
HAL Id: hal-01314827
https://inria.hal.science/hal-01314827v1

Submitted on 1 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Model-Driven Management of Docker Containers
Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, Philippe Merle

To cite this version:
Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, Philippe Merle. Model-Driven Management
of Docker Containers. 9th IEEE International Conference on Cloud Computing (CLOUD), Jun 2016,
San Francisco, United States. pp.718 - 725, �10.1109/CLOUD.2016.0100�. �hal-01314827�

https://inria.hal.science/hal-01314827v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Model-Driven Management of Docker Containers

Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, Philippe Merle

University of Lille & Inria Lille - Nord Europe

CRIStAL UMR CNRS 9189, France

Email: firstname.lastname@inria.fr

Abstract—With the emergence of Docker, it becomes eas-
ier to encapsulate applications and their dependencies into
lightweight Linux containers and make them available to the
world by deploying them in the cloud. Compared to hypervisor-
based virtualization approaches, the use of containers provides
faster start-ups times and reduces the consumption of computer
resources. However, Docker lacks of deployability verification
tool for containers at design time. Currently, the only way to
be sure that the designed containers will execute well is to
test them in a running system. If errors occur, a correction is
made but this operation can be repeated several times before
the deployment becomes operational. Docker does not provide
a solution to increase or decrease the size of container resources
in demand. Besides the deployment of containers, Docker lacks
of synchronization between the designed containers and those
deployed. Moreover, container management with Docker is
done at low level, and therefore requires users to focus on
low level system issues. In this paper we focus on these issues
related to the management of Docker containers. In particular,
we propose an approach for modeling Docker containers. We
provide tooling to ensure the deployability and the management
of Docker containers. We illustrate our proposal using an event
processing application and show how our solution provides
a significantly better compromise between performance and
development costs than the basic Docker container solution.

Keywords-Cloud Computing; Container; Docker; Model
Driven Engineering; Models@runtime

I. INTRODUCTION

Nowadays, with the emergence of Docker1, lightweight

containers are gaining in popularity and they are adopted

by cloud providers such as Google, Azure, Amazon, and

Digital Ocean. Containers are a lightweight solution that

developers can use to deploy and manage applications.

Indeed, compared to hypervisor-based virtualization where

each Virtual Machine (VM) runs its own operating system

(OS), which increases the use of system resources, the

container technology has several advantages [10], [11]:

• Low resource consumption: containers share resources

with host operating system, which make them more

efficient. The stop and start actions on a container take

a few seconds while they take minutes for VMs. Ap-

plications running in a container have small overhead

compared to those running natively on the host OS.

1http://docker.io

• Portability: the portability of containers has the poten-

tial to eliminate whole kinds of bugs caused by subtle

changes in the running environment and the vendor

lock-in problem.

• Lightweight: the lightweight nature of containers per-

mits developers to run dozens of containers at the same

time, making it possible to emulate a production-ready

distributed system. Operation engineers can run many

more containers on a single host machine rather than

using VMs alone.

Despite the advances in using Docker, the verification

process related to the deployability of containers remains

a challenging task. Currently, the only way to be sure that

the designed containers will run correctly is to execute them

in a running system. In this context, when errors occur,

a correction is made and this operation can be repeated

several times before the deployment becomes operational.

Docker does not provide a solution to increase or decrease

the size of container resources in demand. For example, at

peak periods the container should scale resources up, and

similarly on off-peak periods the container should release

unneeded resources by scaling down.

Moreover, Docker is still lacking of supporting runtime

systems evolution. In particular, how to affect changes on

a deployed containers system? Besides the deployment of

containers, Docker lacks of synchronization between the

designed containers and those deployed. Container manage-

ment with Docker is done at low level, and requires users

to focus on low level system issues. Docker is lacking an

explicit model representation of underlying containers and

the relation between them. This makes it difficult to fix

design errors, to fold new decisions into a running system in

order to support controlled ongoing design. Obviously, there

is a need to represent a human understandable description of

some aspects of a running container. This can be represented

in a form that can be mechanically analysed is relevant for

many applications [16], as not only the content but also the

context in which they were created, determine its value.

