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Abstract—Server virtualization offers the ability to slice large, 
underutilized physical servers into smaller, parallel virtual machines 
(VMs), enabling diverse applications to run in isolated environments 
on a shared hardware platform. Effective management of virtualized 
cloud environments introduces new and unique challenges, such as 
efficient CPU scheduling for virtual machines, effective allocation of 
virtual machines to handle both CPU intensive and I/O intensive 
workloads. Although a fair number of research projects have 
dedicated to measuring, scheduling, and resource management of 
virtual machines, there still lacks of in-depth understanding of the 
performance factors that can impact the efficiency and effectiveness 
of resource multiplexing and resource scheduling among virtual 
machines. In this paper, we present our experimental study on the 
performance interference in parallel processing of CPU and network 
intensive workloads in the Xen Virtual Machine Monitors (VMMs).  
We conduct extensive experiments to measure the performance 
interference among VMs running network I/O workloads that are 
either CPU bound or network bound. Based on our experiments and 
observations, we conclude with four key findings that are critical to 
effective management of virtualized cloud environments for both 
cloud service providers and cloud consumers. First, running network-
intensive workloads in isolated environments on a shared hardware 
platform can lead to high overheads due to extensive context switches 
and events in driver domain and VMM.  Second, co-locating CPU-
intensive workloads in isolated environments on a shared hardware 
platform can incur high CPU contention due to the demand for fast 
memory pages exchanges in I/O channel. Third, running CPU-
intensive workloads and network-intensive workloads in conjunction 
incurs the least resource contention, delivering higher aggregate 
performance. Last but not the least, identifying factors that impact the 
total demand of the exchanged memory pages is critical to the in-
depth understanding of the interference overheads in I/O channel in 
the driver domain and VMM.  

I. INTRODUCTION 
Virtualization technology [14, 13] offers many advantages 

in current cloud computing environments by providing physical 
resources sharing, fault isolation and live migration. 
Virtualization allows diverse applications to run in the isolated 
environments through creating multiple virtual machines 
(VMs) on a shared hardware platform, and managing resource 
sharing across VMs by virtual machine monitor (VMM) 
technology [1]. Although VMMs (hypervisors) have the 
abilities to slice resources and allocate the shares to different 
VMs, our measurement study shows that applications running 
on one VM may still affect the performance of applications 
running on its neighbor VMs. In fact, the level of interferences 
mainly depends on the degree of the competition that the 

concurrent applications running in separate VMs may have in 
terms of shared resources. We argue that the in-depth 
understanding of the possible performance interferences among 
different VMs running on a shared hardware platform is critical 
for effective management of virtualized cloud, and an open 
challenge in current virtualization research and development. 

  In this paper, we study performance interference among 
different VMs running on the same hardware platform with the 
focus on network I/O processing. The main motivation for 
targeting our measurement study on performance interference 
of processing concurrent network I/O workloads in a 
virtualized environment is simply because network I/O 
applications are becoming dominating workloads in current 
cloud computing systems. By carefully design of our 
measurement study and the set of performance metrics we use 
to characterize the network I/O workloads, we derive some 
important factors of I/O performance conflicts based on 
application throughput interference and net I/O interference. 
Our performance measurement and workload analysis also 
provide some insights on performance optimizations for CPU 
scheduler and I/O channel and efficiency management of 
workload and VM configurations. . 

The remainder of this paper is structured as follows: in 
Section II gives an overview of our experimental study, 
including the background on Xen I/O architecture, our 
experiment setup and I/O workloads. Section III analyzes the 
potential I/O interference factors in the cloud environment 
where different types of network I/O applications are running 
in isolated VMs on a shared hardware platform. Section IV 
reports our experimental results and illustrates request 
throughput and net I/O interference studies based on the 
network I/O workload characteristics. We conclude the paper 
with related works and a summary of contributions. 

II. BACKGROUND AND OVERVIEW 
In this section, we provide a brief background of Xen which 

is the virtualization platform we use in our measurement study. 
Then we describe the experimental setup, including 
measurement method and I/O workloads. 

A. Xen I/O Overview 
Xen [1, 2] is a popular open-source x86 virtual machine 

monitor (VMM) based on virtualization technologies. Recent 
prevalent virtualization technologies, like full system 
virtualization adopted in VmWare [15] and para-virtualization 
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Figure 2.  Xen I/O architecture 
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Figure 1.  Logical components of virtulized cloud environments. 

