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goal conditions, a middle layer that deals with local goals  
and the breakdown of tasks into smaller actions and finally a 
low level component that deals with primitive and basic 
actions.  Machine learning is one possible method for 
generating such low-level reactive mechanisms.  A by-
product of this is that we can generate successful yet 
unpredictable players.   

Machine learning is often used to assist in training agents 
prior to the game being played [3], with applications of 
different methods available across a host of games such as 
the use of evolution in Pac-man [4], co-evolution in Texas 
Hold’em Poker [5], Backgammon [6] and 
Checkers/Draughts [7], the application of reinforcement 
learning to Backgammon [8] and real-time evolution in the 
NERO video game project [9].   The EvoTanks project 
follows in a similar vain to some of the research mentioned 
above, focussing on the application of evolutionary methods 
to generate interesting and unique low-level reactive agents 
for a small combat based environment.  EvoTanks provides 
a game where we are dealing with making primitive actions 
to solve a local goal.  However the actions an agent makes 
relies heavily on the opponent’s behaviour to generate its 
own actions.    As a result, finding high performance 
behaviours is an interesting challenge.  

Previous research using the EvoTanks game investigated 
the possibilities of agents learning behaviours based on 
focussed trials against one particular opponent using an 
evolutionary algorithm.  The results generated from these 
experiments were positive, with agents learning competent, 
interesting (and occasionally unconventional) behaviours to 
defeat the chosen opponent [10].  However their competence 
ended at said opponent, as the majority of agents were 
unable to perform as effectively against different opponents.  
This was due to the evolutionary process and fitness 
function moving the majority of agents towards local 
maxima within the fitness space; as a result these agents 
were capable of competing against only one opponent.  The 
purpose of the research expressed in this paper, was to 
investigate the application of co-evolution methods to move 
the agents away from these local maxima, with the intent of 
developing strong generic players, capable of playing 
against a variety of different agents competently. 

This research is appropriate given the nature of the game 
and the environment that this game is used.   Sub optimal 
global strategies are common in video games, where we 
have the most difficult opponents in a particular game 
designed to compete against even the more advanced human 
players regardless of their particular strategy.  Not only do 
NPC’s develop such behaviours, but also human players 
tend to move towards such behaviour, playing games using 
particular tactics to evaluate and react to any situation 
regardless of how difficult the opponent becomes. 

This paper first describes the EvoTanks game, followed 
by a description of the implementation made and an analysis 
of the results generated. 

 

I. THE EVOTANKS GAME 
EvoTanks is based loosely on the game of ‘Combat’ 

released on the Atari 2600 in 1978, composed of two tank 
agents viewed in a top-down fashion within a 600 x 600 
arena encompassed by boundaries.  Only two agents exist 
within the arena at any given time and are privy to a 
selection of actions; forward/backward movement, left/right 
rotation and to fire a shell from the cannon.  The cannon is 
dependant on the direction in which the tank is facing.   

 

 
Fig. 1. The EvoTanks game with 2 agents competing with one another in the 
arena. 

 
Each match between two tanks is given a time limit in 

which one tank must destroy the opponents 4 armour points 
with an unlimited amount of shells.  A health point is 
deducted for every direct hit made by an enemy shell.  Shells 
themselves will be destroyed if they come into contact with 
the boundaries of the arena.  When a tank makes a move, 
each move results in a tank being moved a fixed distance 
across the arena, neither their own momentum nor the 
momentum of other tanks or shells have any effect on the 
tanks movement.  Ultimately a game is complete once one 
tank has depleted all of the four hit points, at which point it 
explodes with the win given to the surviving tank.  Should 
the timer reach zero and both tanks are still on the field, a 
draw is given regardless of the amount of health remaining 
on each tank. 

The agents used in the learning process of the EvoTanks 
simulator use an unsupervised feed-forward artificial neural 
network (ANN) to control their autonomous reasoning.  
Each network is composed of 3 layers of neurons using a 
tanH transfer function.  3 normalised inputs from the domain 
inform the agent the difference in angle relative to the agent 
cannon from the enemy opponent and vice versa (hence 2 
separate inputs) and finally the distance between the agent 
and the enemy.  These 3 inputs help the agent to select one 
of 3 possible outputs, controlling movement, rotation and 
firing of the cannon.  These agents were trained through the 
manipulation of the 27 connection weights contained within 
the neural network, with a genetic algorithm used to store 
the connection weight and evolving them using the 
EvoTanks simulator using an evolutionary algorithm. 