In this paper we propose a model to manage Docker

containers. Our approach represents views of all aspects

of Docker containers and are thus abstractions of executed

phenomena. The model is not only used to design Docker

containers architecture but also used to represent the con-



tainers deployed in the target systems. The designed and

deployed containers need to provide views that are consistent

with each other. Our approach therefore provides a high-

level abstraction for Docker containers that is used for

reasoning and managing large container deployments in the

cloud.

The reminder of this paper is structured as follows. In

Section II we give an overview of some background concepts

we use in our proposal. Next, Section III presents the

motivation of our work. Then, in Section IV we describe

our model. Section V presents the validation of our solution.

In Section VI we discuss some related work. Finally, we

conclude our work in Section VII.

II. BACKGROUND

In this section we give a brief introduction to some of

the concepts and technologies about Docker that we use

throughout this paper, in order to facilitate the understanding

of this work.

A. Docker architecture

Figure 1. High-level overview of Docker architecture.

Basically Docker is a technology used for developing, de-

ploying and executing applications packaged into containers.

Docker defines a client/server architecture. In Figure 1, we

can see the major components of a Docker installation.

• At the center, the Docker host represents the physical

machine or VM in which Docker daemon and contain-

ers are deployed (cf., Figure 1). The Docker daemon

is responsible for creating, running, and monitoring

containers, as well as building and storing images. The

launch of Docker daemon is normally handled by the

host OS.

• The Docker client is on the left-hand side in Figure 1.

It communicates with the Docker daemon via sockets

through a RESTful API. The purpose of Docker client

is to control the host, create images, publish, execute

and manage containers corresponding to the instantia-

tion of these images. Communication via HTTP makes

it easiest the remote connections to Docker daemons.

The combination of Docker client and Docker daemon

is called Docker engine.

• Docker registry is on the right-hand side in Figure 1. It

stores and distributes images. The default registry is the

Docker Hub, which hosts thousands of public images.

Docker containers are created using base images. A

Docker image can include just the OS fundamentals,

or it can consist of a sophisticated pre-built application

stack ready for launching. To create an image, the most

convenient option is to write a script file composed

of various commands (instructions) named Dockerfile

and then execute it. Many organizations run their own

registry that can be used to store private images. The

Docker daemon will download images from registry in

response to requests.

B. Underline technologies

In this section, we provide some underline technologies

tied to Docker.

Docker [10], [11] uses the existing Linux container tech-

nology and extended it through portable images. The Docker

daemon uses an execution driver to create containers. The

Docker containers are running by using a tool called RunC.

RunC is very closely tied to the following kernel features:

• cgroups, which are responsible for managing resources

used by a container (e.g., CPU and memory usage).

• namespaces are responsible for isolating containers;

making sure that a container’s filesystem, hostname,

users, networking, and processes are separated from the

rest of the system.

C. Surrounding technologies

In this section we provide some surrounding technologies

supplied by Docker:

• Compose is a tool for building and running applications

composed of multiple Docker containers.

• Swarm is a clustering solution. Swarm can group

together several Docker hosts, allowing the user to

manage them as a unified cluster.

• Machine provides and configures Docker hosts on local

or remote resources.

III. DRAWBACKS OF DOCKER TECHNOLOGY

Despite the benefits [7], [10] Docker brings to teams,

its adoption across enterprises has not been without issues.

The problems with container adoption have little to do with

the technology itself. Rather, they relate to organizational

aspects that have not caught up to the technology [3].

The adoption of Docker in production is a real concern

and was identify in [3], [5]. This section describes four

key challenges that Docker containers should be faced:

Lack of verification, Resources management at runtime,

Synchronization between design and execution environment,

and Inconsistency use of containers across organization.

• Lack of verification: Docker provides tools such as

Docker Compose or Docker Swarm (cf. Section II) used



to design a set of containers connected together. How-

ever, once designed, the deployment of the containers

can face several problems such as misconfiguration of

links between containers, lack of resources on the hosts

in which the containers are deployed, human errors, etc.

Given the executable mechanism the Docker containers

are related, the only way to be sure that the containers

deployed will run or fail is to deploy them on the target

executing environment. Moreover, there is no way to

verify that deployed containers are conform with those

designed. The lack of verification tool can become

quickly painful and expensive when the deployment

task is repeated several times.