(Web servers reside in  VM1 and VM2, Dom0 is only the driver domain)

are both supported by Xen which uses para-virtualization as a 
more efficient and lower overhead modes of virtualizations. In 
para-virtualization I/O mode, Xen VMM layer uses 
asynchronous hypercall mechanism to deliver virtual interrupts 
and other notifications among domains via event channel. A 
privileged domain called Domain0 is treated as driver domain 
hosting unmodified Linux drivers and has the access to 
hardware devices. Driver domain performs I/O operations on 
behalf of unprivileged guest domains which are ported to the 
virtual driver interface from Linux operation system 
(XenoLinux). Fig. 1 shows the logical components of the latest 
Xen I/O architecture [5]. The virtual network interface in guest 
domain is called netend (frontend) acting as the real hardware 
drivers. In the privileged driver domain, netback (backend) is a 
counterpart for each netend. Netfront and corresponding 
netback use “page-flipping” technique to exchange data in the 
I/O channel by sharing memory pages pointed in the descriptor 
ring (Fig. 1), no data copy involved. The bridge in driver 
domain handles the packets from NIC and performs the 
software-based routine to the destination domain. We notice 
that netfront, netend and bridge are extra code in the VMs and 
“page-flipping” is also an extra part in I/O channel. 

When a network packet is received by the NIC (RX), the 
NIC will raise an interrupt to the upper layer. Before the 
interrupt reaches the driver domain, hypervisor (VMM) 
handles the interrupt first. Hypervisor will determine whether 
or not the driver domain has the access to the real hardware. 
Upon receiving the interrupt, the privileged driver domain 
starts to process the network packet. It first removes the packet 
from NIC and sends the packet to the software Ethernet bridge. 
Then Ethernet bridge de-multiplexes the packet and delivers it 
to the appropriate netback interface. Netback raises a hypercall 
to hypervisor, requesting an unused memory page and 
hypervisor notifies the corresponding guest domain to release a 
page to keep the overall memory allocation balanced. Netback 
and netfront exchange the page descriptors by page-remapping 
mechanism over I/O descriptor ring (Later the data copy is 
performed). Finally, guest domain receives the packet as if it 
comes directly from NIC. A similar but reverse procedure is 
applied to send a packet using the send path (TX), except that 
no explicit memory page exchange is involved, only the 
ownership of physical page is transferred instead of the real 
page. NIC supports direct memory access (DMA) technique 
handles the target guest memory page directly. We will see that 
three address remappings and two memory 
allocation/deallocation operations are used for per packet 
receive and only two remappings are required for each packet 
transmit [10, 7, 11]. 

B. Testbed Architechture 
We carefully designed our experiments to exercise network 

I/O traffics and evaluate the performance interference in 
virtualized cloud environments. All experiments were 
performed on an IBM ThinkCentre A52 Workstation with two 
3.2GHz Intel Pentium 4 CPUs (both have 16KB L1 caches and 
2MB L2 caches), 2 GB 400 MHz DDR memory, a Seagate 250 
GB 7200 RPM SATA2 disk, and Intel e100 PRO/100 network 
interface. Client machines were connected by a 1 Gbit/s 
Ethernet network. The latest version 3.4.0 Xen hypervisor with 
the most stable Linux Xen Kernel 2.6.18.8-xen [16] are used.  

Fig. 2 gives a sketch of the experimental setup used in most 
of the experiments reported in this paper. In each experiment, 
two I/O intensive workloads are running in two isolated guest 
domains respectively (VM1 and VM2) sharing the same 
physical host via VMM. Each guest domain is allocated with 
equal resources, where the memory allocations are both 512 
MB, the default CPU scheduler (SMP Credit scheduler) [4] is 
configured with equal weight value and for each VM the 
parameter cap is 0. The Apache HTTP servers [18] residing in 
VM1 and VM2 provide the web services, and cache the data in 
the buffers, no disk readings are involved. Client machines 
using httperf [9, 17] tool as our HTTP “load generator” are 
designed to access virtualized servers remotely. They send 
requests to corresponding virtual server, retrieving a fixed size 
file: 1 KB, 4 KB, 10 KB, 30 KB, 50 KB, 70 KB or 100 KB. 
These fixed size files are carefully selected I/O workloads from 
SPECweb’99 [19], SPECweb’2005 [20] and SPECweb’2009 
[21] benchmarks, which are the industry standard to evaluate 
the web server performance. Each workload is a representative 
log file size in current data center. 

C. I/O Workloads 
Before measuring the interferences of multiple servers 

running on one single physical hardware host, we first evaluate 
the performance of single guest domain in order to get the 
actual performance results and characteristics of each workload 
running in our experimental environment, which serve as the 
basecase in the rest of the experiments.  

