
Understanding Performance Interference of I/O Workload
in Virtualized Cloud Environments

Xing Pu21, Ling Liu1, Yiduo Mei31, Sankaran Sivathanu1, Younggyun Koh1, Calton Pu1
1School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, USA

2School of Computer Science and Technology, Beijing Institute of Technology, P.R. China
3Dept. of Computer Science and Technology, Xi’an Jiaotong University, P.R. China

Abstract—Server virtualization offers the ability to slice large,
underutilized physical servers into smaller, parallel virtual machines
(VMs), enabling diverse applications to run in isolated environments
on a shared hardware platform. Effective management of virtualized
cloud environments introduces new and unique challenges, such as
efficient CPU scheduling for virtual machines, effective allocation of
virtual machines to handle both CPU intensive and I/O intensive
workloads. Although a fair number of research projects have
dedicated to measuring, scheduling, and resource management of
virtual machines, there still lacks of in-depth understanding of the
performance factors that can impact the efficiency and effectiveness
of resource multiplexing and resource scheduling among virtual
machines. In this paper, we present our experimental study on the
performance interference in parallel processing of CPU and network
intensive workloads in the Xen Virtual Machine Monitors (VMMs).
We conduct extensive experiments to measure the performance
interference among VMs running network I/O workloads that are
either CPU bound or network bound. Based on our experiments and
observations, we conclude with four key findings that are critical to
effective management of virtualized cloud environments for both
cloud service providers and cloud consumers. First, running network-
intensive workloads in isolated environments on a shared hardware
platform can lead to high overheads due to extensive context switches
and events in driver domain and VMM. Second, co-locating CPU-
intensive workloads in isolated environments on a shared hardware
platform can incur high CPU contention due to the demand for fast
memory pages exchanges in I/O channel. Third, running CPU-
intensive workloads and network-intensive workloads in conjunction
incurs the least resource contention, delivering higher aggregate
performance. Last but not the least, identifying factors that impact the
total demand of the exchanged memory pages is critical to the in-
depth understanding of the interference overheads in I/O channel in
the driver domain and VMM.

I. INTRODUCTION
Virtualization technology [14, 13] offers many advantages

in current cloud computing environments by providing physical
resources sharing, fault isolation and live migration.
Virtualization allows diverse applications to run in the isolated
environments through creating multiple virtual machines
(VMs) on a shared hardware platform, and managing resource
sharing across VMs by virtual machine monitor (VMM)
technology [1]. Although VMMs (hypervisors) have the
abilities to slice resources and allocate the shares to different
VMs, our measurement study shows that applications running
on one VM may still affect the performance of applications
running on its neighbor VMs. In fact, the level of interferences
mainly depends on the degree of the competition that the

concurrent applications running in separate VMs may have in
terms of shared resources. We argue that the in-depth
understanding of the possible performance interferences among
different VMs running on a shared hardware platform is critical
for effective management of virtualized cloud, and an open
challenge in current virtualization research and development.

 In this paper, we study performance interference among
different VMs running on the same hardware platform with the
focus on network I/O processing. The main motivation for
targeting our measurement study on performance interference
of processing concurrent network I/O workloads in a
virtualized environment is simply because network I/O
applications are becoming dominating workloads in current
cloud computing systems. By carefully design of our
measurement study and the set of performance metrics we use
to characterize the network I/O workloads, we derive some
important factors of I/O performance conflicts based on
application throughput interference and net I/O interference.
Our performance measurement and workload analysis also
provide some insights on performance optimizations for CPU
scheduler and I/O channel and efficiency management of
workload and VM configurations. .

The remainder of this paper is structured as follows: in
Section II gives an overview of our experimental study,
including the background on Xen I/O architecture, our
experiment setup and I/O workloads. Section III analyzes the
potential I/O interference factors in the cloud environment
where different types of network I/O applications are running
in isolated VMs on a shared hardware platform. Section IV
reports our experimental results and illustrates request
throughput and net I/O interference studies based on the
network I/O workload characteristics. We conclude the paper
with related works and a summary of contributions.

II. BACKGROUND AND OVERVIEW
In this section, we provide a brief background of Xen which

is the virtualization platform we use in our measurement study.
Then we describe the experimental setup, including
measurement method and I/O workloads.

A. Xen I/O Overview
Xen [1, 2] is a popular open-source x86 virtual machine

monitor (VMM) based on virtualization technologies. Recent
prevalent virtualization technologies, like full system
virtualization adopted in VmWare [15] and para-virtualization

Guest Domain

Xen VMM
NIC

Event Channel

Driver Domain

Pyhsical
Interface

Bridge

I/O Channel

Backend Frontend

Figure 2. Xen I/O architecture

VM 1
(Server 1)

Client Client...

Xen
NIC Disk

Dom0

N/W Disk

VM 2
(Server 2)

Client Client...

Figure 1. Logical components of virtulized cloud environments.