• Resources management at runtime: when creating

containers, Docker gives the possibility to set the re-

sources (cpu, memory, disk, network) limits. In other

words, Docker provides the possibility to set containers

resources at design time. In the cloud environment, the

container resources consumption fluctuates according

to their embedded application workload. In order to

provision the appropriate resources, if the workload

grows or shrinks, the containers resources should be

increased or decreased as required at runtime. Docker

does not provide a mechanism to reconfigure the con-

tainers resources at runtime.

• Synchronization between design and execution en-

vironment: in Docker context, the execution environ-

ment consists of the Docker engine and the containers

deployed. Conceptually, the deployed containers repre-

sent a predefined architecture. Thus, a major challenge

is how to synchronize the predefined architecture of

containers with the containers deployed in the execution

environment. When modifications occur in an existing

architecture, the update should be done in the executing

environment. Conversely, when changes occur in the

executing environment they should affect the existing

architecture. A modification can be the addition of a

new container, the retrieval of an existing container,

the addition of a link between a new container with an

existing one, etc.

• Inconsistency use of containers across organization:

container adoption has not been a carefully planned and

executed by companywide understanding and belief in

its virtues [3]. Instead, individuals or small teams of

developers have started using containers because they

are fast and convenient, enabling them to respond to the

increased pressure for quick turnaround coming from

their business units and thus making their jobs easier.

Each user relies on its familiar tools (e.g., Chef, Puppet,

and Ansible) which are used for building and deploying

containers. In this context, the problem of maintainabil-

ity remains unsolved due to the heterogeneity of tools

used by users.

This paper brings forward a solution to address these

challenges, using a model-driven approach. This approach

will allow Docker technology to have a complementary

tool to take better advantage of containers in production

environments.

IV. APPROACH

In this section we present our solution. We begin by giving

an overview of the solution architecture and then we present

how we model Docker containers. We also describe how the

generation of the appropriate artifacts are done.

Figure 2. Architecture overview.

A. Architecture overview

To understand the concepts that rely under our architec-

ture, we begin by giving an illustration of it in Figure 2.

This architecture is composed of three parts: Docker Model,

Connector, and Executing Environment. Conceptually, the

architecture depicted in Figure 2 presents a Docker Model

which provides an expressive model for containers. This

model provides an appropriate abstraction of Docker con-

tainers (cf. Section IV-B for more details). The Connector

defines the relationship between the Docker Model and

Executing Environment. This Connector provides tools that

are used not only to generate necessary Docker artifacts cor-

responding to the model actions (create, start, stop, restart,

pause, unpause, kill), but also to operate efficiently to make

online update for the Docker Model elements according

to the changes in Executing Environment. Every artifact

is handled in a seamless way thanks to the homogeneity

provided by modeling principles. Finally, the generated

artifacts are executing in the Executed Environment.

Our approach employs Model-Driven Engineering (MDE)

techniques [1], in order to handle and analyze Docker

containers at a higher level of abstraction compared to low

level that the actual Docker solution provides. Using MDE

techniques, our Docker Model describes explicitly certain

concerns or certain views on an Executing Environment

required to face the challenges discussed in Section III.



Figure 3. Docker Model.

B. Modeling Docker containers

This section describes how the modeling of Docker con-

tainers is achieved. Before we set out to design the Docker

Model, we investigate to identify the requirements. We begin

by examining the Docker containers with consideration of

the main concepts, its structure and the relationship between

each other. In this context, our model captures all necessary

information related to the characteristics and management of

Docker containers. This model is designed to be compliant

with Docker containers. As depicted by Figure 3, our model

is conceptually divided into three levels.

The top level represents the OCCIware2 metamodel

which is a precise metamodel of Open Cloud Computing

Interface (OCCI)3 [8], an OGF’s specification defining an

open interface for managing any kind of cloud computing re-

sources (IaaS, PaaS and SaaS). The OCCIware metamodel

is encoded with Eclipse Modelling Framework (EMF) [13].

The middle level named Infrastructure is based on our

OCCIware metamodel. The Infrastructure model abstracts

the cloud infrastructure resources (i.e, Compute, Network

and Storage).