Table I shows the maximum performance results of one 
guest domain running under the selected SPECweb network 
I/O workloads. When server becomes saturated at full capacity, 
the 1 KB and 4 KB file workloads reach 0.5 to 15 times higher 
request throughput than others respectively, and consume more 
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Figure 3. Illustration of I/O workload performance interfernce.  

(Web servers running in two isolated guest domains)

TABLE I.  MAXIMUM PERFORMANCE OF WORKLOADS IN BASECASE 

Workload Major 
Resource Used 

Throughput 
(Req/sec) 

Net I/O 
(KB/sec) 

Response 
Time (ms) 

CPU 
(%) 

1 KB CPU 1900 2018 1.52 97.50

4 KB CPU 1750 7021 5.46 97.46

10 KB Network 1104 11048 2.36 70.44

30 KB Network 375 11271 2.52 54.87

50 KB Network 225 11262 2.7 49.62

70 KB Network 160 11255 2.84 47.10

100 KB Network 112 11208 2.08 44.40

than 97.5% CPU resource (approximately, the remaining 2.5% 
CPU is charged by the system monitor tool), while the network 
bandwidth utilization is only around 20% and 60% respectively. 
The web mix performance of these two workloads is limited by 
CPU resource. Although the achieved request rates are not 
higher than 1200 req/sec, 10-100 KB workloads saturate the 
server by consuming all the network bandwidth, which is 10 
KB × 1104 req/sec ≈ 30 KB × 375 req/sec ≈ 50 KB × 225 
req/sec ≈ 70 KB × 160 req/sec ≈ 100 KB × 112 req/sec ≈ 100 
MB/sec. Meanwhile, when VM1 is serving one of these five 
workloads respectively in each of the five experiments (10-100 
KB), the total CPU utilization of driver domain and guest 
domain is less than 75%. These reveal that 1 KB and 4 KB 
workloads are CPU bounded and 10-100 KB workloads are 
network bounded, consistent with the observation made from 
prior research [3], namely short file workload is CPU bounded 
and long file workload is network bounded. 

III. INTERFERENCE ANALYSIS 
In this section we outline the methodology and metrics used 

for our measurement study. 

Let Dom0, Dom1 … Domn be the virtual machines running 
on the same host, where Dom0 is the driver domain. Suppose 
that Domi is serving workloads i, we define the maximum 
throughput of Domi as Ti. We use Bi to denote the maximum 
throughput of Domi in basecase scenario where n equals 1, i.e., 
only driver domain and one guest domain are hosted on the 
physical machine. Then, the combined normalized throughput 
scores is defined as follows: 

1

n
i

i i

Combined Score
T
B=

= ∑  

Fig. 3 presents the set of experiments conducted on the 
setup of two gust domains with each running one of the 
selected workloads. We measure the normalized throughput 
scores of different combination of selected network I/O 
workloads. The base-case throughput used in this experiment is 
the throughput of workloads in the single gust domain basecase 
(Table I). To present the results clearly, we denote each 
combination of the two workloads running on VM1 and VM2 
in a tuple of two elements, with the first element x denotes xKB 
file retrieving from VM1, and the second element y is the yKB 
file retrieving from VM2. For example, the expression (1, 30) 
says that VM1 is severing 1 KB file workload and VM2 is 
severing 30 KB file workload. The expression (1, Idle) refers to 

the case where VM1 is serving 1KB file workload and VM2 is 
idle. From Fig. 3, we observe some interesting facts regarding 
performance interferences. First, the combination of workloads 
(1, 100) achieves the best performance with its combined 
throughput score of 1.58. Given that 1 KB workload is CPU 
bounded and 100 KB workload is network bounded, this 
combination clearly incurs the least resource contention 
compared to other combinations. Similarly, the workload 
combinations of (1, 50) is the next best pairing for the similar 
reason. The workload combinations of (30, 100) and (50, 100) 
offer better combined throughput than the worst combination 
of workloads (1, 1) and (1, 10), which incurs highest resource 
contention. Our observations are consistent with the Xen I/O 
architecture presented in previous section II. Current Xen I/O 
mode uses the privileged driver domain to provide better 
security isolation and fault isolation among VMs. Although this 
mode could prevent buggy drivers and malicious attacks 
successfully, the driver domain may easily becomes the 
bottleneck: when a VM wishes to get accesses to underlying 
hardware or communicate with others, all the events have to go 
through driver domain and hypervisor layer. This is supposed 
to cause control or communication interferences among VMs.  
The multiplexing/demultiplexing of bridge and I/O channel 
may incur memory page management interferences, such as 
packets lost for high latency, fragmentations and increased data 
coping overhead. In addition, we also believe that the default 
Credit scheduler may have some impacts on the overall 
performance of running multiple VMs on the same hardware 
platform. This set of experiments also indicates that although 
performance interference of network I/O applications in 
virtualized cloud environments is unavoidable given the Xen 
I/O architecture and the inherent resource sharing principle 
across VMs. In-depth understanding of the number of key 
factors that cause certain types of resource contentions and thus 
performance interferences is critical for both cloud service 
providers and cloud consumers. 

