

EvoTanks: Co-Evolutionary Development of Game-Playing Agents

Depart

(tommy@

Institute of Percep
Sc

Uni

(g

Abstract
project, a con
primitive ‘C
computation
small but ch
actions to
investigation
high perform
opponents; h
The focus o
evolution on
longer succu
space and ar
local to their

Keywords
Networks

Despite the
intelligent a
video games
This notion
general prov
technologies
to locate an
means to c
varying com
generate low
autopilot sys
from this, o
necessity to
either have
the current t

Such rese
games are a

Manuscript
Thomas Tho

Group, Depart
Strathclyde, Li
Scotland, UK

(E-mail: tom
Gillian Hay

(IPAB), Schoo
Maxwell Build
Scotland, UK (E
Thomas Thompson, John Levine
Strathclyde Planning Group

ment of Computer & Information Sciences
University of Strathclyde

Glasgow, UK
cis.strath.ac.uk, john.levine@cis.strath.ac.uk)

— This paper describes the EvoTanks research
tinuing attempt to develop strong AI players for a
ombat’ style video game using evolutionary

al methods with artificial neural networks. A
allenging feat due to the necessity for agent’s

rely heavily on opponent behaviour. Previous
 has shown the agents are capable of developing

ance behaviours by evolving against scripted
owever these are local to the trained opponent.
f this paper shows results from the use of co-
 the same population. Results show agents no
mb to trappings of local maxima within the search
e capable of converging on high fitness behaviours
 population without the use of scripted opponents.

: Genetic Algorithm, Games, Co-evolution, Neural

I. INTRODUCTION
 continuing advances in the development of
gents across numerous applications, the field of
 is often considered unworthy for such methods.
is worth challenging, given that video games in
ide one of the best means to test and develop
 in environments that are difficult and expensive
d generate. Video games provide researchers a
reate and control artificial environments of
plexity; effectively an economic means to
 risk testing scenarios. Applications such as

tems for aircraft or ground vehicles can benefit
r the testing of robot controllers without the
 build the physical robot, a feat which could
a significant price tag or not be possible given
echnology [1].
arch has a hidden benefit; given that video
 multi billion-dollar industry with millions of

players playing a vari
can aid the developm
as enhance the playab
provides a reason fo
while the latter is w
focus. For exampl
Recon) developed b
hailed by critics a
environments and
contributing factors t
that provided realism
acclaim aids in boost
games, highlighting
research in powerful,

received October 31st, 2006.
mpson and John Levine are with the Strathclyde Planning

ment of Computer & Information Sciences, University of
vingstone Tower, 26 Richmond Street, Glasgow G1 1XH,

my@ cis.strath.ac.uk, john.levine@cis.strath.ac.uk).
es, is with the Institute of Perception, Action and Behaviour
l of Informatics, University of Edinburgh, James Clark
ing, King’s Buildings Mayfield Road, Edinburgh, EH9 3JZ,

-mail: gmh@inf.ed.ac.uk).

At present howe
improvement, the ma
video games (referred
are scripted i.e. their
sequential actions w
infinite loop, thus en
active. Ultimately gi
the human player, an
player has gained
behaves. A video ga
the inability of an N
games. This has bee
years, if one were to
released in 1985 and
difference of almos
complexity of the
predictable opponents

Since computer g
entertainment medium
in general are now m
to deal with more com
is required that game
to maintain their abil
provide the means to

We feel that the
agents requires 3 dec
layer that oversees th
Gillian Hayes
tion, Action and Behaviour (IPAB)
hool of Informatics
versity of Edinburgh
Edinburgh, UK
mh@inf.ed.ac.uk)
ety of games across the world, research
ent (and cost) of video games as well
ility of a particular game. The former
r game developers to show interest,

here such research is given consumer
e F.E.A.R. (First Encounter Assault
y Monolith Productions in 2005 was
nd gamers alike for the realistic
gameplay. One of the heavily
o F.E.A.R was the intuitive AI players
 to the game that players craved. This
ing the appeal of AI research for video
the possibilities of intelligent agent

 realistic yet controllable environments.
ver, there is still a large area for
jority of computer controlled agents in
 to as non-player-characters or NPCs)