 
 

 

To assist in the training and assessment of the agent tanks, 
we also have a collection of NPC’s designed to provide 
means to build learning behaviours as well as evaluate how 
effective a particular agent is using a variety of strategies 
both defensive and offensive: 

 
• Sitting Duck: A stationary agent designed to bring 

about basic homing and attack behaviours. 
 
• Lazy Tank: Similar to the previous NPC with the 

exception of the cannon constantly firing. 
 

• Random Tank: A tank that carries out movement, 
rotation or fire commands with equal probability. 

 
• Hunter: An aggressive player that hunts its 

opponent down by constantly moving towards the 
opponent while firing continuously.  

 
• Turret: A stationary player that can rotate the 

cannon and fire, providing a distant, strong 
offensive opponent that can be difficult to attack. 

 
• Sniper: An evasive player that seeks to avoid its 

opponent by continuing to reverse away from the 
player whilst taking shots from a distance. 

 

II. IMPLEMENTATION 

A. Agent Representation 
The agents are written in an object-oriented fashion in 

java, with each tank stored within an instance of a 
chromosome class, this data type contains the collection of 
network connection weights for the solutions controller.  
At the beginning of an evolutionary experiment, a 
population of chromosomes (and their genetic values) is 
generated randomly within a generational population 
model. 

B. Fitness Assessment 
Fitness evaluations are carried out in tournaments; a 

tournament consists of two teams of agents, each of whom 
must play all agents in the opposing team for a specified 
number of games.  Each match is initialised with both 
agents in random positions facing random directions.  
Once each match is completed, the fitness of each agent in 
that match is calculated, with an average for their 
performance against a particular opponent made once the 
correct number of games is completed.  An agent’s overall 
performance is assessed by taking the average scores from 
competing against each player, generating what was 
considered to be a reasonable measure of the fitness.  In 
testing, the number of tanks in the tournaments was 
modified to assess the performance of different sampling 
rates, i.e., the number of opponents an agent must face in 
order to be assessed for fitness.   

The methods stated above assist in the evaluation of 
local fitness, i.e. the fitness a given chromosome has 
relative to the local population.  However this value does 
not always reflect the agent’s capabilities against scripted 
or human opponents.  As a result, a supplementary 
evaluation was provided periodically throughout the 
evolution that selected each agent from the parent set of 
that generation to be evaluated against all NPC’s equally.  
Thus allowing us to gain an understanding of how 
effective these agents were in the real game. 
 

C. Fitness Function 
Assessing the performance of a given agent was separated 

into two distinct areas, how efficiently an agent defeats an 
opponent and the amount of health remaining at the end of 
the battle: 
 

( ) ( )2.08.0 ×+×= healthPefficiencywin a
FWinF  

( ) ( )2.08.0 ×+×= healthPefficiencylose a
FLoseF  

 
1) Efficiency Component 
Should an agent win a match against its opponent, the 

fitness is calculated by deducting a penalty for the number 
of time points taken (Tgame) to complete the kill: 
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In a win scenario, an agent will always accrue a minimum 
0.5 fitness for the efficiency component.  This is only 
possible when the opponent takes the complete amount of 
time allocated to a match (Tmax) to defeat the opponent.  
Consequently it is impossible for an agent to achieve an 
efficiency fitness of 1.0, ensuring that the agents are 
incapable of reaching the maximum fitness and cease 
exploring for better behaviours. 
 On the other hand, should the agent lose the match, a 
fitness value is measured as a bonus for each time point 
the agent managed to stay on the field: 
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Hence the maximum fitness that could be attributed is 0.5 
in the (unlikely) event the agent is killed at the very last 
time point.  
 In the event of a draw, the agent immediately receives a 
score of 0.5. 

 
2) Health Component 
The fitness component provides a 0.125 bonus for each 
of the agents 4 health points intact after a given match, 
plus a bonus for each of the 4 points deducted from 
successful shots on the enemy tank: 
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This function allows for agents to gain strong scores for 
flawless victories against their opponents and also for 
agents who lose matches to gain some fitness if they 
were capable of damaging their opponent. 

 

D. Evolutionary Structure 
The evolution follows the canonical structure, however 2 

veins of experimentation were conducted, one in which the 
selection of agents into the parent subset was dictated by a 
selection algorithm (tournament, roulette wheel and rank-
based methods) or an alternative was a ‘selection by 
evaluation’ method.  The latter filled the parent set by 
placing the agent with highest fitness from each 
tournament into the set until the parent quota has been 
filled. 

 
1) Crossover 

Results from previous EvoTanks research had shown 
that one-point crossover that blindly swapped subsets of 
weights was too disruptive to the neural networks to 
provide incremental improvement.  An optional feature 
provided a new crossover method based on the 
implementation by Montana and Davis [11] that swapped 
the weights attributed to particular neurons provided they 
shared the same structure (i.e. same number of 
connections). 