In addition to the combined throughput ratio scores, we also 
measure the virtualization specific system-level characteristics 
using the following eight performance metrics to better 
understand the performance interference of running multiple 
network  I/O workloads in isolated VM environments on a 
single hardware platform. These system-level metrics can be 
best utilized to analyze the resource contentions of network I/O 
workloads and reveal the intrinsic factors that may have been 
induced performance interference observed. 



TABLE II.  SYSTEM-LEVEL CHARACTERISTICS OF I/O WORKLOADS WITH WEB SERVER RUNNING IN VM1 (VM2 IS NOT CREATED). 

Workload CPU 
(%) 

Event 
(events/sec) 

Switch 
(switches/sec) 

Pages 
Exchange 
(pages/sec) 

I/O Execution 
(pages/exe) 

Driver Domain (Dom0) Guest Domain (VM1) 

CPU 
(%) 

Waiting 
(%) 

Block 
(%) 

Execution 
(exe/sec) 

CPU 
(%) 

Waiting 
(%) 

Block 
(%) 

Execution
(exe/sec) 

1 KB 97.50 224104 9098 11500 4.93 46.83 4.81 10.54 2433 50.67 38.97 4.76 2535 

4 KB 97.46 242216 10525 14900 6.38 46.82 4.77 10.68 2335 50.65 37.72 5.65 2509 

10 KB 70.44 279663 15569 16000 7.28 39.7 3.13 13.73 2198 30.74 2.29 23.48 2092 

30 KB 54.87 345496 26118 13000 3.87 36.78 1.92 17.78 3023 18.09 1.31 34.32 3777 

50 KB 49.62 342584 26981 11000 3.54 34.57 1.22 19.33 3108 15.05 1.14 36.76 3915 

70 KB 47.10 341898 27436 10500 3.36 33.41 0.90 19.46 3123 13.70 1.07 37.62 4034 

100 KB 44.40 332951 27720 10000 3.17 32.19 0.77 21.04 3150 12.21 1.01 39.08 3962 

Using Xen hypervisor system monitor tools, we collect 
eight system-level characteristics from I/O workloads. These 
system-level characteristics could reveal the underlying details 
of I/O performance interference and make VMs behaviors 
understandable. In our design of evaluation, the following eight 
different workload characteristics are collected: 

• CPU utilization (CPU): We measured the average 
CPU utilization of each VM, including CPU usage of 
Dom0, VM1 and VM2 respectively. The total CPU 
consumption is the summation of them all. 

• VMM events per second (Event): VMM adopts 
asynchronous hypercall mechanism to notify the VMs 
of system events. This metric measures the number of 
events per second in the event channel. 

• VM switches per second (Switch): The number of 
VMM switches per second is collected by this metric. 
It is an important performance indicator for our study. 

• I/O count per second (Pages Exchange): This metric 
captures the number of exchanged memory pages 
during the period of one execution. This metric reflects 
the efficiency of I/O processing. 

• I/O count per execution (I/O Execution): During the 
period of one execution, the number of exchanged 
memory pages is captured here. This metric could help 
to reflect the efficiency of I/O processing. 

• VM state (Waiting, Block): at any point of time, every 
domain sharing the same host must be in one of 
following three states: execution state, runnable state 
and blocked state. When one VM is currently using 
CPU, it is in the execution state. The metric “Wait” is 
the percentage of waiting time when a VM is in 
runnable state, or in other words, the VM is in the 
CPU run queue but do not utilize the physical CPU 
(PCPU). The metric “Block” is the percentage of 
blocked time when a VM is in blocked state, which 
represents the fact that a VM is blocked on I/O events 
and not in the run queue. 

• Executions per second (Execution): This metric refers 
to the number of execution periods per second for each 
VM. We divide “Pages Exchange” by the measured 

value of this metric to calculate the approximate “I/O 
Execution”.  