(Web servers reside in VM1 and VM2, Dom0 is only the driver domain)

are both supported by Xen which uses para-virtualization as a
more efficient and lower overhead modes of virtualizations. In
para-virtualization I/O mode, Xen VMM layer uses
asynchronous hypercall mechanism to deliver virtual interrupts
and other notifications among domains via event channel. A
privileged domain called Domain0 is treated as driver domain
hosting unmodified Linux drivers and has the access to
hardware devices. Driver domain performs I/O operations on
behalf of unprivileged guest domains which are ported to the
virtual driver interface from Linux operation system
(XenoLinux). Fig. 1 shows the logical components of the latest
Xen I/O architecture [5]. The virtual network interface in guest
domain is called netend (frontend) acting as the real hardware
drivers. In the privileged driver domain, netback (backend) is a
counterpart for each netend. Netfront and corresponding
netback use “page-flipping” technique to exchange data in the
I/O channel by sharing memory pages pointed in the descriptor
ring (Fig. 1), no data copy involved. The bridge in driver
domain handles the packets from NIC and performs the
software-based routine to the destination domain. We notice
that netfront, netend and bridge are extra code in the VMs and
“page-flipping” is also an extra part in I/O channel.

When a network packet is received by the NIC (RX), the
NIC will raise an interrupt to the upper layer. Before the
interrupt reaches the driver domain, hypervisor (VMM)
handles the interrupt first. Hypervisor will determine whether
or not the driver domain has the access to the real hardware.
Upon receiving the interrupt, the privileged driver domain
starts to process the network packet. It first removes the packet
from NIC and sends the packet to the software Ethernet bridge.
Then Ethernet bridge de-multiplexes the packet and delivers it
to the appropriate netback interface. Netback raises a hypercall
to hypervisor, requesting an unused memory page and
hypervisor notifies the corresponding guest domain to release a
page to keep the overall memory allocation balanced. Netback
and netfront exchange the page descriptors by page-remapping
mechanism over I/O descriptor ring (Later the data copy is
performed). Finally, guest domain receives the packet as if it
comes directly from NIC. A similar but reverse procedure is
applied to send a packet using the send path (TX), except that
no explicit memory page exchange is involved, only the
ownership of physical page is transferred instead of the real
page. NIC supports direct memory access (DMA) technique
handles the target guest memory page directly. We will see that
three address remappings and two memory
allocation/deallocation operations are used for per packet
receive and only two remappings are required for each packet
transmit [10, 7, 11].

B. Testbed Architechture
We carefully designed our experiments to exercise network

I/O traffics and evaluate the performance interference in
virtualized cloud environments. All experiments were
performed on an IBM ThinkCentre A52 Workstation with two
3.2GHz Intel Pentium 4 CPUs (both have 16KB L1 caches and
2MB L2 caches), 2 GB 400 MHz DDR memory, a Seagate 250
GB 7200 RPM SATA2 disk, and Intel e100 PRO/100 network
interface. Client machines were connected by a 1 Gbit/s
Ethernet network. The latest version 3.4.0 Xen hypervisor with
the most stable Linux Xen Kernel 2.6.18.8-xen [16] are used.

Fig. 2 gives a sketch of the experimental setup used in most
of the experiments reported in this paper. In each experiment,
two I/O intensive workloads are running in two isolated guest
domains respectively (VM1 and VM2) sharing the same
physical host via VMM. Each guest domain is allocated with
equal resources, where the memory allocations are both 512
MB, the default CPU scheduler (SMP Credit scheduler) [4] is
configured with equal weight value and for each VM the
parameter cap is 0. The Apache HTTP servers [18] residing in
VM1 and VM2 provide the web services, and cache the data in
the buffers, no disk readings are involved. Client machines
using httperf [9, 17] tool as our HTTP “load generator” are
designed to access virtualized servers remotely. They send
requests to corresponding virtual server, retrieving a fixed size
file: 1 KB, 4 KB, 10 KB, 30 KB, 50 KB, 70 KB or 100 KB.
These fixed size files are carefully selected I/O workloads from
SPECweb’99 [19], SPECweb’2005 [20] and SPECweb’2009
[21] benchmarks, which are the industry standard to evaluate
the web server performance. Each workload is a representative
log file size in current data center.

C. I/O Workloads
Before measuring the interferences of multiple servers

running on one single physical hardware host, we first evaluate
the performance of single guest domain in order to get the
actual performance results and characteristics of each workload
running in our experimental environment, which serve as the
basecase in the rest of the experiments.

Table I shows the maximum performance results of one
guest domain running under the selected SPECweb network
I/O workloads. When server becomes saturated at full capacity,
the 1 KB and 4 KB file workloads reach 0.5 to 15 times higher
request throughput than others respectively, and consume more

0

0.5

1

1.5

2

(1, Idle) (1, 1) (1, 10) (1, 30) (1, 50) (1, 100) (30, 100) (50, 100) (100, 100)

C
om

bi
ne

d
T

hr
ou

gh
pu

t

Combinations

Normalized Throughput

VM1 VM2

Figure 3. Illustration of I/O workload performance interfernce.

