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Abstract. This paper explores resource allocation in serverless cloud comput-

ing platforms and proposes an optimization approach for autoscaling systems.

Serverless computing relieves users from resource management tasks, enabling
focus on application functions. However, dynamic resource allocation and func-

tion replication based on changing loads remain crucial. Typically, autoscalers
in these platforms utilize threshold-based mechanisms to adjust function repli-

cas independently.

We model applications as interconnected graphs of functions, where re-
quests probabilistically traverse the graph, triggering associated function ex-

ecution. Our objective is to develop a control policy that optimally allocates

resources on servers, minimizing failed requests and response time in reaction
to load changes. Using a fluid approximation model and Separated Contin-

uous Linear Programming (SCLP), we derive an optimal control policy that

determines the number of resources per replica and the required number of
replicas over time.

We evaluate our approach using a simulation framework built with Python

and simpy. Comparing against threshold-based autoscaling, our approach
demonstrates significant improvements in average response times and failed

requests, ranging from 15% to over 300% in most cases. We also explore the
impact of system and workload parameters on performance, providing insights

into the behavior of our optimization approach under different conditions.

Overall, our study contributes to advancing resource allocation strategies, en-
hancing efficiency and reliability in serverless cloud computing platforms.

1. Introduction

The serverless paradigm has gained popularity due to its benefits such as elimi-
nation of infrastructure management, cost efficiency, automatic scaling, faster time
to market, compatibility with micro services architecture, and suitability for event-
driven and real-time processing. Serverless computing allows users to develop and
deploy code without the need to manage the underlying infrastructure, and it em-
ploys a pay-as-you-go model where users are charged based on actual resource
consumption. A key feature of this computing model is autoscaling, a dynamic
process that adjusts the allocation of computational resources in response to the
demand on a function. This autoscaling mechanism monitors function invocations,
automatically increasing function instances to meet high demand and decreasing
them when demand subsides, optimizing resource use and cost.

Various approaches have recently been proposed to address some of the existing
challenges in serveless platforms, such as function request scheduling and resource
allocation, using carefully designed heuristics [1, 2, 3, 4, 5]. Some approaches ([3, 4])
allow the definition of function chains while others ([1, 2]) use queueing theory to
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define optimal regimes for single functions. Unfortunately, none of the aforemen-
tioned solutions consider the application of queueing theory to the function chains.

In this paper, we propose a novel proactive scheduling policy based on the Multi-
class Queueing Network model (MCQN). The MCQN model offers several impor-
tant benefits:

• It enables the definition of different types of resources (e.g., CPU, GPU,
RAM) with finite resource capacities.

• It allows for the definition of various types of functions based on load pat-
terns, service durations, resource demands, and other relevant factors.

• It supports the specification of function chains, wherein each request, upon
being serviced, can spawn additional requests that need to be served by
other serverless functions.

• It takes into account the actual state of the network, without assuming that
the network state is steady.

• Existing algorithms allow for the determination of asymptotically optimal
control policies for very large networks within a reasonable time frame.

To find the optimal control policy for the MCQN model, we employ a fluid ap-
proximation approach that enables the determination of an asymptotically optimal
control policy by solving a mathematical optimization problem known as the Sep-
arated Continuous Linear Programming problem (SCLP). One key feature of the
SCLP is the existence of the Revised SCLP-Simplex algorithm, which allows for
the solution of very large problems [6]. This capability enables the recomputation
of the optimal policy at a desired frequency, thus adapting the policy to changes in
function demand. Additionally, we have devised a method to translate the SCLP
solution into an optimal policy that dynamically adjusts the number of resources
per replica and the number of replicas over time, which we refer to as the fluid
policy.

To evaluate the effectiveness of our proposed approach, we have developed a sim-
ulation model and conducted a numerical study comparing it against a threshold-
based autoscaler. In this study, we analyze the impact of various network parame-
ters, such as network size, desired request timeout, and function heterogeneity, on
performance measures including average response times and the number of failed
requests under both autoscaling and fluid policies.