IV. PERFORMANCE INTERFERENCE STUDY 
In this section we first provide our measurements of the 

eight metrics with varying workload rates, from 10%, 20%, 
30%, to 100% under the experimental setup of single guest 
domain running the selected network I/O workloads. This set 
of measurements is used as the basecase scenario to analyze 
the different workload combinations and understanding the 
resource contentions displayed by the various combinations of 
workloads. Then we analyze the throughput performance 
interferences and net I/O performance interferences in the 
remaining of this section for network I/O workloads of varying 
sizes. 

A. Basecase Measurement 
In this set of experiments, we set up our testbed with one 

VM (VM1) running one of the six selected network I/O 
workloads of 1 KB, 4 KB, 30 KB, 50 KB, 70 KB and 100 KB 
for all eight metrics outlined in Section III. Table II shows the 
results. The value of each I/O workload characteristics is 
measured at 100% workload rate for the given workload type.  
Comparing with network-intensive workloads of 30 KB, 50 KB, 
70 KB, and 100 KB files, the CPU-intensive workloads of 1 
KB and 4 KB files have at least 30% and 60% lower event and 
switch costs respectively because the network I/O processing is 
more efficient in these cases. Concretely, for 1 KB and 4 KB 
workloads, we can see from Table II, driver domain has to wait 
about 2.5 times longer on the CPU run queue for being 
scheduled into the execution state and the guest domain (VM1) 
has 30 times longer waiting time. However, they are 
infrequently blocked for acquiring more CPU resource, 
especially in the guest domain the block time is less than 6%. 
We notice that the borderline network-intensive 10 KB 
workload has the most efficient I/O processing ability with 7.28 
pages per execution while the event and switch numbers are 
15% larger than CPU-intensive workloads. Interesting to note 
is that initially, the I/O execution is getting more and more 
efficient as file size increases. However, with file size of 
workload grows larger and larger, more and more packets need 
to be delivered for each request. The event and switch number 
are increasing gradually as observed in Table II. Note that the 
VMM events per second are also related to request rate of the 



workload. Though it drops slightly for the workload of file size 
30-100 KB, the overall event number of network-intensive 
workloads is still higher than CPU-intensive ones. With 
increasing file size of shorter workloads (1 KB, 4 KB and 10 
KB), VMs are blocked more and more frequently. Finally, I/O 
execution starts to decline when the file size is greater than 10 
KB. The network I/O workloads that exhibit CPU bound are 
now transformed to network bounded as the file size of the 
workloads exceeding 10 KB and the contention for network 
resource is growing higher as the file size of the workload 
increases. In our experiments, the 100 KB workload shows the 
highest demand for the network resource. These basic system-
level characteristics in our basecase scenario can help us to 
compare and understand better the combination of different 
workloads and the multiple factors that may cause different 
levels of performance interferences with respect to both 
throughput and net I/O. 

B. Throughput Interference 
In this subsection, we focus on studying performance 

interference of running multiple network I/O workloads in 
isolated VM environments on a shared hardware platform, our 
testbed setup. We focus on understanding the impact of 
running different combinations of workloads of different file 
sizes on the aggregate throughput. 

In this group of experiments, we use the representative 
CPU bounded workload of 1 KB file and the representative 
network bounded workload of 100 KB file as the main 
workload combination for our analysis. The reason we choose 
this combination is primarily because this combination exhibits 
the best combined throughput score in Table I. This motivates 
us to understand the key factors that impact on their high 
combined throughput score. 

Fig. 4 shows the set of experiments we have conducted for 
throughput interference analysis on three combinations of 
workloads running concurrently on the setup of two VMs:  (1, 
1), (1, 100) and (100, 100).  We use the tuple (1,100) to denote 
the workload of 1 KB running on VM1 and the workload of 
100 KB running on VM2. Also we use the notation of (1, 
100)_1KB to denote the measurement of workload 1 KB on 
VM1 in the graphs.  We vary the workload rates in x-axis and 
measure the different performance metrics and plot them on y-
axis. To get a clear overview of curves on the same scale, the 
rates of different workloads in Fig. 4 were converted into the 
percentage of maximum achieved throughput in basecase. For 
example, for 100% workload rate of 1 KB workload in Fig. 4, 
the maximum request rate of 1900 req/sec in Table I is used. 
Similarly, for 100 KB workload, the 100% workload rate in Fig. 
4 means the maximum request rate of 112 req/sec is used 

Recall Fig. 3, we have shown that the combinations of 
workloads that compete for the same resource, either CPU or 
network, stand a good chance of performance degradation 
compared to the basecase in Table I. However, two workloads 
that exhibit distinct resource need, such as one CPU bound and 
the other network bound, running together gets better 
performance compared to the one VM basecase. The following 
analysis will provide us some in-depth understanding of the 
key factors that lead to different performance interferences 

among different combinations of applications running 
concurrently in multiple VMs 

