vibration intensity at
s, D(s, p) is the distance between s and p, and Dmax is the
maximum possible distance between any two positions on the
web. We usually employ the Manhattan distance to reduce the
computational time.

There are three phases in SSA, namely, initialization, it-
eration, and final. In each run of SSA, we start with the
initialization phase where the objective function, search space,
and the optimization parameters of SSA are initialized. Then a
random population of spiders are generated and placed on the
spider web, i.e., search space. The positions of these spiders
are randomly generated in the search space, and the initial
vibration each spider is following has a position of the spider’s

current position, and an intensity of zero. This finishes the
initialization phase and SSA proceeds to the iteration phase.

In the iteration phase, the algorithm performs the optimiza-
tion task in an iterative manner. A number of iterations are
executed. In each iteration, the algorithm first evaluates the
fitness values of all spiders on the web and attenuates the
vibrations in the previous iteration. Then the spiders generate
vibrations using (4) at their current positions. The vibrations
then propagates using (6) over the spider web. After the
propagation, each spider will receive a number of different
vibrations from all directions. Upon the receipt of these
attenuated vibrations, each spider chooses one vibration with
the largest intensity, i.e., the strongest vibration vbest. vbest is
then compared with the stored vibration this spider followed
in the previous iteration vprev . The one with a larger intensity
is kept and saved as vbest. The algorithm then manipulate the
position of the spiders as follows:

P s(t+1) = P s(t)+(P best(t)−P s(t))� (1−R�R), (7)

where P s(t) is the position of spider s at iteration t, and
� denotes element-wise multiplication. P best is the vibration
source position of the best vibration vbest. R is a vector of
random numbers generated from zero to one uniformly, whose
length is the number of dimensions of the problem, and 1 is
a vector of ones of the same length as R.

After the manipulation of spider positions, an artificial
spider jump away process is introduced in order to prevent
the algorithm from getting stuck in the local optimums. Each
spider has a small possibility of being re-assigned with a
new random position in the search space. And this ends one
iteration.

The iteration phase loops until the stopping criteria is
matched. The algorithm then outputs the best solution with
the fitness value. The above three phases constitute SSA and
interested readers can refer to [6] for more details.

B. The Proposed Implementation

SSA was initially proposed to solve global optimization
problems, i.e., the solution space is continuous. So we make
several modifications to adapt it to solve BSSP, which is a
discrete problem.

1) Encoding Scheme: In this work, we adopt the classical
encoding scheme for this kind of problem. We use a vector of
0’s and 1’s to represent the off/on state of each available base
station.

2) Spider Following Scheme: In SSA, we use (7) to ma-
nipulate the movement of spiders. However this equation is
designed for continuous optimization. So we devise a new
spider following scheme to replace (7) as follows:

P s(t+ 1) = P s(t) + round((P best(t)− P s(t))�R), (8)

where round() is the rounding function. (8) will first de-
termine the dimensions at which P best(t) and P s(t) are
different. Then all different dimensions have a probability of
0.5 to change.

3) Spider Jump Away Scheme: Besides the spider following
scheme, another scheme that can change the position of the
spiders is the spider jump away scheme. In SSA, the jump
away scheme operates at the spider level, where each selected
spider is assigned with a new random position. But in our
implementation for solving BSSP, the jump away scheme op-
erates on the dimension level. Right after the spider following
scheme has manipulated the position of each spider, each
dimension of a spider position has a probability of 1/|B| to
change from zero to one or one to zero, i.e.,

P s(t+ 1) = |step(R)− P s(t)|, (9)

where step(r) = 1 if r < 1/|B|, otherwise step(r) = 0.
These are the modifications we made to adapt SSA to solve

BSSP. Algorithm 1 is the pseudo-code of SSA for BSSP

Algorithm 1 SOCIAL SPIDER ALGORITHM FOR BASE STA-
TION SWITCHING PROBLEM

1: Assign values to the parameters of SSA.
2: Create the population of spiders pop and assign memory

for them.
3: Initialize vprev for each spider.
4: while stopping criteria not met do
5: for each spider s in pop do
6: Evaluate the fitness value of s.
7: Attenuate the intensity of vprev .
8: Generate a vibration at the position of s.
9: end for

10: for each spider s in pop do
11: Calculate the intensity of the vibrations V

generated by other spiders.
12: Select the strongest vibration vbest from V .
13: if The intensity of vbest is smaller than vprev then
14: Store vprev as vbest.
15: end if
16: Perform the spider following move towards vbest.
17: Perform the spider jump away modification on

each spider.
18: Store vbest as vprev .
19: end for
20: end while
21: Output the best solution found.