The bottom level represents our Docker Model, which

2http://occiware.org
3http://occi-wg.org/

extends the Infrastructure Model. In Figure 3, our Docker

Model is simplified as it does not show, among others,

attributes, and enumerations. Based on the Infrastructure

Model, our Docker Model provides a comprehensive view on

Docker containers. Building a Docker Model means thinking

about structure of containers, their relationships with each

other, and the hosts in which they are deployed. In our

model, we explicitly provide a rich abstraction for describ-

ing, composing, and manipulating structured information

related to the containers and the hosts in which they are

deployed.

In the following, we present briefly the main concepts of

our Docker Model:

• Container represents a Docker container. Container has

a set of properties (name, image, command, etc.) related

to a Docker container.

• Link is a relation between two container instances.

Link references both source, and target containers, e.g,

when containers are linked, information about source

container can be sent to target container.

• Machine represents any physical or cloud VM that hosts

containers. Here, MDE allows to factorize common

pattern and reuse them. For instance, the class diagram

of Machine is extended to describe the specificities of

targets VM, e.g, Machine OpenStack is an extension of



Machine used to define the specificities (location, key,

type of machine, etc.) of VM belongs to OpenStack.

• Volumesfrom represents a block storage that is attached

to one or more container instances to persist data.

• Contains is used to define the relationships between

Machine and Container, e.i, a machine contains zero

to more container instances.

Our Docker Model is stored into a file in order to

facilitate its reusability anytime and everywhere. The Docker

Model provides the support for reasoning on architectural

constraints of containers. In fact, to analyze architectural

constraints, the Object Constraint Language (OCL) and

checkers like EMF OCL4 are used to define and check

constraints that are attached to the model elements. For

instance, among the constraints defined for the Docker

Model, one constraint states that bidirectional or closed loop

link is not permitted, etc. This is translated in OCL rule as:

context Container

inv NoCycleBetweenContainerLinks:

links->select(oclIsTypeOf(Link)).target->closure

(links->select(oclIsTypeOf(Link)).target)->excludes(self)

Listing 1. OCL close loop rule.

Unlike Docker solution, our model uses a constraint

validator at design time to validate the constraints defined

before the deployment. This validation guarantees the co-

herence of the containers and their relationships with each

other. By allowing the use of constraint validator, our Docker

Model provides a solution to the Lack of verification

challenge identified in Section III. On the other hand, the

use of an explicit model to represent containers allows us

to address the Inconsistency use of containers across

organization challenge identified in Section III.

C. Design tool for Docker

Our Docker Model comes with a tool to help designing,

editing, and building custom views. We have implemented5

this tool as Eclipse plug-ins, that can be downloaded from

here6. We provide a friendly user graphical interface to

assist users in modeling and deploying any containerized

applications with Docker. This tool is called Docker De-

signer. Docker Designer abstracts all Docker concepts for

designing, editing, validating, transforming, and deploying

containers. Once an application embedded in a container is

designed and validated, a user can register a cloud provider

to automate the provisioning of VMs on ten different cloud

providers: VMWare vSphere, OpenStack, Amazon Web Ser-

vices, Rackspace, Microsoft Azure, DigitalOcean, HP Public

Cloud, IBM SoftLayer, Google Compute Engine or local

hypervisors such as Virtual Box and VMWare Fusion. This

tool also allows us to import a running containers into

our Docker Model, where model elements are represented

4https://wiki.eclipse.org/OCL
5http://tinyurl.com/dockermodeler, accessed at February 22th 2016
6http://www.obeo.fr/download/occiware

graphically. A screenshot of the current Docker Designer is

depicted in Figure 4. Frame (a) in Figure 4 shows the Eclipse

Model Explorer used to navigate through a Docker project

containing a Docker Model. Frame (b) in Figure 4 gives

a perspective or a global view of the modeled containers.

Obviously, this view can be adjusted to provide the most

optimal perspective. Frame (c) displays the design area that

provides a graphical representation of Docker Model. As

shown in Frame (c), the model elements are green or red.

The green color of machine or container elements shows

the started state of containers and host machines. The

red color shows the stopped state of containers and the

host machines. Frame (d) in Figure 4 contains the Eclipse

properties editor for visualizing and modifying attributes of

a selected modeling element. All Docker Model elements

displayed in Frame (c) can be setted through their properties.