Fig. 4 (a) illustrates the throughput performance of the three 
workloads combinations: (1, 1), (1, 100), (100, 100). We 
observe that 1 KB workload in (1, 100) combination reaches 
around 1560 req/sec, which is twice the achieved maximum 1 
KB workload throughput of 790 req/sec in (1, 1) combination, 
even though it is still 18% lower than 1900 req/sec, the 
maximum throughput in basecase. For  (1, 100) combination, 
100 KB workload on VM2 achieves the throughput of 85 
req/sec at 100% workload rate, which is 76% of maximum 
throughput of 112 req/sec in basecase and 52% higher than the 
throughput of 56 req/sec for 100 KB workload in the 
combination of (100, 100). Note that the combination of 
(100,100) causes high network resource contention and 
saturates the host at 50% workload rate (see the enhanced chart 
embedded in Fig. 4). 

In order to provide the in-depth understanding of the 
detailed factors that cause these different levels of throughput 
interferences, we conduct the rest of the experiments and the 
results are shown in the remaining figures and plots in Fig. 4. 
First, let us examine at the combination of two network-
intensive workloads of (100, 100). 

Fig. 4 (b) shows the numbers of switches per second when 
varying the workload rates from 10% to 100%. Note that the 
number of events follows exactly same trend as switches, 
though the concrete values are different in scale. At 50% 
workload rate, the combination (100, 100) reaches the 
maximum switch number, and it starts to drop when the 
workload rate increases to 60% and it remains almost flat even 
when the workload rate increases from 60% to 100%. 
Comparing with other two combinations of workloads, (100, 
100) has at least twice higher switch cost than (1,100) and (1, 1) 
under the peak switch costs. This implies that a main source of 
overhead and throughput interference for the combination (100, 
100) may come from the high event and switch costs in VMM 
and Dom0. 

Fig. 4 (c) shows the exchanged memory pages during one 
CPU execution time. We observe that as the workload rate is 
getting higher, the combination of (100, 100) has less than four 
pages per CPU execution duration and it experiences the worst 
efficiency in I/O pages exchange. Practically, heavy event and 
switch costs lead to a lot more interrupts that need to be 
processed, resulting in few I/O pages exchange during each 
execution cycle.  

Fig. 4 (d) measures the Dom0 CPU utilization with varying 
workload rates for three combinations of workloads. We 
observe that Dom0 is busy for being scheduled for CPU 
processing on each interrupt. In Fig. 4 (d), (100, 100) 
combination uses relatively higher but more stable CPU usage 
around 35% for the workload rate at 50% or higher. 

Fig. 4 (e) and Fig.4 (h) present the block time of Dom0 and 
block time of two guest domains respectively. For (100,100) 
combination, the block time of Dom0 is around 30% for 
workload rate of 50% or higher, and the block time of guest 
domains are around 48%, and both are relatively high 
compared to other two workload combinations. This indicates 
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Figure 4. Throughput interference of 1 KB workload running with100 KB workload. 

that VMs are frequently blocked for I/O events and waiting for 
next scheduling. 

Fig. 4 (f) and Fig.4 (i) measure the waiting time of Dom0 
and of guest domains. We observe that the combination of 
(100,100) has the lowest waiting time in both Dom0 and guest 
domains. This is mainly due to the high blocking time, as it 
reveals that the CPU run queues are not crowd and could serve 
the VMs much faster. In summary, we conclude that due to 
heavy event and switch costs in (100, 100), VMM and Dom0 
are quite busy to do notifications in event channel, resulting in 
the fact that driver domain needs more CPU resource and guest 
domains are free and are waiting for I/O events (see Fig. 4 (g)). 

For the combination of workloads (1, 1), we observe from 
Fig. 4 (b) that it has the lowest event and switch number. 
However, this workload combination has high contention on 
CPU resource. Thus, the poor throughput performance shown 
in Fig.4 (a) should come from other factors. From Fig. 4 (c), we 
see that the combination (1, 1) processes the I/O 
communication more efficiently than the combination of (100, 
100), it has three times more pages exchange during each 
execution when the workload rate is high. Before the workload 
rate reaches 80%, the workload combination of (1,1) has higher 
pages exchange per execution compared to that of combination 