(Web servers running in two isolated guest domains)

TABLE I. MAXIMUM PERFORMANCE OF WORKLOADS IN BASECASE

Workload Major
Resource Used

Throughput
(Req/sec)

Net I/O
(KB/sec)

Response
Time (ms)

CPU
(%)

1 KB CPU 1900 2018 1.52 97.50

4 KB CPU 1750 7021 5.46 97.46

10 KB Network 1104 11048 2.36 70.44

30 KB Network 375 11271 2.52 54.87

50 KB Network 225 11262 2.7 49.62

70 KB Network 160 11255 2.84 47.10

100 KB Network 112 11208 2.08 44.40

than 97.5% CPU resource (approximately, the remaining 2.5%
CPU is charged by the system monitor tool), while the network
bandwidth utilization is only around 20% and 60% respectively.
The web mix performance of these two workloads is limited by
CPU resource. Although the achieved request rates are not
higher than 1200 req/sec, 10-100 KB workloads saturate the
server by consuming all the network bandwidth, which is 10
KB × 1104 req/sec ≈ 30 KB × 375 req/sec ≈ 50 KB × 225
req/sec ≈ 70 KB × 160 req/sec ≈ 100 KB × 112 req/sec ≈ 100
MB/sec. Meanwhile, when VM1 is serving one of these five
workloads respectively in each of the five experiments (10-100
KB), the total CPU utilization of driver domain and guest
domain is less than 75%. These reveal that 1 KB and 4 KB
workloads are CPU bounded and 10-100 KB workloads are
network bounded, consistent with the observation made from
prior research [3], namely short file workload is CPU bounded
and long file workload is network bounded.

III. INTERFERENCE ANALYSIS
In this section we outline the methodology and metrics used

for our measurement study.

Let Dom0, Dom1 … Domn be the virtual machines running
on the same host, where Dom0 is the driver domain. Suppose
that Domi is serving workloads i, we define the maximum
throughput of Domi as Ti. We use Bi to denote the maximum
throughput of Domi in basecase scenario where n equals 1, i.e.,
only driver domain and one guest domain are hosted on the
physical machine. Then, the combined normalized throughput
scores is defined as follows:

1

n
i

i i

Combined Score
T
B=

= ∑

Fig. 3 presents the set of experiments conducted on the
setup of two gust domains with each running one of the
selected workloads. We measure the normalized throughput
scores of different combination of selected network I/O
workloads. The base-case throughput used in this experiment is
the throughput of workloads in the single gust domain basecase
(Table I). To present the results clearly, we denote each
combination of the two workloads running on VM1 and VM2
in a tuple of two elements, with the first element x denotes xKB
file retrieving from VM1, and the second element y is the yKB
file retrieving from VM2. For example, the expression (1, 30)
says that VM1 is severing 1 KB file workload and VM2 is
severing 30 KB file workload. The expression (1, Idle) refers to

the case where VM1 is serving 1KB file workload and VM2 is
idle. From Fig. 3, we observe some interesting facts regarding
performance interferences. First, the combination of workloads
(1, 100) achieves the best performance with its combined
throughput score of 1.58. Given that 1 KB workload is CPU
bounded and 100 KB workload is network bounded, this
combination clearly incurs the least resource contention
compared to other combinations. Similarly, the workload
combinations of (1, 50) is the next best pairing for the similar
reason. The workload combinations of (30, 100) and (50, 100)
offer better combined throughput than the worst combination
of workloads (1, 1) and (1, 10), which incurs highest resource
contention. Our observations are consistent with the Xen I/O
architecture presented in previous section II. Current Xen I/O
mode uses the privileged driver domain to provide better
security isolation and fault isolation among VMs. Although this
mode could prevent buggy drivers and malicious attacks
successfully, the driver domain may easily becomes the
bottleneck: when a VM wishes to get accesses to underlying
hardware or communicate with others, all the events have to go
through driver domain and hypervisor layer. This is supposed
to cause control or communication interferences among VMs.
The multiplexing/demultiplexing of bridge and I/O channel
may incur memory page management interferences, such as
packets lost for high latency, fragmentations and increased data
coping overhead. In addition, we also believe that the default
Credit scheduler may have some impacts on the overall
performance of running multiple VMs on the same hardware
platform. This set of experiments also indicates that although
performance interference of network I/O applications in
virtualized cloud environments is unavoidable given the Xen
I/O architecture and the inherent resource sharing principle
across VMs. In-depth understanding of the number of key
factors that cause certain types of resource contentions and thus
performance interferences is critical for both cloud service
providers and cloud consumers.

In addition to the combined throughput ratio scores, we also
measure the virtualization specific system-level characteristics
using the following eight performance metrics to better
understand the performance interference of running multiple
network I/O workloads in isolated VM environments on a
single hardware platform. These system-level metrics can be
best utilized to analyze the resource contentions of network I/O
workloads and reveal the intrinsic factors that may have been
induced performance interference observed.

TABLE II. SYSTEM-LEVEL CHARACTERISTICS OF I/O WORKLOADS WITH WEB SERVER RUNNING IN VM1 (VM2 IS NOT CREATED).