Frame (e) in Figure 4 displays the configuration pallet that

represents the Docker Model elements such as: container,

link, volumefrom, and machine.

Overall, our Docker Modeler assists users to design and

deploy large containerized applications. This tool can be

easily integrated into existing Docker environment. This

integration can be done easily by importing the deployed

containers as a well designed model on which users can

reason and interact.

D. Synchronization tool for Docker

As described in the previous section, our Docker Designer

tool is provided in order to assist users for modeling con-

tainers. Once modeled and validated, the containers will be

deployed in an executing system. Docker Connector is a

tool used to deploy and synchronize Docker Models with

the Executing Environment.

Our synchronization mechanism is bidirectional . More

precisely, the synchronization is done from Docker Model

to Executing Environment and conversely. In the first di-

rection (from Docker Model to Executing Environment),

the Docker Connector updates the model changes into the

running system by generating corresponding Docker artifacts

(Docker Client commands, Docker Compose file, Docker

Swarm configurations). These generated artifacts are used

for online deployment. In the second direction, when the

synchronization is performed from Executing Environment

to Docker Model, the Docker Connector updates the model

elements according to the Executing Environment changes.

This connector performs this update by means of a partial

reflection of the containers architecture using model intro-

spection.

Our Docker Connector is implemented using Docker-

Java API7 to interact with Docker daemon though HTTP.

This connector allows users to introspect an Executing En-

vironment in order to build corresponding Docker Model, or

7https://github.com/docker-java/docker-java



Figure 4. Docker Designer.

update an existing model and send changes back to the Ex-

ecuted Environment. To achieve appropriately the synchro-

nization between the Docker Model and the Executing En-

vironment, the Docker Connector checks first if the Docker

Model elements are still consistent with the corresponding

Executing Environment by navigating efficiently inside the

model. If this is not the case, the Docker Connector re-

establishes consistency by synchronizing containers states

(started, stopped, etc.), container attribute values, adjusting

links between container, deleting existing containers by

new ones. Thus, our Docker Connector synchronizes the

Docker Model and the Executing Environment incrementally.

This addresses the Synchronization between design and

execution environment challenge presented in Section III.

E. Connecting Docker Model online

To detect online modifications efficiently, we need to pro-

vide a mechanism that monitors both the Docker Model and

the Executed Environment. To detect model modifications,

the connector relies on a notification mechanism that reports

events when a model element has been changed. To this, we

use the EMF observer/listener design pattern. Concerning

the changes which occur in the Executed Environment, the

Docker Connector interacts directly with the Docker daemon

which provides a callback hook mechanism that gets called

whenever changes occur. In the online context, the Docker

Connector only reacts to change notifications.

As discussed in Section III, Docker does not provide the

possibility to modify the container resources (cpu, memory,

disk, network) at runtime. To achieve this, our Docker Con-

nector manages the Docker resources by manipulating their

corresponding Cgroups. In fact, as described in Section II,

Cgroups is a powerful tool for managing resources used by

a container. Thus, this addresses the Resource management

at runtime challenge presented in Section III.

V. VALIDATION

In this section we evaluate our approach with respect to

both performance and online model manipulation achieve-

ment.

A. Performance evaluation

To evaluate our Docker Model in cloud environments,

we run a distributed containerized application composed of

8 containers. This distributed application is a computation

system for processing large volume data. To focus on the

real performance of our Docker Model, all our experiment

were performed using Scalair8 private cloud provider with

twenty virtual machines (VMs), that uses VMware to build

their cloud infrastructure. The configuration of each VM

is: 1 VCPU, 20 G0 of Disk, 1Go of RAM, Ubuntu 12.04

Linux 3.13.0-66-generic. Our Docker Designer is running

using a Macbook Pro workstation with 2,2 GHz Intel Core

i7 processor, 16 Go 1600 MHz DDR3, OSX version 10.11.2

(15C50), and Oracle Java 1.7.

To evaluate our solution, we answer the following ques-

tions: (i) Does Docker Model introduce overhead? (ii) How

much time is taken to manipulate Docker Models online?