(1, 100). Thus, we can infer that the throughput interference of 
combination (1, 1) may be caused by the fast I/O processing 
between guest domains and driver domain. This conclusion can 
be further validated using the experimental results shown in Fig. 
4 (f) and Fig. 4 (i). We see that the CPU waiting time of Dom0 
and guest domains are both the longest in comparison, 
approximately achieving 17% and 34% respectively, i.e., the 
CPU run queues are crowed waiting for more VCPUs to be put 
into execution state. All the VMs in the combination of (1, 1), 
including Dom0, are acquiring CPU resource. The Credit 
scheduler used in our experiments is configured with equal 
weight for all VMs, i.e., all VMs should be dispatched with the 
same CPU share, thus we could see that the CPU utilization of 
Dom0 and of guest domains have similar trend and share 
(100% / 3 ≈ 33%) when they all demand for  CPU resource. To 
achieve high throughput, all the VMs in (1, 1) combination 
need to perform  fast I/O page flipping, which results in higher 
interference in CPU scheduling, and the lower throughput 
performance shown in Fig. 4 (a) compared to (1,100).  

By analyzing the performance interferences in the 
combinations of (100, 100) and (1, 1), we understand that the 
frequently I/O memory pages exchange of (1, 1) leads to CPU 
contention among VMs, and the combination of (100, 100) 
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Figure 5. Net I/O interference.  

incurs higher event and switch overheads in VMM and Dom0, 
leads to high level of network contention. In comparison, the 
combination of (1, 100) founds the balance to achieve higher 
throughput with increasing workload rates. Concretely, 
comparing with the combination (1, 1), Dom0 and VM1 in 
(1,100) experience blocked state infrequently and shorter 
waiting time to be allocated more CPU resource, finally 50% 
lower in VM1 (see Fig. 4 (e) and Fig. 4 (h)). Comparing with 
(100, 100), in (1,100) combination, VM2 is blocked frequently 
and waiting longer to reduce the event and switch overhead 
(Fig. 4 (f) and Fig. 4 (i)). Finally, the I/O page exchanges per 
execution becomes more efficiently under high workload rate 
(Fig. 4 (c)) and Dom0 is better utilized. 

From this group of experiments, we draw four concluding 
remarks: 

• Due to larger number of packets to be routed per HTTP 
request, the combination of network-bound workloads 
leads to at least twice higher event and switch costs in 
event channel, making driver domain  busy for 
processing I/O interrupts and suffering significantly 
higher L2 cache misses, while leaving guest domains 
spending longer time waiting for corresponding I/O 
events. 

• To achieve high throughput, the combination of CPU-
bound workloads results in guest domains competing 
with driver domain for CPU resource to do fast I/O 
executions, while the switch cost is the lowest, leading 
to certain level of performance interference due to CPU 
contention, though the degree of interference is 
relatively less sever when compared to (100,100) 
combination. 

• The workload combination with least resource 
competition is the combination of (1,100). This is 
mainly due to the fact that it alleviates the stress in 
driver domain by scheduling the extra CPU to Dom0 
and the guest domain (VM1 in our experiments) that is 
serving CPU-intensive workload and at the same time 
it increases the block time and waiting time of guest 
domain (VM2 in our experiments) that is serving 
network-intensive workload to reduce the switch 
overhead. 

• Interference is highly sensitive to the efficiency of 
driver domain due to multiple VMs are competing for 
I/O processing and the switching efficiency in the 
driver domain. 

C. Net I/O Interference 
Based on our performance analysis in the previous section, 

we know that (1, 1) and (100, 100) causes throughput 
interference mainly due to the driver domain demanding for 
fast I/O processing and the VMM high switch overhead 
respectively. In comparison (1, 100) reaches better 
performance by alleviating the stresses in driver domain. In this 
section we study the net I/O interference in these three 
combinations of workloads. 

Fig. 5 presents the net I/O measurement result for (1,1), 
(1,100) and (100,100) combinations of workloads.  These 