Workload CPU
(%)

Event
(events/sec)

Switch
(switches/sec)

Pages
Exchange
(pages/sec)

I/O Execution
(pages/exe)

Driver Domain (Dom0) Guest Domain (VM1)

CPU
(%)

Waiting
(%)

Block
(%)

Execution
(exe/sec)

CPU
(%)

Waiting
(%)

Block
(%)

Execution
(exe/sec)

1 KB 97.50 224104 9098 11500 4.93 46.83 4.81 10.54 2433 50.67 38.97 4.76 2535

4 KB 97.46 242216 10525 14900 6.38 46.82 4.77 10.68 2335 50.65 37.72 5.65 2509

10 KB 70.44 279663 15569 16000 7.28 39.7 3.13 13.73 2198 30.74 2.29 23.48 2092

30 KB 54.87 345496 26118 13000 3.87 36.78 1.92 17.78 3023 18.09 1.31 34.32 3777

50 KB 49.62 342584 26981 11000 3.54 34.57 1.22 19.33 3108 15.05 1.14 36.76 3915

70 KB 47.10 341898 27436 10500 3.36 33.41 0.90 19.46 3123 13.70 1.07 37.62 4034

100 KB 44.40 332951 27720 10000 3.17 32.19 0.77 21.04 3150 12.21 1.01 39.08 3962

Using Xen hypervisor system monitor tools, we collect
eight system-level characteristics from I/O workloads. These
system-level characteristics could reveal the underlying details
of I/O performance interference and make VMs behaviors
understandable. In our design of evaluation, the following eight
different workload characteristics are collected:

• CPU utilization (CPU): We measured the average
CPU utilization of each VM, including CPU usage of
Dom0, VM1 and VM2 respectively. The total CPU
consumption is the summation of them all.

• VMM events per second (Event): VMM adopts
asynchronous hypercall mechanism to notify the VMs
of system events. This metric measures the number of
events per second in the event channel.

• VM switches per second (Switch): The number of
VMM switches per second is collected by this metric.
It is an important performance indicator for our study.

• I/O count per second (Pages Exchange): This metric
captures the number of exchanged memory pages
during the period of one execution. This metric reflects
the efficiency of I/O processing.

• I/O count per execution (I/O Execution): During the
period of one execution, the number of exchanged
memory pages is captured here. This metric could help
to reflect the efficiency of I/O processing.

• VM state (Waiting, Block): at any point of time, every
domain sharing the same host must be in one of
following three states: execution state, runnable state
and blocked state. When one VM is currently using
CPU, it is in the execution state. The metric “Wait” is
the percentage of waiting time when a VM is in
runnable state, or in other words, the VM is in the
CPU run queue but do not utilize the physical CPU
(PCPU). The metric “Block” is the percentage of
blocked time when a VM is in blocked state, which
represents the fact that a VM is blocked on I/O events
and not in the run queue.

• Executions per second (Execution): This metric refers
to the number of execution periods per second for each
VM. We divide “Pages Exchange” by the measured

value of this metric to calculate the approximate “I/O
Execution”.

IV. PERFORMANCE INTERFERENCE STUDY
In this section we first provide our measurements of the

eight metrics with varying workload rates, from 10%, 20%,
30%, to 100% under the experimental setup of single guest
domain running the selected network I/O workloads. This set
of measurements is used as the basecase scenario to analyze
the different workload combinations and understanding the
resource contentions displayed by the various combinations of
workloads. Then we analyze the throughput performance
interferences and net I/O performance interferences in the
remaining of this section for network I/O workloads of varying
sizes.

A. Basecase Measurement
In this set of experiments, we set up our testbed with one

VM (VM1) running one of the six selected network I/O
workloads of 1 KB, 4 KB, 30 KB, 50 KB, 70 KB and 100 KB
for all eight metrics outlined in Section III. Table II shows the
results. The value of each I/O workload characteristics is
measured at 100% workload rate for the given workload type.
Comparing with network-intensive workloads of 30 KB, 50 KB,
70 KB, and 100 KB files, the CPU-intensive workloads of 1
KB and 4 KB files have at least 30% and 60% lower event and
switch costs respectively because the network I/O processing is
more efficient in these cases. Concretely, for 1 KB and 4 KB
workloads, we can see from Table II, driver domain has to wait
about 2.5 times longer on the CPU run queue for being
scheduled into the execution state and the guest domain (VM1)
has 30 times longer waiting time. However, they are
infrequently blocked for acquiring more CPU resource,
especially in the guest domain the block time is less than 6%.
We notice that the borderline network-intensive 10 KB
workload has the most efficient I/O processing ability with 7.28
pages per execution while the event and switch numbers are
15% larger than CPU-intensive workloads. Interesting to note
is that initially, the I/O execution is getting more and more
efficient as file size increases. However, with file size of
workload grows larger and larger, more and more packets need
to be delivered for each request. The event and switch number
are increasing gradually as observed in Table II. Note that the
VMM events per second are also related to request rate of the

workload. Though it drops slightly for the workload of file size
30-100 KB, the overall event number of network-intensive
workloads is still higher than CPU-intensive ones. With
increasing file size of shorter workloads (1 KB, 4 KB and 10
KB), VMs are blocked more and more frequently. Finally, I/O
execution starts to decline when the file size is greater than 10
KB. The network I/O workloads that exhibit CPU bound are
now transformed to network bounded as the file size of the
workloads exceeding 10 KB and the contention for network
resource is growing higher as the file size of the workload
increases. In our experiments, the 100 KB workload shows the
highest demand for the network resource. These basic system-
level characteristics in our basecase scenario can help us to
compare and understand better the combination of different
workloads and the multiple factors that may cause different
levels of performance interferences with respect to both
throughput and net I/O.