2. The Model

In this section, we introduce a comprehensive modeling framework for dynamic
resource allocation in the serverless ecosystem. We first describe the model for a
simple network that adopts paradigm considered by Harrison and Wein [7] and then
describe the general problem formulation.

2.1. Simple network. The diagram shown in Figure 1 illustrates a simplified
model addressing the serverless resource allocation problem. This model involves a
network consisting of two servers, labeled as i = 1, 2, and three services or functions
denoted as k = 1, 2, 3. The model considers distinct allocations of functions to the
servers. Notably, functions 1 and 2 can exclusively be allocated to server 1, while
function 3 can solely be assigned to server 2. This model is commonly referred to
as a criss-cross network.

In order to apply this model to the serverless ecosystem, we consider that each
function is associated with multiple replicas, denoted as Rl

k, where l varies from
0 to rk. The value of rk may change dynamically over time. It is assumed that
each replica requires a specific quantity of CPU resources denoted as dk, while each
server possesses a CPU capacity of bi units. Requests for functions 1 and 2 originate
from external sources, while requests for function 3 are generated by function 2.
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Figure 1. Simple network example.

The arrival of requests adheres to a homogeneous Poisson process, denoted as
Ak(λk), with the exception of function 3 where λ3 = 0, signifying the absence of
exogenous requests for this function. The load balancer is responsible for uniformly
distributing incoming requests among the allocated replicas. Each replica is capable
of accommodating a maximum of yk concurrent requests. When the load balancer
assigns a request to a replica that has reached its maximum capacity, the request
fails to be processed.

Service times are exponentially distributed, with a rate denoted as uj(t), which is
proportional to the number of allocated CPU units, nj . The objective of this model
is to identify a policy that determines the optimal allocation of CPU resources per
replica and the optimal number of replicas over a predetermined time horizon T .
This policy aims to minimize the number of failed requests and waiting times within
the system.

The research presented in this paper adopts a fluid approximation model, which
offers a distinct perspective by representing the system as a fluid rather than fo-
cusing on individual requests. This fluid model considers the aggregation of CPUs
assigned to specific types of replicas, with ηk(t) denoting the total number of CPUs
allocated to function k.

To estimate the total number of concurrent requests for function k at a given
time t, the fluid approximation model introduces the concept of fluid in the buffer,
represented as xk(t). The dynamics of the system can be described by the following
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equations:

(1)

x1(t) = α1 + λ1t−
∫ t

0

µ1(s)η1(s)ds

x2(t) = α2 + λ2t−
∫ t

0

µ2(s)η2(s)ds

x3(t) =

∫ t

0

µ2(s)η2(s)− µ3(s)η3(s)ds

Here, α1 and α2 represent the initial amount of fluid in the corresponding buffers,
while µj denotes the processing rates per unit of fluid per single CPU. The model
also imposes constraints on the number of allocated CPUs:

(2) η1(t) + η2(t) ≤ b1 and η3(t) ≤ b2

These constraints ensure that the number of allocated CPUs does not exceed the
capacity of the respective servers, which are denoted as b1 and b2, respectively.

It is worth noting that the fluid approximation model does not inherently account
for failed requests, which means that it may assign zero CPUs to certain functions
during specific time intervals, even if the corresponding buffer is not empty. To
address this issue and prevent such behavior, we introduce lower bounds on the
number of allocated CPUs by enforcing ηk(t) ≥ 1. By doing so, we ensure that
for each function is allocated at least one CPU, thereby mitigating the possibility
of completely disregarding a function’s resource requirements during certain time
intervals.

The primary objective of the fluid approximation model is to minimize the over-
all amount of fluid present within the system over a planned time horizon. This
objective leads to the formulation of an optimization problem:

(3)

min

∫ T

0

K∑
k=1

xk(t)dt

s.t.Constraints (1, 2)

x(t) ≥ 0, η(t) ≥ 1

The solution to this problem involves a piecewise constant control η(t), allowing
the allocation of CPUs obtained as part of the solution to be divided into the
amount of CPU per replica and the number of replicas per time period.