(iii) Does our Docker Model scale?

8http://www.scalair.fr



1) Overhead introduced by the Docker Model: To de-

termine the overhead introduced by our Docker Model,

we evaluate two of the scenarios where our distributed

containerized application were created, started, and stopped:

i) natively with Docker, and ii) with Docker integrating our

model. The scenario was executed hundred times on each

of the both implementations.

In Tables I, II and III, we present the results of the

average time for creating, starting, and stopping of height

containers for each implementation, as well as the mean

overhead introduced by the Docker Model.

The overhead introduced by our model when creating

containers is 1.11%, this creation phase consists of pulling

image once and the creation of the containers. Next, when

starting the containers, the overhead introduced by our model

is 2.12%. Then, the overhead introduces by our model

when stopping containers is 2.25%. The small overhead

fluctuation of the start and stop actions compared to the

creation action is due to the model elements manipulation.

Table I
CONTAINER CREATING TIME AND OVERHEAD.

Start action Avg. start time Docker Model overhead

Docker 168.509 sec -

Docker with Model 170.382 sec 1.11%

Table II
CONTAINER STARTING TIME AND OVERHEAD

Start action Avg. create. time Docker Model overhead

Docker 5.033 sec -

Docker with Model 5.04 sec 2.12%

Table III
CONTAINER STOPPING TIME AND OVERHEAD

Stop action Avg. stop time Docker Model overhead

Docker 84.12 sec -

Docker with Model 86.01 sec 2.25%

This experiment shows that there is an overhead intro-

duced by adding the Docker Model. The overhead is neg-

ligible regarding all advantages provided by our approach:

verification of containers, increasing resource at runtime (cf.

Section III).

B. Online model manipulation

When manipulating our model, we have evaluated the

time taken by our Docker Model to detect and integrate

the changes inside the model. In this context, we have

modified the model and evaluate the time taken by the

Docker connector to propagate changes in the Executing

Environment. Conversely, we operate modifications in Ex-

ecuted Environment and evaluate the time taken by Docker

Connector to operate the changes in the model.

When creating a new container from Executed Environ-

ment, our Docker Connector takes about 12 milliseconds

to detect the changes and spends about 290 milliseconds

to graphically represent a container into the model. Next,

when creating a new container in the model, it took about 10

milliseconds for the Docker Connector to detect the changes.

This experiments shows that our Docker Connector reacts

quickly to changes.

C. Scalability of model-handling at runtime

Model manipulation at runtime, as opposed to design

time, is subject to the same efficiency requirements as the

rest of the system because the execution of model operations

impacts overall system performance. To validate whether

our proposed approach scales to large systems, we quan-

tified this overhead for randomly updated and created large

model elements. These models started with fifty elements

(containers) and were populated with 50 new elements in

each iteration. After model population, we evaluated the

time taken to generate model elements. Even with 50,000

elements in the model, the average time taken to generate

each iteration of 50 elements was 14.30 seconds, which is

acceptable compared to the minimum time which is 12.02

seconds and the maximum time which is 16 seconds. As

shown in Figure 5, the generation time of 50 elements

(containers) is deterministic using our Docker Model.

Figure 5. Time taken to update and create model elements.

VI. RELATED WORK

In this section we will present some of the related work

from different fields of research that are relevant to our

approach.

Authors in [6] proposed a control architecture that dy-

namically and elastically adjust VMs and containers provi-

sioning. However, their work did not provide any solution

to verify the deployability of Docker. In this work, we

tackle the issue of deployability verification by using an

approach based on Model Driven Engineering. In contrast

to the existing solutions, our solution checks constraints



expressed in OCL which allows users to verify and guarantee

containers deployability at design time.

In the cloud computing context many works [12], [15],

[2], [14] have addressed resource management at runtime

with hypervisor-based solutions. A major difference between

their solution and ours is the baseline containerization tech-

nology adopted.

Model-driven approaches [16], [9] considering runtime

models, in contrast to ours, do not work incrementally to

maintain those models or they provide only one view on a

managed system.

The runtime model in [4] is updated incrementally. How-

ever, it provides a view focused on the configuration and

deployment of a system, but no other information, e.g.,

regarding management. All these approaches do not consider

the transformation of models specified by different meta-

models [16], [9].