curves are highly correlated with trends of request throughput 
in Fig. 4 (a), based on the fact that (workload size) × (request 
rate) ≈ Net I/O. Both 1 KB and 100 KB workloads in (1, 100) 
achieve higher maximum net I/O than others under high 
workload rates, i.e., 1 KB × 1560 req/sec ≈ 1634 KB/sec and 
100 KB × 85 req/sec ≈ 8550 KB/sec respectively. It is 
interesting to note that when the workload rate is 
approximately less than 70%, (100, 100) gains better net I/O 
performance compared to other combinations (1,1) and (1,100), 
while between 30% and 70% workload rates (i.e., see the range 
II in Fig. 5) the net I/O of 100 KB workload in (1, 100) 
combination (i.e., VM2) remains flat, at around 3600 KB/sec, 
which is close to the current window size (i.e., 4 KB) in 
XenoLinux. It seems that 100 KB workload is “paused” during 
range II. We can understand this phenomenon better by 
examining the details of 100 KB curves presented in Fig. 4 (g)~ 
Fig. 4 (i). Within the load range II in Fig.5, the block time of 
both (1,100)_100KB and (1,100)_1KB  in Fig. 4 (h) are 
relatively flat, while (1, 100)_100KB has  on average 5% 
higher block time than (100, 100)_100KB. Meanwhile, the 
waiting time of (1, 100) in enhanced graph embedded in Fig. 4 
(i) is keeping around 2%. Thought, the waiting time of (100, 
100) increases three times from 0.5% to 1.7%, it is still the 
lowest one. Ultimately, (1, 100) stabilizes the CPU usage 
around 4%, while (100, 100) consumes CPU resource 
continuously until saturating the NIC. 

Despite achieving better request throughput and net I/O in 
the combination of (1, 100), we notice that 1 KB workload in 
this combination gets “priority” treatment while leaving 100 
KB workload blocked more often and waiting longer. To 
understand this phenomenon, it is worthwhile to discuss the 
details of CPU run queues in Credit scheduler. The default 
Credit scheduler is configured with equal weight for each VM 
and cap is 0, which means it is working in the work-conserving 
mode attempting to share the processor resources fairly. All the 
VCPUs in the CPU queues are served in the first-in, first-out 
manner. Additional, when a VM receives an interrupt while it 
is idle, the VM enters the particular Boost state which has a 
higher priority to be inserted into the head of run queue for the 
first CPU execution. This mechanism prevents the long waiting 
time for the latest active VM by preempting the current running 
VM. However, the even priority shares of processor usage 
remains a problem for network-intensive workloads here. 
Consider the combination of (1, 100), because of the file size of 
1 KB is the shortest, it could finish each request and enters the 
idle state faster (most infrequently blocked in Fig. 4 (h)). 
Finally, hypervisor makes the decision to put the VM1 in the 
head of run queue frequently. This makes the 1 KB workload 



have higher priority. Thus, the effects of Credit scheduler 
should be considered in virtualized cloud environments as it is 
making positive contributions to CPU-intensive workloads 
while treating network-intensive workloads unfairly with 
higher processing latency, leading to poor Net I/O performance. 

V. RELATED WORK 
Virtualization is becoming widely used in cloud 

environments. Although a fair number of research projects 
have dedicated to measuring, scheduling, and resource 
management of virtual machines, there still lacks of in-depth 
understanding of the performance factors that can impact the 
efficiency and effectiveness of resource multiplexing and 
resource scheduling among virtual machines.  

Several recent research efforts [12] proposed “direct I/O” to 
alleviate the pressure in driver domain, with guest domains get 
direct accesses to hardware. However, direct I/O is not 
considered in our works, as it lacks of dedicated driver domain 
to perform fault isolation and live migration. If we want to 
alleviate the I/O interferences under current Xen I/O model, we 
should understand in depth about potential interference factors 
residing in Xen VMM. Yong et al. [8] studied the effects of 
performance interference between two virtual machines hosted 
on the same hardware platform by looking at system-level 
workload characteristics. Through subsequent analysis of 
collected characteristics, they predicted the performance of new 
application from its workload characteristic values successfully 
within average error of approximately 5%. However, their 
studies are no net I/O workload involved, meanwhile only 
focus on finally results, details of the process are not presented. 

VI. CONCLUSIONS 
In this paper, we have present our experimental study on 

the performance interference in parallel processing of CPU and 
network intensive workloads in the Xen Virtual Machine 
Monitors (VMMs).  We conduct extensive experiments to 
measure the performance interference among VMs running 
network I/O workloads that are either CPU bound or network 
bound. Based on our experiments and observations, we 
conclude with four key findings that are critical to effective 
management of virtualized cloud environments for both cloud 
service providers and cloud consumers. First, running network-
intensive workloads in isolated environments on a shared 
hardware platform can lead to high overheads due to extensive 
context switches and events in driver domain and VMM.  
Second, co-locating CPU-intensive workloads in isolated 
environments on a shared hardware platform can incurs high 
CPU contention due to the demand for fast memory pages 
exchanges in I/O channel. Third, running CPU-intensive 
workloads and network-intensive workloads in conjunction 
incurs the least resource contention, delivering higher 
aggregate performance. Last but not the least, identifying 
factors that impact the total demand of the exchanged memory 
pages is critical to the in-depth understanding of the 
interference overheads in I/O channel in the driver domain and 
VMM. 
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