2.2. General model. The general model enables the allocation ofK different func-
tions to I servers, allowing for each function to be assigned to one or more servers.
The allocations are defined by j = (k, i), representing the possible combinations,
resulting in a total of J allocations. A unique allocation is achieved when j = k.
There are M distinct resources, such as CPU, RAM, GPU, and others with each
server having a capacity of bmi resources. Requests for function k can originate from
external sources or other functions.

Exogenous requests for service k follow a Poisson process Ak(λk) with an average
arrival rate of λk requests per unit time. Requests of type k′ processed by server
i′ either generate requests of another type k with probability pj=(k′,i′),k or exit the
system with a probability of 1−

∑
k pj,k.

Each allocated function possesses a number of replicas denoted as Rl
j , where

l ranges from 0 to rj(t). The value of rj(t) may change dynamically over time.
It is assumed that each replica requires a specific amount of resources of type m,
denoted as dmj . The load balancer ensures that incoming requests are uniformly
distributed among the allocated replicas, even if they are on different servers.
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Service times are exponentially distributed with a rate denoted as uj(t). This
rate depends on the allocated resources, such that uj(t) = minm gmj (rj(t)n

m
j ), where

gmj (·) represents the dependency of the processing rate on the allocated resources
of type m. It is assumed that gmj (·) are concave functions.

The objective of this model is to identify a policy that optimally allocates re-
sources per replica and determines the optimal number of replicas within a fixed
time interval [0, T ].

Similar to the example described in Section 2.1, we adopt a fluid approximation
model where K types of fluids are served by I servers. There are J flows, where
f(j) = k if flow j empties buffer k, and s(j) = i if flow j is served by server i. Flows
that empty the same buffer can only be served by different servers, so if f(j′) =
f(j′′), then s(j′) ̸= s(j′′). Flow j′ transfers processed fluid from buffer f(j′) to other
buffers according to proportions pj′,k or leaves the system in proportion 1−

∑
k pj′,k.

The service rate of flow j′ depends on the number of allocated resources, such that
uj′(t) = minm gmj′ (η

m
j′ (t), where η

m
j′ (t) represents the amount of resource m assigned

by server s(j′) to flow j′. The concave functions gmj (·) can be approximated by

piecewise linear functions gmj (ηmj ) =
∑Lm

j

ℓ=1 µ
m
j,ℓη

m
j,ℓ.

The dynamics of the system can be described by the following equations:

(4)

xk(t) = αk + λkt−
∑

j:f(j)=k

∫ t

0

uj(s)ds

+
∑

j:f(j)̸=k

∫ t

0

pj,kuj(s)ds k = 1, . . . ,K, t ∈ [0, T ]

The service rates are subject to the following constraints:

(5) uj(t) ≤
Lm

j∑
ℓ+1

µm
j,ℓη

m
j,ℓ(t), ∀j,m, t ∈ [0, T ]

where the number of resources of type m assigned to serve flow j at time t is∑Lm
j

ℓ+1 η
m
j,ℓ(t).

The number of resources is limited by the total amount of resources available at
each server, resulting in resource utilization constraints:

(6)
∑

j:s(j)=i

Lm
j∑

ℓ+1

ηmj,ℓ(t) ≤ bmi , ∀i,m, t ∈ [0, T ]

Within the fluid approach, it is also possible to model the quality of service
by ensuring that all fluid arriving in buffer k is processed within a specified time

τk. This leads to the constraint xk(t) ≤
∑

j:f(j)=k

∫ t

0
uj(s)ds. When there are no

endogenous inflows to buffer k, this constraint can be reformulated as:

(7) xk(t) ≤ λkτk ∀t ∈ [0, T ]

which is equivalent to an upper bound on the buffer size. If there are endogenous
inflows to buffer k, the system can be remodeled by considering a separate buffer
for each inflow.