 behaviour is controlled by a series of
hich are typically performed in an

suring that the agents are permanently
ven sufficient time and effort made by
y opponent can be defeated once the

an understanding of how the NPC
mes’ appeal will gradually wane due to

PC to learn or adapt from previous
n a drawback of video games for many
 take the likes of Super Mario Bros.
 Metal Gear Solid in 1998, despite a
t 15 years and an increase in the
enemy behaviour we still deal with
 [2].
ames have now been a prominent
 for approximately 20 years, gamers

ore mature; either in age or their ability
plex problems in games. As a result it

s become more complex and engaging
ity to entertain. Intelligent NPC’s can
keep games engaging.
development of truly intelligent NPC
ision layers; a high-level goal directed
e process of actions required to achieve

goal conditions, a middle layer that deals with local goals
and the breakdown of tasks into smaller actions and finally a
low level component that deals with primitive and basic
actions. Machine learning is one possible method for
generating such low-level reactive mechanisms. A by-
product of this is that we can generate successful yet
unpredictable players.

Machine learning is often used to assist in training agents
prior to the game being played [3], with applications of
different methods available across a host of games such as
the use of evolution in Pac-man [4], co-evolution in Texas
Hold’em Poker [5], Backgammon [6] and
Checkers/Draughts [7], the application of reinforcement
learning to Backgammon [8] and real-time evolution in the
NERO video game project [9]. The EvoTanks project
follows in a similar vain to some of the research mentioned
above, focussing on the application of evolutionary methods
to generate interesting and unique low-level reactive agents
for a small combat based environment. EvoTanks provides
a game where we are dealing with making primitive actions
to solve a local goal. However the actions an agent makes
relies heavily on the opponent’s behaviour to generate its
own actions. As a result, finding high performance
behaviours is an interesting challenge.

Previous research using the EvoTanks game investigated
the possibilities of agents learning behaviours based on
focussed trials against one particular opponent using an
evolutionary algorithm. The results generated from these
experiments were positive, with agents learning competent,
interesting (and occasionally unconventional) behaviours to
defeat the chosen opponent [10]. However their competence
ended at said opponent, as the majority of agents were
unable to perform as effectively against different opponents.
This was due to the evolutionary process and fitness
function moving the majority of agents towards local
maxima within the fitness space; as a result these agents
were capable of competing against only one opponent. The
purpose of the research expressed in this paper, was to
investigate the application of co-evolution methods to move
the agents away from these local maxima, with the intent of
developing strong generic players, capable of playing
against a variety of different agents competently.

This research is appropriate given the nature of the game
and the environment that this game is used. Sub optimal
global strategies are common in video games, where we
have the most difficult opponents in a particular game
designed to compete against even the more advanced human
players regardless of their particular strategy. Not only do
NPC’s develop such behaviours, but also human players
tend to move towards such behaviour, playing games using
particular tactics to evaluate and react to any situation
regardless of how difficult the opponent becomes.

This paper first describes the EvoTanks game, followed
by a description of the implementation made and an analysis
of the results generated.

I. THE EVOTANKS GAME
EvoTanks is based loosely on the game of ‘Combat’

released on the Atari 2600 in 1978, composed of two tank
agents viewed in a top-down fashion within a 600 x 600
arena encompassed by boundaries. Only two agents exist
within the arena at any given time and are privy to a
selection of actions; forward/backward movement, left/right
rotation and to fire a shell from the cannon. The cannon is
dependant on the direction in which the tank is facing.

Fig. 1. The EvoTanks game with 2 agents competing with one another in the
arena.

Each match between two tanks is given a time limit in

which one tank must destroy the opponents 4 armour points
with an unlimited amount of shells. A health point is
deducted for every direct hit made by an enemy shell. Shells
themselves will be destroyed if they come into contact with
the boundaries of the arena. When a tank makes a move,
each move results in a tank being moved a fixed distance
across the arena, neither their own momentum nor the
momentum of other tanks or shells have any effect on the
tanks movement. Ultimately a game is complete once one
tank has depleted all of the four hit points, at which point it
explodes with the win given to the surviving tank. Should
the timer reach zero and both tanks are still on the field, a
draw is given regardless of the amount of health remaining
on each tank.