B. Throughput Interference
In this subsection, we focus on studying performance

interference of running multiple network I/O workloads in
isolated VM environments on a shared hardware platform, our
testbed setup. We focus on understanding the impact of
running different combinations of workloads of different file
sizes on the aggregate throughput.

In this group of experiments, we use the representative
CPU bounded workload of 1 KB file and the representative
network bounded workload of 100 KB file as the main
workload combination for our analysis. The reason we choose
this combination is primarily because this combination exhibits
the best combined throughput score in Table I. This motivates
us to understand the key factors that impact on their high
combined throughput score.

Fig. 4 shows the set of experiments we have conducted for
throughput interference analysis on three combinations of
workloads running concurrently on the setup of two VMs: (1,
1), (1, 100) and (100, 100). We use the tuple (1,100) to denote
the workload of 1 KB running on VM1 and the workload of
100 KB running on VM2. Also we use the notation of (1,
100)_1KB to denote the measurement of workload 1 KB on
VM1 in the graphs. We vary the workload rates in x-axis and
measure the different performance metrics and plot them on y-
axis. To get a clear overview of curves on the same scale, the
rates of different workloads in Fig. 4 were converted into the
percentage of maximum achieved throughput in basecase. For
example, for 100% workload rate of 1 KB workload in Fig. 4,
the maximum request rate of 1900 req/sec in Table I is used.
Similarly, for 100 KB workload, the 100% workload rate in Fig.
4 means the maximum request rate of 112 req/sec is used

Recall Fig. 3, we have shown that the combinations of
workloads that compete for the same resource, either CPU or
network, stand a good chance of performance degradation
compared to the basecase in Table I. However, two workloads
that exhibit distinct resource need, such as one CPU bound and
the other network bound, running together gets better
performance compared to the one VM basecase. The following
analysis will provide us some in-depth understanding of the
key factors that lead to different performance interferences

among different combinations of applications running
concurrently in multiple VMs

Fig. 4 (a) illustrates the throughput performance of the three
workloads combinations: (1, 1), (1, 100), (100, 100). We
observe that 1 KB workload in (1, 100) combination reaches
around 1560 req/sec, which is twice the achieved maximum 1
KB workload throughput of 790 req/sec in (1, 1) combination,
even though it is still 18% lower than 1900 req/sec, the
maximum throughput in basecase. For (1, 100) combination,
100 KB workload on VM2 achieves the throughput of 85
req/sec at 100% workload rate, which is 76% of maximum
throughput of 112 req/sec in basecase and 52% higher than the
throughput of 56 req/sec for 100 KB workload in the
combination of (100, 100). Note that the combination of
(100,100) causes high network resource contention and
saturates the host at 50% workload rate (see the enhanced chart
embedded in Fig. 4).

In order to provide the in-depth understanding of the
detailed factors that cause these different levels of throughput
interferences, we conduct the rest of the experiments and the
results are shown in the remaining figures and plots in Fig. 4.
First, let us examine at the combination of two network-
intensive workloads of (100, 100).

Fig. 4 (b) shows the numbers of switches per second when
varying the workload rates from 10% to 100%. Note that the
number of events follows exactly same trend as switches,
though the concrete values are different in scale. At 50%
workload rate, the combination (100, 100) reaches the
maximum switch number, and it starts to drop when the
workload rate increases to 60% and it remains almost flat even
when the workload rate increases from 60% to 100%.
Comparing with other two combinations of workloads, (100,
100) has at least twice higher switch cost than (1,100) and (1, 1)
under the peak switch costs. This implies that a main source of
overhead and throughput interference for the combination (100,
100) may come from the high event and switch costs in VMM
and Dom0.

Fig. 4 (c) shows the exchanged memory pages during one
CPU execution time. We observe that as the workload rate is
getting higher, the combination of (100, 100) has less than four
pages per CPU execution duration and it experiences the worst
efficiency in I/O pages exchange. Practically, heavy event and
switch costs lead to a lot more interrupts that need to be
processed, resulting in few I/O pages exchange during each
execution cycle.

Fig. 4 (d) measures the Dom0 CPU utilization with varying
workload rates for three combinations of workloads. We
observe that Dom0 is busy for being scheduled for CPU
processing on each interrupt. In Fig. 4 (d), (100, 100)
combination uses relatively higher but more stable CPU usage
around 35% for the workload rate at 50% or higher.

Fig. 4 (e) and Fig.4 (h) present the block time of Dom0 and
block time of two guest domains respectively. For (100,100)
combination, the block time of Dom0 is around 30% for
workload rate of 50% or higher, and the block time of guest
domains are around 48%, and both are relatively high
compared to other two workload combinations. This indicates

0

400

800

1200

1600

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

R
eq

/s
ec

)

Load (%)

(a) Throughput Interference

(1 , 1)_1KB
(1 , 100)_1KB
(1 , 100)_100KB
(100 , 100)_100KB

30
40
50
60

30 50 70

II

0

10000

20000

30000

40000

0 20 40 60 80 100

Sw
itc

h
(s

w
itc

he
s/

se
c)

Load (%)

(b) VM switches/sec

(1, 1)

(1 , 100)

(100 , 100)

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

Pa
ge

 E
xe

cu
tio

n
(p

ag
es

/e
xe

)

Load (%)

(c) Pages per Execution

(1, 1)

(1 , 100)

(100 , 100)