Additionally, different priorities or weights for different serverless functions can
be modeled by introducing a cost ck for each function. The primary objective of the
fluid approximation model is to minimize the overall amount of fluid present within
the system over a planned time horizon. This objective leads to the formulation of



6HAROLD SHIP1, EVGENY SHINDIN1, CHEN WANG2, DIANA ARROYO3, AND ASSER TANTAWI2

an optimization problem:

(8)

min

∫ T

0

K∑
k=1

ckxk(t)dt

s.t.Constraints (4, 5, 6, 7)

x(t), η(t) ≥ 0

Problem (8) can be classified as a special case of the SCLP problem. This
problem exhibits optimal controls η(t), that are piecewise constant, with a bounded
number of intervals ranging from n = 1 to N (see [8]). To determine the optimal
control in terms of the number of replicas and the resources assigned per replica,
the following optimization problem can be considered:

(9)

min
dm
j ,rj,n

N∑
n=1

M∑
m=1

J∑
j=1

τnwmdmj rj,n

s.t.dmj rj,n ≥ ηmj,n∑
s(j)=i

dmj rj,n ≤ bmi

dmj ≥ dmj , rj,n ∈ N
In this optimization problem, N represents the number of intervals in the SCLP

solution, τn denotes the lengths of interval n, ηmj,n = ηmj (t) for t ∈ [tn−1, tn) repre-
sents the amount of resource m assigned to flow j according to the optimal solution
of SCLP. The parameter wm indicates the importance of resource m, while bmi
represents the amount of resources of type m available on server i. The value dmj
denotes the minimum reasonable amount of resources of type m per replica of type
j. The decision variables in this problem are dmj , which represents the amount of
resources of type m to be assigned to a replica of type j, and rj,n, which denotes
the number of replicas of type j during the time interval [tn−1, tn).

It is important to note that problem (9) can be viewed as a constraint satisfaction
problem. As a result, there are several potential approaches that can be utilized
to discover a feasible solution for this problem. For example, one can find optimal
solution for the longest time interval and then use obtained values of resources
allocated per replica to determine optimal number of replicas for all intervals.

3. Simulations and Performance measures

This section presents the simulation model, and defines various performance
measures, that will be used to compare our approach with the standard autoscaler
across different network configurations.

3.1. Simulation Model. The simulator is written in Python using the simpy pack-
age.

(1) Simulating arrivals
As discussed in section 2, function call requests arrive according to a

Poisson process. To simulate these arrivals, we utilize a single Poisson pro-

cess denoted as A(
∑K

k=1 λk). In this simulation, the arrival time for the
next request is randomly generated from an exponential distribution with

a parameter of
∑K

k=1 λk. Once the arrival time is determined, the type
of request is selected by drawing from a multinomial distribution with pa-
rameters λk∑K

k=1 λk
for k = 1, . . . ,K. This simulation approach is equivalent

to simulating K independent Poisson processes denoted as A(λk). The
arrivals are sent to the load balancer for the type.
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(2) Resources
for simulation purpose we consider only CPU utilization. Other resources

discussed in section 2.2 are not considered. We assume that each replica
requires exactly 1 CPU. In cases where the control policy assigns a different
number of CPUs, the number is rounded up to the nearest integer, and the
corresponding integer value is used as the number of replicas.

(3) Load balancing
The load balancer assigns incoming requests to replicas using a round-

robin policy.
(4) Concurrency

Concurrency is implemented by fixed-size queue, where the size is equal
to the maximum number of concurrent requests per replica. This means
that any requests that arrive when CPU is busy are added to the queue,
as long as the queue is not at maximum capacity. This has the effect of
“slowing down” the system as the number of concurrent requests increases.

(5) Processing
Requests are served based on the First-Come-First-Served (FCFS) pol-

icy. Service times are drawn from the exponential distribution with rate
µj .