V. EXPERIMENTAL SETTING AND SIMULATION RESULTS

In order to evaluate the performance of saving energy using
our proposed algorithm, we performed a series of simulations
over some randomly generated instances.

A. Testing Instance

In our simulation, we consider the 3G network topologies
consisting of 20, 40, and 60 base stations in the area of 10×10
km2. The instances are generated as follows. We first randomly
deploy the base stations to different positions in the area. Then

we start from the first base station and determine the number
of its neighboring base stations using

|Neighb| = |Nb + Sb| = Pois(λ− 2) + 2, (10)

where Pois(λ) is the Poisson distribution and λ is the
expected number of neighboring base stations. Each base
station may have a different number of neighborhoods, and
this design guarantees that all base stations will have at least
two neighborhoods.

After determining the number of neighborhoods for each
base stations, we establish the neighboring links starting from
the first base station to the last one. In this step we first
check the existing links connected to the current base station.
If the number is already larger than |Neighb|, we go on to
the next base station. Otherwise we establish a neighboring
link between the current base station and its nearest base
station that is not linked yet. This substep will iterate until
enough links are established. The pseudo-code for this random
instance generation algorithm is presented in Algorithm 2.

Algorithm 2 RANDOM INSTANCE GENERATION ALGO-
RITHM

1: for each base station b in B do
2: Assign a random position in the area for b.
3: end for
4: for each base station b in B do
5: Determine the number of b’s neighboring base stations

|Neighb|.
6: end for
7: for each base station b in B do
8: Find the number of b’s established neighboring links

n.
9: if n ≥ |Neighb| then

10: continue
11: else
12: Find the |Neighb| − n nearest base stations to b

that not yet linked with b.
13: Establish neighboring links between these base

stations with b.
14: end if
15: end for
16: Output the best solution found.

Using this method we generated 9 instances using the
instance parameter (|B|, λ) ∈ [(20, 3), (40, 4), (60, 6)], and 3
different instances are generated for each instance parameter
pair. These instances are shown in Fig. 1, where the dots are
the base stations and the base stations connected with lines are
neighboring base stations. The first two digits in the names of
the instances are |B| and λ, respectively, and the last letter
stands for different instances with the same parameters.

B. Experimental Setting

To determine which base stations to switch off, we need
some feedback information from all the base stations. However

(a) 20.3.A (b) 20.3.B (c) 20.3.C

(d) 40.4.A (e) 40.4.B (f) 40.4.C

(g) 60.5.A (h) 60.5.B (i) 60.5.C

Fig. 1. Plot of Randomly Generated Topology Instances with Different
Parameters

these feedback information may reduce the overall perfor-
mance and sometimes is invalid. So in our simulation we use
an approximation method to reduce the reliability of these
external and internal information. We make two assumptions
on the random instances generated:

1) The system load for each base station is equal to the
overall system load: ρb ≡ ρs,∀b ∈ B. Here ρs is the
overall system load.

2) The transferred traffic load from one base station to all
its neighbor base stations are equal: ρb→i ≡ ρb/|B|

With these two assumptions we minimize the impact of all
additional information and focus on the optimization perfor-
mance of our proposed algorithm.

We compare the performance of our proposed SSA for
BSSP with the SWitching-on/off based Energy Saving algo-
rithm (SWES) [3] whose system model was adopted in our
problem formulation. In particular, the SWES(0,0) algorithm
is employed for performance comparison as no additional
information (external or internal) is required for this algo-
rithm, thus satisfying our assumptions. For SSA, we use
the number of base stations as the size of the population,
and the vibration attenuation rate is set to 0.9. As the spi-
der jump away scheme is modified, we do not need the
jump away rate as elaborated in [6]. The maximum itera-
tion number is set to 500, so for 20-base-station instances
the fitness function is evaluated for 10 000 times. ρb is
set to 0.6 for all base stations in all the instances and
we test the performance of the compared algorithms with
ρs ∈ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55]