The agents used in the learning process of the EvoTanks
simulator use an unsupervised feed-forward artificial neural
network (ANN) to control their autonomous reasoning.
Each network is composed of 3 layers of neurons using a
tanH transfer function. 3 normalised inputs from the domain
inform the agent the difference in angle relative to the agent
cannon from the enemy opponent and vice versa (hence 2
separate inputs) and finally the distance between the agent
and the enemy. These 3 inputs help the agent to select one
of 3 possible outputs, controlling movement, rotation and
firing of the cannon. These agents were trained through the
manipulation of the 27 connection weights contained within
the neural network, with a genetic algorithm used to store
the connection weight and evolving them using the
EvoTanks simulator using an evolutionary algorithm.

To assist in the training and assessment of the agent tanks,
we also have a collection of NPC’s designed to provide
means to build learning behaviours as well as evaluate how
effective a particular agent is using a variety of strategies
both defensive and offensive:

• Sitting Duck: A stationary agent designed to bring

about basic homing and attack behaviours.

• Lazy Tank: Similar to the previous NPC with the

exception of the cannon constantly firing.

• Random Tank: A tank that carries out movement,
rotation or fire commands with equal probability.

• Hunter: An aggressive player that hunts its

opponent down by constantly moving towards the
opponent while firing continuously.

• Turret: A stationary player that can rotate the

cannon and fire, providing a distant, strong
offensive opponent that can be difficult to attack.

• Sniper: An evasive player that seeks to avoid its

opponent by continuing to reverse away from the
player whilst taking shots from a distance.

II. IMPLEMENTATION

A. Agent Representation
The agents are written in an object-oriented fashion in

java, with each tank stored within an instance of a
chromosome class, this data type contains the collection of
network connection weights for the solutions controller.
At the beginning of an evolutionary experiment, a
population of chromosomes (and their genetic values) is
generated randomly within a generational population
model.

B. Fitness Assessment
Fitness evaluations are carried out in tournaments; a

tournament consists of two teams of agents, each of whom
must play all agents in the opposing team for a specified
number of games. Each match is initialised with both
agents in random positions facing random directions.
Once each match is completed, the fitness of each agent in
that match is calculated, with an average for their
performance against a particular opponent made once the
correct number of games is completed. An agent’s overall
performance is assessed by taking the average scores from
competing against each player, generating what was
considered to be a reasonable measure of the fitness. In
testing, the number of tanks in the tournaments was
modified to assess the performance of different sampling
rates, i.e., the number of opponents an agent must face in
order to be assessed for fitness.

The methods stated above assist in the evaluation of
local fitness, i.e. the fitness a given chromosome has
relative to the local population. However this value does
not always reflect the agent’s capabilities against scripted
or human opponents. As a result, a supplementary
evaluation was provided periodically throughout the
evolution that selected each agent from the parent set of
that generation to be evaluated against all NPC’s equally.
Thus allowing us to gain an understanding of how
effective these agents were in the real game.

C. Fitness Function
Assessing the performance of a given agent was separated

into two distinct areas, how efficiently an agent defeats an
opponent and the amount of health remaining at the end of
the battle:

() ()2.08.0 ×+×= healthPefficiencywin a
FWinF

() ()2.08.0 ×+×= healthPefficiencylose a
FLoseF

1) Efficiency Component
Should an agent win a match against its opponent, the

fitness is calculated by deducting a penalty for the number
of time points taken (Tgame) to complete the kill:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= gameefficiency T

T
Win

max

5.01

In a win scenario, an agent will always accrue a minimum
0.5 fitness for the efficiency component. This is only
possible when the opponent takes the complete amount of
time allocated to a match (Tmax) to defeat the opponent.
Consequently it is impossible for an agent to achieve an
efficiency fitness of 1.0, ensuring that the agents are
incapable of reaching the maximum fitness and cease
exploring for better behaviours.
 On the other hand, should the agent lose the match, a
fitness value is measured as a bonus for each time point
the agent managed to stay on the field:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= gameefficiency T

T
Lose

max

5.0

Hence the maximum fitness that could be attributed is 0.5
in the (unlikely) event the agent is killed at the very last
time point.
 In the event of a draw, the agent immediately receives a
score of 0.5.