0

10

20

30

40

0 20 40 60 80 100

C
PU

 U
til

 (%
)

Load (%)

(d) Dom0 CPU Usage

(1 , 1)

(1 , 100)

(100 , 100)

0

10

20

30

40

50

60

0 20 40 60 80 100

B
lo

ck
 T

im
e

(%
)

Load (%)

(e) Dom0 Block Time

(1, 1)

(1 , 100)

(100 , 100)

0

5

10

15

20

0 20 40 60 80 100

W
ai

tin
g

Ti
m

e
(%

)

Load (%)

(f) Dom0 Waiting Time

(1 , 1)

(1 , 100)

(100 , 100)

0

10

20

30

40

50

0 20 40 60 80 100

C
PU

 U
til

 (%
)

Load (%)

(g) Guest Domains CPU Usage

(1 , 1)_1KB
(1 , 100)_1KB
(1 , 100)_100KB
(100 , 100)_100KB

0

10

20

30

40

50

60

70

0 20 40 60 80 100

B
lo

ck
 T

im
e

(%
)

Load (%)

(h) Guest Domains Block Time

(1, 1)_1KB
(1 , 100)_1KB
(1 , 100)_100KB
(100 , 100)_100KB

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

W
ai

t T
im

e
(%

)

Load (%)

(i) Guest Domains Waiting Time

(1 , 1)_1KB
(1 , 100)_1KB
(1 , 100)_100KB
(100 , 100)_100KB

0.5

1.5

2.5

30 40 50 60 70

II

Figure 4. Throughput interference of 1 KB workload running with100 KB workload.

that VMs are frequently blocked for I/O events and waiting for
next scheduling.

Fig. 4 (f) and Fig.4 (i) measure the waiting time of Dom0
and of guest domains. We observe that the combination of
(100,100) has the lowest waiting time in both Dom0 and guest
domains. This is mainly due to the high blocking time, as it
reveals that the CPU run queues are not crowd and could serve
the VMs much faster. In summary, we conclude that due to
heavy event and switch costs in (100, 100), VMM and Dom0
are quite busy to do notifications in event channel, resulting in
the fact that driver domain needs more CPU resource and guest
domains are free and are waiting for I/O events (see Fig. 4 (g)).

For the combination of workloads (1, 1), we observe from
Fig. 4 (b) that it has the lowest event and switch number.
However, this workload combination has high contention on
CPU resource. Thus, the poor throughput performance shown
in Fig.4 (a) should come from other factors. From Fig. 4 (c), we
see that the combination (1, 1) processes the I/O
communication more efficiently than the combination of (100,
100), it has three times more pages exchange during each
execution when the workload rate is high. Before the workload
rate reaches 80%, the workload combination of (1,1) has higher
pages exchange per execution compared to that of combination

(1, 100). Thus, we can infer that the throughput interference of
combination (1, 1) may be caused by the fast I/O processing
between guest domains and driver domain. This conclusion can
be further validated using the experimental results shown in Fig.
4 (f) and Fig. 4 (i). We see that the CPU waiting time of Dom0
and guest domains are both the longest in comparison,
approximately achieving 17% and 34% respectively, i.e., the
CPU run queues are crowed waiting for more VCPUs to be put
into execution state. All the VMs in the combination of (1, 1),
including Dom0, are acquiring CPU resource. The Credit
scheduler used in our experiments is configured with equal
weight for all VMs, i.e., all VMs should be dispatched with the
same CPU share, thus we could see that the CPU utilization of
Dom0 and of guest domains have similar trend and share
(100% / 3 ≈ 33%) when they all demand for CPU resource. To
achieve high throughput, all the VMs in (1, 1) combination
need to perform fast I/O page flipping, which results in higher
interference in CPU scheduling, and the lower throughput
performance shown in Fig. 4 (a) compared to (1,100).

By analyzing the performance interferences in the
combinations of (100, 100) and (1, 1), we understand that the
frequently I/O memory pages exchange of (1, 1) leads to CPU
contention among VMs, and the combination of (100, 100)

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

N
et

 I/
O

 (K
B/

se
c)

Load (%)

(1 , 1)_1KB
(1 , 100)_1KB
(1 , 100)_100KB
(100 , 100)_100KB

II IIII

Figure 5. Net I/O interference.

incurs higher event and switch overheads in VMM and Dom0,
leads to high level of network contention. In comparison, the
combination of (1, 100) founds the balance to achieve higher
throughput with increasing workload rates. Concretely,
comparing with the combination (1, 1), Dom0 and VM1 in
(1,100) experience blocked state infrequently and shorter
waiting time to be allocated more CPU resource, finally 50%
lower in VM1 (see Fig. 4 (e) and Fig. 4 (h)). Comparing with
(100, 100), in (1,100) combination, VM2 is blocked frequently
and waiting longer to reduce the event and switch overhead
(Fig. 4 (f) and Fig. 4 (i)). Finally, the I/O page exchanges per
execution becomes more efficiently under high workload rate
(Fig. 4 (c)) and Dom0 is better utilized.

From this group of experiments, we draw four concluding
remarks:

• Due to larger number of packets to be routed per HTTP
request, the combination of network-bound workloads
leads to at least twice higher event and switch costs in
event channel, making driver domain busy for
processing I/O interrupts and suffering significantly
higher L2 cache misses, while leaving guest domains
spending longer time waiting for corresponding I/O
events.