0.1 0.2 0.3 0.4 0.5

System load ρs

0

20

40

60

80

100

A
ct

iv
e

ba
se

st
at

io
ns

(%
)

SWES(0,0)

SSA

(a) Mean results of 20 base stations with λ = 3

0.1 0.2 0.3 0.4 0.5

System load ρs

0

20

40

60

80

100

A
ct

iv
e

ba
se

st
at

io
ns

(%
)

SWES(0,0)

SSA

(b) Mean results of 40 base stations with λ = 4

0.1 0.2 0.3 0.4 0.5

System load ρs

0

20

40

60

80

100

A
ct

iv
e

ba
se

st
at

io
ns

(%
)

SWES(0,0)

SSA

(c) Mean results of 60 base stations with λ = 5

Fig. 2. Comparison of Active Base Stations

for each instance.

C. Simulation Results

Fig. 2 illustrates the simulation results of our generated ran-
dom topology instances with SSA for BSSP and SWES(0,0).
Each dot in the figure is the mean value of the number of active

(a) 40.3 (b) 40.4.A (c) 40.5

(d) 40.6 (e) 40.7 (f) 40.8

Fig. 3. Plot of Randomly Generated Topology Instances with Different λ

base stations in all three instances with the corresponding same
set of parameters. From the simulation results we have the
following observations:

1) SSA for BSSP always outperforms SWES(0,0) in all
three set of simulations. Out of 33 data points, SSA
performs better than SWES(0,0) in 29, and the remaining
4 comparisons end up with draws.

2) Both SSA for BSSP and SWES(0,0) are efficient in
terms of saving energy. Assume the traffic profile is
increasing and decreasing evenly during the day, SSA
can save 42.5% of the total energy and SWES(0,0) can
save 31.3%. These numbers are generated by averaging
all data points indicated in Fig. 2.

3) The advantage of SSA for BSSP over SWES(0,0) is more
significant when the system load is relatively low. A
potential reason is that when the system load is close
to the maximum allowed system load, the number of
base stations that can potentially be switched off is very
small. This means that the number of feasible solutions
to (2) is very small and a heuristic like SWES(0,0) can
also find a good solution to the problem. In the extreme
case of ρ = 0.55, no base station can be switched off
and the performance of the two compared algorithm
naturally becomes the same.

D. Impact of λ on Energy Saving Performance

Besides the comparison of SSA for BSSP and SWES(0,0),
we also analyze the impact of λ on the performance of saving
energy. In order to have a complete analysis on this issue, we
generated 5 topologies with λ ∈ [3, 5, 6, 7, 8], |B| = 40 and
conduct simulations on these instances as well as the “40.4.A”
instance illustrated in Fig. 1. The topology instances to be
considered are presented in Fig. 3.

The simulation results on these new instances with SSA for
BSSP is shown in Fig. 4. From the results we can observe
that although λ = 3 performs slightly worse than others when
the system load is high and low, the overall performance of

0.1 0.2 0.3 0.4 0.5

System load ρs

0

20

40

60

80

100

A
ct

iv
e

ba
se

st
at

io
ns

(%
)

λ = 3

λ = 4

λ = 5

λ = 6

λ = 7

λ = 8

Fig. 4. Simulation Results of Instances with Different λ

these instances are barely distinguishable. This phenomenon
suggests that increasing the neighboring links among the base
stations would not significantly improve the overall energy
saving performance when the system already has sufficient
links. It can also be observed that the performance curves are
very close to the ideal best performing curve ρs/ρb. This again
shows the outstanding performance our proposed algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper we consider the possibility of saving energy
in wireless cellular network by switching off the under-
utilized base stations during non-peak hours. We transform
the original optimization problem with constraints into an
unconstrained problem with a penalty function to alleviate
the design difficulty considering the constraints. Besides the
new formulation, we also propose a new binary SSA to solve
this optimization problem. SSA is a newly proposed general-
purpose metaheuristic. It was originally devised to solve con-
tinuous optimization problem. We make several modifications
to the canonical SSA to adapt it to solve BSSP. We devise two
optimization schemes in SSA and make modifications on the
control flow of the algorithm. We employ a series of randomly
generated network topologies to test the performance of our
proposed SSA for BSSP. The simulation results indicate that
SSA can almost always outperform the compared algorithm.
We also analyze the impact of the network density on the
energy saving performance. The results imply that the perfor-
mance improvement caused by the increasing network density
is limited as the performance is already very close to the ideal
best case scenario.