(6) Control policies
We consider two types of control policies. The first type is based on

an auto-scaling approach that enables scaling the number of replicas of a
service, both up and down, based on the failure of the load balancer to find
a free replica or the detection of a replica with no requests, respectively.
This policy requires specifying an initial, minimum, and maximum number
of replicas.

The second type of policy is based on the fluid approximation model
discussed in section 2. For this policy, we have a two-dimensional matrix
representing the number of replicas for each function at different time in-
tervals, along with a vector specifying the lengths of the intervals.

3.2. Performance measures.
Holding cost. The holding cost is the cost of items waiting to be serviced. We
compute it by multiplying the unit service cost by the sojourn time of all requests
that arrive at a buffer. The sojourn time of a request is computed as the arrival
time of the request subtracted from one of the following: i) the completion time, for
requests that have completed successfully, ii) the time the request is removed from
the queue for requests that time out before starting, iii) the end-of-interval time
for requests that are still in the queue when the simulation interval ends. Requests
that fail to find a replica upon arrival do not count towards the holding cost.
Average response time. The average response time is the average time that a re-
quest is in the system. It is computed as the average of the difference between
the completion time and the arrival time for all requests that successfully reach
completion.
Failures and timeouts. We count the failures and timeouts of the simulation. Failure
occurs when a request cannot find an free replica when it arrives. Timeout occurs
when a request has spent more than the pre-defined timeout period in the queue.

4. Experiments and Results

To assess the effectiveness of our approach, we conduct a series of experiments
that compare it to the standard autoscaler in terms of key performance indicators
(KPIs) discussed in Section 3.2, across various network configurations.
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Figure 2. Cumulative input/output diagram for one realization
of a criss-cross network.

4.1. Experimental setup. In the following experiments the solutions of SCLP for
the fluid model were obtained using the Revised SCLP-simplex algorithm described
in [6] and implemented in Python. The computation time to obtain the optimal
solution on a laptop computer ranged from less than 1 second to 25 seconds, de-
pending on the problem size. Additional results on computational time for similar
problems can be found in [6]. Instead of solving problem 9, we assumed that each
replica utilizes exactly 1 CPU, and other resources were not considered. Therefore,
the number of replicas in the fluid model was considered to be equal to ⌈η(t)⌉.

In Section 4.2, we present an initial comparison between the fluid policy and
the autoscaler, focusing on the arrival and departure processes of individual func-
tions within the criss-cross network discussed in Section 2.1. The purpose of this
experiment is to examine the performance of these policies at a granular level.

In Sections 4.3-4.6, we analyze the effect of a single parameter on the performance
of a queuing network. For each experiment, we utilized the unique allocation model
with a base example of a network consisting of 10 servers, each handling 5 function
types. Unless otherwise stated, the requests arrived according to a Poisson process
with a mean of 100, and the service times followed an exponential distribution with
a mean of 1/2.1 time units.

Each server had a maximum capacity of 250 replicas, distributed among the 5
function types. At the initial time (t = 0), the system was initialized with 100 calls
of each function type. By default, each replica of the service could handle up to
100 concurrent requests. For autoscaling, the maximum number of replicas for each
function type was set as 250 divided by the number of function types, resulting in
50 replicas for each function type. The initial number of replicas was set to 10% of
the maximum number.

The reported results represent the average values obtained from 100 simulations
of the queue for each configuration.
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4.2. Comparison on a small network. Table 1 shows the results of a single
simulation of the criss-cross network over a time period of 10 units, in which the
fluid policy performs better than autoscaling in all of holding cost, response time,
and number of failures. Figure 2 illustrates the behavior of the 3 individual function
types. The top row contains the values for the autoscaling policy, and the bottom
row contains the fluid policy. Each column represents the cumulative arrivals and
departures for one function type. In each plot, the x-axis shows time while the
y-axis shows counts. The blue dashed line shows the cumulative count of item
arrivals (function calls) and the orange dashed line the cumulative completions. At
any particular time, the difference between the blue line and the orange line shows
the number of concurrent requests in the system, as illustrated by the green solid
line. At any y-value, the difference in the x-direction represents the sojourn time of
that item (function call) in the system. This is illustrated by the purple solid line.