2) Health Component
The fitness component provides a 0.125 bonus for each
of the agents 4 health points intact after a given match,
plus a bonus for each of the 4 points deducted from
successful shots on the enemy tank:

()
()(125.0

125.0

max ×−
+×

=

HealthPH
HealthP

F

b

a

HealthPa

)

This function allows for agents to gain strong scores for
flawless victories against their opponents and also for
agents who lose matches to gain some fitness if they
were capable of damaging their opponent.

D. Evolutionary Structure
The evolution follows the canonical structure, however 2

veins of experimentation were conducted, one in which the
selection of agents into the parent subset was dictated by a
selection algorithm (tournament, roulette wheel and rank-
based methods) or an alternative was a ‘selection by
evaluation’ method. The latter filled the parent set by
placing the agent with highest fitness from each
tournament into the set until the parent quota has been
filled.

1) Crossover

Results from previous EvoTanks research had shown
that one-point crossover that blindly swapped subsets of
weights was too disruptive to the neural networks to
provide incremental improvement. An optional feature
provided a new crossover method based on the
implementation by Montana and Davis [11] that swapped
the weights attributed to particular neurons provided they
shared the same structure (i.e. same number of
connections).

2) Mutation

Mutation was a mandatory component of the evolution
process, using a random mutation algorithm that mutates
the value of a particular gene within a ±1 range given a
probability. A range of ±5 binds each weight and should
the mutations result in weights exceeding these values
they are immediately corrected to the closest value
within bounds.

E. Neural Network Structure
Each agent uses a 12 neuron-network, with 3 neurons in

both input and output layers followed by 2 hidden layers
each containing 3 neurons, resulting in 27 connections
across the entire network. This provides a small,
manageable set of weights to evolve, with each weight
bound within a ± 5 range.

Previous EvoTanks research opted for the use of a
hyperbolic tangent (tanH) neuron transfer function due to
the lack of bias nodes within the network, this function
remained due to the successful results generated in
previous experiments.

III. RESULTS & DISCUSSION
Two particular strains of research were investigated to see

which could perform best. The first enforced the ‘selection
by evaluation’ method as previously discussed (experiment
A), whilst the latter used traditional selection methods to
generate the parent subset (experiment B). Initial results
were disappointing, with a failure to generate a strong arms
race dynamic which could push the population towards high
fitness [2].

Further experimentation increased the sampling rate of the
population to a maximum of 20 tanks (hence 20 tanks per
team in a tournament), with results in experiment A using
10-tank sampling providing the best results. Showing a
strong gradual increase in performance (showing in Fig. 2),
whilst experiment B failed to reach the heights of its
competitor with a much slower growth in fitness that failed
to reach the same high fitness results given the number of
evaluations permitted.

Evaluations vs Fitness 10 Tanks

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

10
00

00

10
00

00
0

19
00

00
0

24
80

00
0

30
20

00
0

35
60

00
0

41
00

00
0

46
40

00
0

Evaluations

Fi
tn

es
s

Fig. 2. The trends in best and average local fitness for the 10 tank sampling
rates on experiment A. The agents initially continue to climb and then
stabilize at a strong fitness on average greater than 0.75.

At this point further tests using experiment A were

conducted, investigating the use of crossover, stable state
population models and the modification of the size of parent
set, population size and mutation probability. These
experiments generated little difference from the initial
results, with the exception of the steady state model that
performed poorly in comparison due to the more gradual
increase in fitness.

A final analysis compared the performance of the co-
evolution simulation to 2 alternative methods. Firstly a
‘ramped’ evolutionary model, where a population of agents
are evolved against all 6 NPC’s in sequence. The first phase
evolves against the sitting duck NPC, until 500,000
individual evaluations (i.e. games) have been performed.
The evolution then switches in sequence to the lazy tank, the
random tank, the hunter, the turret and the sniper, with
500,000 evaluations being performed for each NPC. Hence
as evolution progresses we increase the difficulty of the
competing NPC, with the intent of gradually evolving from
a basic turn-and-shoot behaviour into something more
aggressive. The second comparison measure was a direct
hill climber using a 1 + 1 evolutionary strategy evaluating

against all opponents simultaneously, i.e. the fitness of the
candidate is calculated by taking the average of the score
gained against all 6 NPC's. Each method was given 3
million evaluations to generate their most effective agents.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

300000 900000 1500000 2100000 2700000 3000000

Evaluations

Fi
tn

es
s

Fig. 3. This graph shows the trends in average and best fitness against
NPC’s throughout the final co-evolution run. With both showing
reasonably strong values after 3 million games.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

180 13860 280080 516600 1964340

Evaluations

Fi
tn

es
s

Fig. 4. The fitness trend of the hill climber, which developed a high
performance agent within less than 2 million evaluations. These results
scored even better than the co-evolution, resulting in a more efficient agent
in less time.