There are some potential future work. In this paper, we
consider the base stations consume the same amount of energy
despite different system loads and communication ranges. In
reality, both factors will influence the energy consumed. This
can be taken into consideration but will significantly increase
the complexity of the optimization problem. Another extension
is to consider the diversity of the base stations. In this work we
only consider homogeneous base stations. It will be interesting

to study the impact of adopting different types of base stations
on the energy-saving performance.

ACKNOWLEDGEMENT

This research is supported in part by the University of
Hong Kong Strategic Research Theme on Computation and
Information.

REFERENCES

[1] Centre for energy-efficient telecommunications, “CEET annual report
2013,” Bell Labs and University of Melbourne, Tech. Rep., 2013.

[2] H. Tao and N. Ansari, “On optimizing green energy utilization for
cellular networks with hybrid energy supplies,” IEEE Trans. Wireless
Commun., vol. 12, no. 8, pp. 3872–3882, 2013.

[3] E. Oh, K. Son, and B. Krishnamachari, “Dynamic base station switching-
on/off strategies for green cellular networks,” IEEE Trans. Wireless
Commun., vol. 12, no. 5, pp. 1536–1276, 2013.

[4] L. Correia, D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Godor,
G. Auger, and L. V. D. Perre, “Challenges and enabling technologies
for energy aware mobile radio networks,” IEEE Commun. Mag., vol. 48,
no. 11, pp. 66–72, 2010.

[5] M. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal energy
savings in cellular access networks,” in Proc. IEEE International Con-
ference on Communications Workshops, Dresden, Germany, Jun. 2009,
pp. 1–5.

[6] J. J. Q. Yu and V. O. K. Li, “A social spider algorithm for global
optimization,” Department of Electrical and Electronic Engineering, The
University of Hong Kong, Technical Report TR-2013-004, Oct. 2013.

[7] L. Chiaraviglio, D. Ciullo, M. Meo, and M. Marsan, “Energy-efficient
management of UMTS access networks,” in Proc. 21st International
Teletraffic Congress, Paris, Fance, Sep. 2009, pp. 1–8.

[8] E. Oh and B. Krishnamachari, “Energy savings through dynamic base
station switching in cellular wireless access networks,” in Proc. IEEE
Global Telecommunications Conference, Miami, FL, U.S., Dec. 2010,
pp. 1–5.

[9] A. Fehske, F. Richter, and G. Fettweis, “Energy efficiency improvements
through micro sites in cellular mobile radio networks,” in Proc. IEEE
GLOBECOM Workshops, Honolulu, HI, U.S., Dec. 2009, pp. 1–5.

[10] M. A. Marsan and M. Meo, “Energy efficient management of two
cellular access networks,” ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 4, pp. 69–73, 2010.

[11] P. Rost and G. Fettweis, “On the transmission-computation-energy
tradeoff in wireless and fixed networks,” in Proc. IEEE GLOBECOM
Green Communications Workshop, Miami, FL, U.S., Dec. 2010, pp. 1–6.

[12] S. Khuri, T. Back, and J. Heitkotter, “An evolutionary approach to
combinatorial optimization problems,” in Proc. Annual ACM Computer
Science Conference, Phoenix, AZ, U.S., 1994, pp. 66–73.

[13] R. M. Karp, “Reducibility among combinatorial problems,” Complexity
Computer Comput., vol. 40, no. 4, pp. 85–103, 1972.

[14] G. Uetz, “Foraging strategies of spiders,” Trends in Ecology and Evo-
lution, vol. 7, no. 5, pp. 155–159, 1992.

	I Introduction
	II Background
	III Problem Formulation
	IV Algorithm Design
	IV-A Social Spider Algorithm
	IV-B The Proposed Implementation
	IV-B1 Encoding Scheme
	IV-B2 Spider Following Scheme
	IV-B3 Spider Jump Away Scheme

	V Experimental Setting and Simulation Results
	V-A Testing Instance
	V-B Experimental Setting
	V-C Simulation Results
	V-D Impact of on Energy Saving Performance

	VI Conclusion and Future Work
	References