 
2) Mutation 

Mutation was a mandatory component of the evolution 
process, using a random mutation algorithm that mutates 
the value of a particular gene within a ±1 range given a 
probability.  A range of ±5 binds each weight and should 
the mutations result in weights exceeding these values 
they are immediately corrected to the closest value 
within bounds. 

 
 

E. Neural Network Structure 
Each agent uses a 12 neuron-network, with 3 neurons in 

both input and output layers followed by 2 hidden layers 
each containing 3 neurons, resulting in 27 connections 
across the entire network.  This provides a small, 
manageable set of weights to evolve, with each weight 
bound within a ± 5 range.  

Previous EvoTanks research opted for the use of a 
hyperbolic tangent (tanH) neuron transfer function due to 
the lack of bias nodes within the network, this function 
remained due to the successful results generated in 
previous experiments. 

 

III. RESULTS & DISCUSSION 
Two particular strains of research were investigated to see 

which could perform best.  The first enforced the ‘selection 
by evaluation’ method as previously discussed (experiment 
A), whilst the latter used traditional selection methods to 
generate the parent subset (experiment B).  Initial results 
were disappointing, with a failure to generate a strong arms 
race dynamic which could push the population towards high 
fitness [2]. 

Further experimentation increased the sampling rate of the 
population to a maximum of 20 tanks (hence 20 tanks per 
team in a tournament), with results in experiment A using 
10-tank sampling providing the best results.  Showing a 
strong gradual increase in performance (showing in Fig. 2), 
whilst experiment B failed to reach the heights of its 
competitor with a much slower growth in fitness that failed 
to reach the same high fitness results given the number of 
evaluations permitted.   
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Fig. 2. The trends in best and average local fitness for the 10 tank sampling 
rates on experiment A. The agents initially continue to climb and then 
stabilize at a strong fitness on average greater than 0.75. 

 
At this point further tests using experiment A were 

conducted, investigating the use of crossover, stable state 
population models and the modification of the size of parent 
set, population size and mutation probability.  These 
experiments generated little difference from the initial 
results, with the exception of the steady state model that 
performed poorly in comparison due to the more gradual 
increase in fitness. 

A final analysis compared the performance of the co-
evolution simulation to 2 alternative methods.  Firstly a 
‘ramped’ evolutionary model, where a population of agents 
are evolved against all 6 NPC’s in sequence.  The first phase 
evolves against the sitting duck NPC, until 500,000 
individual evaluations (i.e. games) have been performed. 
The evolution then switches in sequence to the lazy tank, the 
random tank, the hunter, the turret and the sniper, with 
500,000 evaluations being performed for each NPC.  Hence 
as evolution progresses we increase the difficulty of the 
competing NPC, with the intent of gradually evolving from 
a basic turn-and-shoot behaviour into something more 
aggressive.  The second comparison measure was a direct 
hill climber using a 1 + 1 evolutionary strategy evaluating 



 
 

 

against all opponents simultaneously, i.e. the fitness of the 
candidate is calculated by taking the average of the score 
gained against all 6 NPC's.  Each method was given 3 
million evaluations to generate their most effective agents.   
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Fig. 3.  This graph shows the trends in average and best fitness against 
NPC’s throughout the final co-evolution run.  With both showing 
reasonably strong values after 3 million games. 
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Fig. 4. The fitness trend of the hill climber, which developed a high 
performance agent within less than 2 million evaluations.  These results 
scored even better than the co-evolution, resulting in a more efficient agent 
in less time. 

 
As is shown in Table 1, the ramped evolution performed 

incredibly poorly, whilst the co-evolution (fig. 3) generated 
strong fitness values against the NPC’s.  Surprisingly the hill 
climber (fig. 4) was still capable of surpassing the 
performance of the co-evolution run, generating a final 
fitness that was almost 0.1 stronger than the co-evolution.   

It was surprising to see the hill climber does so well in 
these tests and at this point we paused to consider why the 
hill climber performs so well for this domain.    It is 
important to consider that the hill climber is a more direct 
method to assess an agent’s position within the search space 
of behaviours.  The search space presented may not be 
difficult to traverse but requires a lot of behavioural analysis 
to assess where any given agent exists.  This analysis is 

provided by the performance against the NPC’s, allowing us 
to gain a very strong understanding of where the agent is in 
the search space and how fit it is. 