• To achieve high throughput, the combination of CPU-
bound workloads results in guest domains competing
with driver domain for CPU resource to do fast I/O
executions, while the switch cost is the lowest, leading
to certain level of performance interference due to CPU
contention, though the degree of interference is
relatively less sever when compared to (100,100)
combination.

• The workload combination with least resource
competition is the combination of (1,100). This is
mainly due to the fact that it alleviates the stress in
driver domain by scheduling the extra CPU to Dom0
and the guest domain (VM1 in our experiments) that is
serving CPU-intensive workload and at the same time
it increases the block time and waiting time of guest
domain (VM2 in our experiments) that is serving
network-intensive workload to reduce the switch
overhead.

• Interference is highly sensitive to the efficiency of
driver domain due to multiple VMs are competing for
I/O processing and the switching efficiency in the
driver domain.

C. Net I/O Interference
Based on our performance analysis in the previous section,

we know that (1, 1) and (100, 100) causes throughput
interference mainly due to the driver domain demanding for
fast I/O processing and the VMM high switch overhead
respectively. In comparison (1, 100) reaches better
performance by alleviating the stresses in driver domain. In this
section we study the net I/O interference in these three
combinations of workloads.

Fig. 5 presents the net I/O measurement result for (1,1),
(1,100) and (100,100) combinations of workloads. These

curves are highly correlated with trends of request throughput
in Fig. 4 (a), based on the fact that (workload size) × (request
rate) ≈ Net I/O. Both 1 KB and 100 KB workloads in (1, 100)
achieve higher maximum net I/O than others under high
workload rates, i.e., 1 KB × 1560 req/sec ≈ 1634 KB/sec and
100 KB × 85 req/sec ≈ 8550 KB/sec respectively. It is
interesting to note that when the workload rate is
approximately less than 70%, (100, 100) gains better net I/O
performance compared to other combinations (1,1) and (1,100),
while between 30% and 70% workload rates (i.e., see the range
II in Fig. 5) the net I/O of 100 KB workload in (1, 100)
combination (i.e., VM2) remains flat, at around 3600 KB/sec,
which is close to the current window size (i.e., 4 KB) in
XenoLinux. It seems that 100 KB workload is “paused” during
range II. We can understand this phenomenon better by
examining the details of 100 KB curves presented in Fig. 4 (g)~
Fig. 4 (i). Within the load range II in Fig.5, the block time of
both (1,100)_100KB and (1,100)_1KB in Fig. 4 (h) are
relatively flat, while (1, 100)_100KB has on average 5%
higher block time than (100, 100)_100KB. Meanwhile, the
waiting time of (1, 100) in enhanced graph embedded in Fig. 4
(i) is keeping around 2%. Thought, the waiting time of (100,
100) increases three times from 0.5% to 1.7%, it is still the
lowest one. Ultimately, (1, 100) stabilizes the CPU usage
around 4%, while (100, 100) consumes CPU resource
continuously until saturating the NIC.

Despite achieving better request throughput and net I/O in
the combination of (1, 100), we notice that 1 KB workload in
this combination gets “priority” treatment while leaving 100
KB workload blocked more often and waiting longer. To
understand this phenomenon, it is worthwhile to discuss the
details of CPU run queues in Credit scheduler. The default
Credit scheduler is configured with equal weight for each VM
and cap is 0, which means it is working in the work-conserving
mode attempting to share the processor resources fairly. All the
VCPUs in the CPU queues are served in the first-in, first-out
manner. Additional, when a VM receives an interrupt while it
is idle, the VM enters the particular Boost state which has a
higher priority to be inserted into the head of run queue for the
first CPU execution. This mechanism prevents the long waiting
time for the latest active VM by preempting the current running
VM. However, the even priority shares of processor usage
remains a problem for network-intensive workloads here.
Consider the combination of (1, 100), because of the file size of
1 KB is the shortest, it could finish each request and enters the
idle state faster (most infrequently blocked in Fig. 4 (h)).
Finally, hypervisor makes the decision to put the VM1 in the
head of run queue frequently. This makes the 1 KB workload

have higher priority. Thus, the effects of Credit scheduler
should be considered in virtualized cloud environments as it is
making positive contributions to CPU-intensive workloads
while treating network-intensive workloads unfairly with
higher processing latency, leading to poor Net I/O performance.

V. RELATED WORK
Virtualization is becoming widely used in cloud

environments. Although a fair number of research projects
have dedicated to measuring, scheduling, and resource
management of virtual machines, there still lacks of in-depth
understanding of the performance factors that can impact the
efficiency and effectiveness of resource multiplexing and
resource scheduling among virtual machines.

Several recent research efforts [12] proposed “direct I/O” to
alleviate the pressure in driver domain, with guest domains get
direct accesses to hardware. However, direct I/O is not
considered in our works, as it lacks of dedicated driver domain
to perform fault isolation and live migration. If we want to
alleviate the I/O interferences under current Xen I/O model, we
should understand in depth about potential interference factors
residing in Xen VMM. Yong et al. [8] studied the effects of
performance interference between two virtual machines hosted
on the same hardware platform by looking at system-level
workload characteristics. Through subsequent analysis of
collected characteristics, they predicted the performance of new
application from its workload characteristic values successfully
within average error of approximately 5%. However, their
studies are no net I/O workload involved, meanwhile only
focus on finally results, details of the process are not presented.