As is shown in Table 1, the ramped evolution performed

incredibly poorly, whilst the co-evolution (fig. 3) generated
strong fitness values against the NPC’s. Surprisingly the hill
climber (fig. 4) was still capable of surpassing the
performance of the co-evolution run, generating a final
fitness that was almost 0.1 stronger than the co-evolution.

It was surprising to see the hill climber does so well in
these tests and at this point we paused to consider why the
hill climber performs so well for this domain. It is
important to consider that the hill climber is a more direct
method to assess an agent’s position within the search space
of behaviours. The search space presented may not be
difficult to traverse but requires a lot of behavioural analysis
to assess where any given agent exists. This analysis is

provided by the performance against the NPC’s, allowing us
to gain a very strong understanding of where the agent is in
the search space and how fit it is.

One must then consider whether it is worth using the co-
evolution at all and continue onward using the hill climber?
Statistically the hill climber performs better, with higher
fitness results in a smaller period of time. We feel that
relying solely on hill climbing would be ill advised for
numerous reasons, primarily since a hill climber has a strong
dependence on NPC agents. Hill climbers use the NPC’s to
evaluate the performance of the agent; as a result we are
required to present a range of opponents that provide a
strong coverage of that which the agent may face. In this
experiment we have been fortunate in providing NPC’s that
facilitate this particular problem. Should the problem
change and require new coverage, we cannot guarantee the
appropriate behaviours to facilitate this.

The co-evolution can generate opponents of almost the
same quality without the necessity of NPC’s, allowing us to
generate high quality opponents using only a randomly
instantiated population. When one considers the impact the
co-evolved population made, the co-evolution performs
exceptionally well given that they have no mapping to the
actual fitness space. Instead they continue to improve based
upon a local fitness relative to the population. The
assessment against NPC’s provided a means to assess how
well agents perform outside of the population.

We consider the final score of the hill climber to provide
an upper bound on the fitness that can be achieved in this
problem. The results from the co-evolution are very positive
given their environment; since the ability to defeat NPC’s
was neither the focus of the co-evolution nor the means of
assessing agent fitness. Despite this the best result from the
population was only 0.1 from the upper bound.

Table 1. A table representing the best actual fitness values (assessed by
running agents against the NPC’s) after the final experiments. It is clear
from this table that the evolution was incapable of generating any high
fitness behaviours. The co-evolution performs well, with actual fitness
values reaching a maximum of greater than 0.7 and a strong performance
from the population altogether when compared against the hill climber, that
provides a fitness upper bound slightly greater than 0.8.

Method Best Mean S.D. S.E.

Evolution 0.3153 0.3107 0.003228258 0.00072
Co-

Evolution 0.711 0.642 0.0217 0.0048

Hill Climber 0.8103 N/A N/A N/A

The majority of high performance agents evolved
competent behaviours ranging from highly aggressive
strategies to more defensive tactics. One example of
aggressive behaviour includes an agent that evolved the
exact same properties as Hunter NPCs, attacking the
opponent outright with little chance to evade or counter. A
Hunter often wastes the first shot since they are still not
positioned correctly to challenge their opponent, however
these agents’ behaviours are more tailored and as a result

carry out a much more efficient job than their NPC
counterparts. One interesting feature was a defensive
capability that backed away should it come into contact
against another aggressive player. These tactics worked
well against all opponents, especially the Hunters
themselves, since the agents developed effectively a more
efficient Hunter.

Another example is the more common behaviour of
distant shooting. Often agents will keep a distance from
their opponent and take shots due to their more precise
aiming abilities. It also allows them to play a more
evasive match, where the agent can maintain a distance
even if the opponent does make a move. There were
many variations on this tactic, some which would
eventually move towards their opponent should the
opponent lose sight of the agent, or even back away
further if the opponent locked onto the agent.