One must then consider whether it is worth using the co-
evolution at all and continue onward using the hill climber?  
Statistically the hill climber performs better, with higher 
fitness results in a smaller period of time.  We feel that 
relying solely on hill climbing would be ill advised for 
numerous reasons, primarily since a hill climber has a strong 
dependence on NPC agents.  Hill climbers use the NPC’s to 
evaluate the performance of the agent; as a result we are 
required to present a range of opponents that provide a 
strong coverage of that which the agent may face.  In this 
experiment we have been fortunate in providing NPC’s that 
facilitate this particular problem.  Should the problem 
change and require new coverage, we cannot guarantee the 
appropriate behaviours to facilitate this.   

The co-evolution can generate opponents of almost the 
same quality without the necessity of NPC’s, allowing us to 
generate high quality opponents using only a randomly 
instantiated population.  When one considers the impact the 
co-evolved population made, the co-evolution performs 
exceptionally well given that they have no mapping to the 
actual fitness space.  Instead they continue to improve based 
upon a local fitness relative to the population.  The 
assessment against NPC’s provided a means to assess how 
well agents perform outside of the population.   

We consider the final score of the hill climber to provide 
an upper bound on the fitness that can be achieved in this 
problem.  The results from the co-evolution are very positive 
given their environment; since the ability to defeat NPC’s 
was neither the focus of the co-evolution nor the means of 
assessing agent fitness.  Despite this the best result from the 
population was only 0.1 from the upper bound. 
 
 
Table 1. A table representing the best actual fitness values (assessed by 
running agents against the NPC’s) after the final experiments.  It is clear 
from this table that the evolution was incapable of generating any high 
fitness behaviours.  The co-evolution performs well, with actual fitness 
values reaching a maximum of greater than 0.7 and a strong performance 
from the population altogether when compared against the hill climber, that 
provides a fitness upper bound slightly greater than 0.8.  

 

Method Best Mean S.D. S.E. 

Evolution 0.3153 0.3107 0.003228258 0.00072 
Co-

Evolution 0.711 0.642 0.0217 0.0048 

Hill Climber 0.8103 N/A N/A N/A 

The majority of high performance agents evolved 
competent behaviours ranging from highly aggressive 
strategies to more defensive tactics.  One example of 
aggressive behaviour includes an agent that evolved the 
exact same properties as Hunter NPCs, attacking the 
opponent outright with little chance to evade or counter.  A 
Hunter often wastes the first shot since they are still not 
positioned correctly to challenge their opponent, however 
these agents’ behaviours are more tailored and as a result 



 
 

 

carry out a much more efficient job than their NPC 
counterparts.  One interesting feature was a defensive 
capability that backed away should it come into contact 
against another aggressive player.  These tactics worked 
well against all opponents, especially the Hunters 
themselves, since the agents developed effectively a more 
efficient Hunter. 

Another example is the more common behaviour of 
distant shooting.  Often agents will keep a distance from 
their opponent and take shots due to their more precise 
aiming abilities.  It also allows them to play a more 
evasive match, where the agent can maintain a distance 
even if the opponent does make a move.  There were 
many variations on this tactic, some which would 
eventually move towards their opponent should the 
opponent lose sight of the agent, or even back away 
further if the opponent locked onto the agent.  

One interesting point to note was that the hill climber 
agents tended to become the former, aggressive agents, 
whilst those using co-evolution developed the latter more 
distant approach.  At this point we must consider which is 
more favourable given the environment we wish to place 
these agents in.  Given a small amount of human testing 
against these behaviours, the aggressive opponents are 
extremely difficult to compete against due to the 
kamikaze nature of its behaviour; the user requires 
extensive practice at playing the EvoTanks game to be 
able to defeat the agent.  While the latter behaviours tend 
to have more variety while maintaining a high level of 
quality.  They provide a means for the player to move 
around and mount a defence against the agent.   

 

I. CONCLUSION 
This paper has described one approach for a primitive 

tank game using neural network controllers and genetic 
algorithms through co-evolutionary simulation.  We now 
have results showing strong capable agents in what is at 
present a rather simple environment.  Evolved 
populations can competently react to varying strains of 
NPC behaviour and counteract them with a range of 
strategies.  

 
There is more room for improvement, with numerous 

ways in which the EvoTanks game can be expanded.  One 
possibility is the introduction of obstacles within the 
environment, allowing for agents to be able to navigate 

more complex arenas and environments.   
Further research could also investigate team based play 

for multiple agents to fight co-operatively, the expansion 
of the agent’s sensors to respond to objects or power-ups 
within the environment, as well as the natural evolution of 
the tank controller to allow for a separate turret control, or 
multiple objectives. 

Ultimately, the natural evolution of EvoTanks is to 
create the most complex and immersive environment that 
can lead to natural play, either for machines to play, or for 
humans to play for entertainment.  After all, it is a video 
game. 
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