VI. CONCLUSIONS
In this paper, we have present our experimental study on

the performance interference in parallel processing of CPU and
network intensive workloads in the Xen Virtual Machine
Monitors (VMMs). We conduct extensive experiments to
measure the performance interference among VMs running
network I/O workloads that are either CPU bound or network
bound. Based on our experiments and observations, we
conclude with four key findings that are critical to effective
management of virtualized cloud environments for both cloud
service providers and cloud consumers. First, running network-
intensive workloads in isolated environments on a shared
hardware platform can lead to high overheads due to extensive
context switches and events in driver domain and VMM.
Second, co-locating CPU-intensive workloads in isolated
environments on a shared hardware platform can incurs high
CPU contention due to the demand for fast memory pages
exchanges in I/O channel. Third, running CPU-intensive
workloads and network-intensive workloads in conjunction
incurs the least resource contention, delivering higher
aggregate performance. Last but not the least, identifying
factors that impact the total demand of the exchanged memory
pages is critical to the in-depth understanding of the
interference overheads in I/O channel in the driver domain and
VMM.

VII. ACKNOWLEDGMENT
This work is partially supported by grants from NSF CISE

NetSE program, CyberTrust program, and grants from IBM
faculty award, IBM SUR, and Intel Research Council. The first
author performed this research as a visiting PhD student at the
Distributed Data Intensive Systems Lab (DiSL), School of
Computer Science, Georgia Institute of Technology, supported
by China Scholarship Council and School of Computer Science
and Technology, Beijing Institute of Technology.

REFERENCES
[1] P. Barham, B. Dragovic, K. A. Fraser, S. Hand, T. Harris, A. Ho, E.

Kotsovinos, A. Madhavapeddy, R. Neugebauer, I. Pratt and A. Warfield,
“Xen 2002,” Technical Report of University of Cambridge, NO.
UCAM-CL-TR-553, ISSN 1476-2986, January 2003.

[2] P. Barham, B.Dragovic, K. Fraser, S. Hand, T, Harris, A. Ho, I. Pratt, A.
Warfield, P. Barham, and R. Neugebauer, “Xen and the art of
virtualization,” In Proc. of ACM SOSP, October 2003.

[3] L. Cherkasova, R.Gardner, “Measuring CPU overhead for I/O
processing in the Xen virtual machine monitor,” In Proc. of 2005
USENIX Annual Technical Conference, Anaheim, CA, USA, 2005.

[4] L. Cherkasova, D. Gupta and A. Vahdat, “Comparison of the three CPU
schedulers in Xen,” ACM SIGMETRICS Performance Evaluation
Review, (PER’2007), Vol. 35, No. 2, pp. 42-51, September 2007.

[5] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M. Williamson.
“Reconstructing I/O,” Tech. Report, UCAM-CL-TR-596, August 2004.

[6] D. Gupta, R. Gardner, and L. Cherkasova, “XenMon: Qos monitoring
and performance profiling tool,” HP Laboratories Report, NO. HPL-
2005-187, October 2005.

[7] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforing
performance isolation across virtual machines in Xen”, In Proc. of the
ACM/IFIP/USENIX 7th International Middleware Conference
(Middleware’2006), Melbourne, Australia, November 2006.

[8] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen and C. Pu, “An
analysis of performance interference effects in virtual environments,”
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS’2007), San Jose, California, USA, April 2007.

[9] D. Mosberger, T. Jin, “httperf—A tool for measuring web server
performance,” Proc. of Workshop on Internet Server Performance, 1998.

[10] A. Menon, J. Santos, Y. Turner, “Diagnosing performance overheads in
the Xen virtual machine environment,” In Proc. of the ACM/USENIX
Conference on Virtual Execution Environments, June 2005.

[11] A. Menon, A. L. Cox, W. Zwaenepoel, “Optimizing network
virtualization in Xen,” In USENIX Annual Technical Conference, 2006.

[12] K. Mansley, G. Law, D. Riddoch, G. Barzini, N. Turton, and S. Pope.
“Getting 10 Gb/s from Xen: Safe and fast device access from
unprivileged domains,” In Euro-Par 2007 Workshops: Parallel
Processing, 2007

[13] P. Padala, X. Zhu, Z. Wang, S. Singhal and K. Shin, “Performance
evaluation of virtualization technologies for server consolidation,” HP
Laboratories Report, NO. HPL-2007-59R1, September 2008.

[14] R. Rose, “Survey of system virtualization techniques”, Technical report,
March 2004.

[15] VmWare: http://www.vmware.com.
[16] The XenTM Virtual Machine Moniter: http://www.xen.org.
[17] Httperf: http://www.hpl.hp.com/research/linux/httperfs.
[18] The Apache Software Foundation: http://www.apache.org.
[19] SPECweb99: http://www.spec.org/web99/docs/whitepaper.html.
[20] SPECweb2005: http://www.spec.org/web2005/docs/1.20/run_rules.html.
[21] SPECweb2009: http://www.spec.org/web2009/docs/design/.