VII. CONCLUSION

This paper presented our approach for the model-driven

management of Docker containers. It enables the verification

of containers architecture at design time. The synchroniza-

tion between Executed Environment and our model can

be done incrementally. Our approach leverages the use of

MDE for managing Docker containers combined with model

synchronization techniques at runtime.

We designed a graphical model-driven tool chain called

Docker Designer to design, reason, and deploy containers.

We also provide model-based generators that target Docker

commands, Compose, Swarm using Docker Connector.

Most existing solutions do not allow to verify the deploya-

bility of containers at design time. Instead of performing the

verifications of deployability of the containers at execution

time, we propose the use of constraint verifications using

our Docker Model at design time which avoid to lose time

and save development cost.

As future work, we will investigate the adaptation of

managed containers architecture, as a set of atomic changes

might have to be performed. Moreover, extending our ap-

proach to other container solutions will be considered.

ACKNOWLEDGMENT

This work is supported by OCCIware (www.occiware.org)

research and development project funded by French Pro-

gramme d’Investissements d’Avenir (PIA).

REFERENCES

[1] J. Bézivin. On the Unification Power of Models. Software
and System Modeling (SoSym), 4(2):171–188, 2005.

[2] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, Á. Polo, and
J. J. Hierro. Service scalability over the cloud. In Handbook
of Cloud Computing, pages 357–377. Springer, 2010.

[3] J. F. Consulting. Maximize Container Benefits With
A Top-Down Approach. Website http://tinyurl.com/
redhadContainers, April 2015.

[4] J. Dubus and P. Merle. Applying OMG D&C Specification
and ECA Rules for Autonomous Distributed Component-
based Systems. In Workshop Models @ Runtime, in con-
junction with MoDELS / UML 2006, pages 242–251, Gênes,
Italy, Oct. 2006.

[5] A. Gerber. The State of Containers and the Docker Ecosys-
tem. Website http://offers.ruxit.com/rs/987-BEQ-874/images/
State of Containers Ruxit compressed V2.pdf, 2015.

[6] P. Hoenisch, I. Weber, S. Schulte, L. Zhu, and A. Fekete.
Four-Fold Auto-Scaling on a Contemporary Deployment Plat-
form Using Docker Containers. In Service-Oriented Comput-
ing, pages 316–323. Springer, 2015.

[7] M. Janakiram and M. Caroline. Is Docker a threat to the
Cloud ecosystem? Website https://research.gigaom.com/2014/
08/is-docker-a-threat-to-the-cloud-ecosystem, 2014.

[8] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S. Tata. A
Precise Metamodel for Open Cloud Computing Interface. In
2015 IEEE 8th International Conference on Cloud Computing
(CLOUD), pages 852–859, 2015.

[9] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Sol-
berg. Models@run.time to support dynamic adaptation.
Computer, 42(10):44–51, Oct. 2009.

[10] A. Mouat. Using Docker Developing and Deploying Software

with Containers. O’Reilly Media Pub., 2015.

[11] H. Philipp, W. Ingo, S. Stefan, Z. Liming, and F. Alan. Four-
Fold Auto-Scaling on a Contemporary Deployment Platform
Using Docker Containers. In Service-Oriented Computing

- 13th International Conference, ICSOC 2015, Goa, India,
November 16-19, 2015, Proceedings, pages 316–323, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[12] B. P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven. Ar-
chitectural requirements for cloud computing systems: an
enterprise cloud approach. Journal of Grid Computing,
9(1):3–26, 2011.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[14] H. N. Van, F. D. Tran, and J. M. Menaud. Performance and
power management for cloud infrastructures. In 2010 IEEE
3rd International Conference on Cloud Computing (CLOUD),
pages 329–336. IEEE, July 2010.

[15] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynam-
ically scaling applications in the cloud. ACM SIGCOMM
Computer Communication Review, 41(1):45–52, 2011.

[16] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental Model Synchronization for Efficient
Run-time Monitoring. In Proceedings of the 2009 Interna-
tional Conference on Models in Software Engineering, MOD-
ELS’09, pages 124–139, Berlin, Heidelberg, 2010. Springer-
Verlag.