One interesting point to note was that the hill climber
agents tended to become the former, aggressive agents,
whilst those using co-evolution developed the latter more
distant approach. At this point we must consider which is
more favourable given the environment we wish to place
these agents in. Given a small amount of human testing
against these behaviours, the aggressive opponents are
extremely difficult to compete against due to the
kamikaze nature of its behaviour; the user requires
extensive practice at playing the EvoTanks game to be
able to defeat the agent. While the latter behaviours tend
to have more variety while maintaining a high level of
quality. They provide a means for the player to move
around and mount a defence against the agent.

I. CONCLUSION
This paper has described one approach for a primitive

tank game using neural network controllers and genetic
algorithms through co-evolutionary simulation. We now
have results showing strong capable agents in what is at
present a rather simple environment. Evolved
populations can competently react to varying strains of
NPC behaviour and counteract them with a range of
strategies.

There is more room for improvement, with numerous

ways in which the EvoTanks game can be expanded. One
possibility is the introduction of obstacles within the
environment, allowing for agents to be able to navigate

more complex arenas and environments.
Further research could also investigate team based play

for multiple agents to fight co-operatively, the expansion
of the agent’s sensors to respond to objects or power-ups
within the environment, as well as the natural evolution of
the tank controller to allow for a separate turret control, or
multiple objectives.

Ultimately, the natural evolution of EvoTanks is to
create the most complex and immersive environment that
can lead to natural play, either for machines to play, or for
humans to play for entertainment. After all, it is a video
game.

REFERENCES
[1] J. E. Laird, M. van Lent “Human-level AI’s Killer Application:

Interactive Computer Games,” in AAAI Fall Symposium
Technical Report, 2000, pp. 80-97.

[2] T. Thompson, “EvoTanks II: Co-evolutionary Development of
Game Playing Agents”, Masters Thesis, Department of
Informatics, University of Edinburgh, Edinburgh, Scotland, 2006,
unpublished.

[3] B. Geisler, “An empirical study of machine learning algorithms
applied to a modelling player behaviour in a ‘first person shooter’
video game”, Master’s Thesis, Department of Computer Sciences,
University of Wisconsin-Madison, Madison, WI, USA.

[4] S. M. Lucas, “Evolving a Neural Network Location Emulator to
Play Ms. Pac-man”, in Proceedings of the IEEE Symposium on
Computational Intelligence and Games, pp. 203-210. 2005.

[5] J. Noble, “Finding robust Texas Hold’em poker strategies using
Pareto co evolution and deterministic crowding,” in ICMLA, pp.
233-239. 2002.

[6] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a
backgammon player,” in Proceedings of Artificial Life V (C. G.
Langton, ed.), (Cambridge, MA), MIT Press, 1996.

[7] K. Chellapilla and D. B. Fogel, “Anaconda defeats Hoyle 6-0: A
case study competing an evolved checkers program against
commercially available software”, in Proceedings of the 2000
Congress on Evolutionary Computation CEC00, (La Jolla Marriott
Hotel La Jolla, California, USA), pp. 857-863, IEEE Press, 6-9
July 2000.

[8] G. Tesauro, “Temporal Difference Learning and TD-Gammon,” in
Communications of the ACM Vol. 3, pp. 58-58/ 1995.

[9] K.O. Stanley, B. D. Bryant, I. Karpov, R. Miikkulainen, “Real-
Time Evolution of Neural Networks in the NERO Video Game”, To
Appear in the Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI-2006, Boston, MA),
2006.

[10] T. Thompson, “EvoTanks II”, Honours Project Thesis, Department
of Computer and Information Sciences, Glasgow, Scotland, 2005,
unpublished.

[11] M. Mitchell, “An Introduction to Genetic Algorithms,” MIT Press,
1996.

	INTRODUCTION
	The EvoTanks Game
	Implementation
	Agent Representation
	Fitness Assessment
	Fitness Function
	Efficiency Component
	Health Component

	Evolutionary Structure
	Crossover
	Mutation

	Neural Network Structure

	Results & Discussion
	Conclusion