4.3. Results by network size. In this experiment, we investigate the impact of
network size on the relative performance of the fluid model and autoscaling. We
vary the number of servers from 10 to 100, with 5 function types per server, resulting
in a total of 50 to 500 function types.

The results, as presented in Table 2, reveal interesting findings. The average
response time remains consistent across different network sizes, indicating that it
is not significantly influenced by the number of servers. However, both the holding
cost and the number of failures scale linearly with the number of servers.

In each case, the fluid model outperforms autoscaling in all three performance
measures. The holding cost and average response time exhibit approximately 75%
improvement with the fluid model compared to autoscaling. Moreover, the fluid
model exhibited consistently fewer failures, although the improvement was rela-
tively minor.

4.4. Results by request timeout. In this experiment, we investigated the im-
pact of the timeout value on the relative performance of the fluid model versus

Table 1. Sample results of a single simulation of a criss-cross-network

Autoscaling Fluid
Holding cost 11556 6918
Response time 68 54

Failures 3.26 1.04

Table 2. SCLP vs. Autoscaling by network size

Autoscaling Fluid model
Function
types

Cost Avg time Failed Cost Avg time Failed

50 144250 2.07 21200 79697 1.14 20924
100 285195 2.06 42128 163885 1.17 38570
150 429188 2.06 63340 244882 1.15 59155
200 574108 2.06 84612 327981 1.15 78944
250 717340 2.06 105857 423241 1.19 95929
300 865285 2.06 127762 502834 1.17 118132
350 1009610 2.06 148935 589383 1.17 136974
400 865284 2.06 170143 675270 1.15 154336
450 1296753 2.06 191077 759497 1.18 174226
500 1441829 2.06 212890 838400 1.17 196228
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autoscaling. Using the methodology outlined in Section 2.2, we tackled the SCLP
problem with constraints specified in 7, employing timeout values of 2, 5, and 10
time units.

It is important to note that the resulting SCLP were infeasible for the entire time
interval, but instead provided a solution for the maximum time period indicated in
Table 3. Consequently, the simulations were executed solely for this duration.

The timeout value directly influenced the maximum number of concurrent re-
quests, which we incorporated into the simulator based on constraint 7, for both
the fluid model and autoscaling configurations.

The outcomes of the experiments are presented in Table 3. For the shortest time-
out value of 2 time units, the fluid model exhibited superior performance in terms of
average response time and holding cost, achieving respective improvements of 20%
and 15%. However, it fared worse in the number of failures metric. One possible
explanation for this observation could be the relatively limited feasible region of
the fluid approximation, which allows little room for the stochastic variation of the
queue.

In contrast, for timeout values of 5 and 10 time units, the fluid model demon-
strated significant improvements across all performance measures. It achieved a
notable reduction of 60 − 80% in average response time compared to autoscaling,
accompanied by a substantial decrease in the number of failures.

4.5. Results by initial number replicas. In this experiment, we aimed to exam-
ine the impact of different values of the initial number of replicas in the autoscaler
on the trade-off between holding cost and response time, and compare the results
to the fluid model.

We varied the initial number of replicas per function type in the autoscaler
between 5 and 50. The results are presented in Table 4. The findings indicate that
as the initial number of replicas increases, there is an initial improvement in both
holding cost and average response time. However, this improvement eventually
reaches a plateau and falls short of the performance achieved by the fluid model.
Although the number of failures exhibits a slight improvement, transitioning from
slightly worse than the fluid model to slightly better, the improvement is marginal.

Table 3. SCLP vs. Autoscaling by timeout

Autoscaling Fluid model
Time
out

Solution
time

Cost Avg
time

Failed Cost Avg
time

Failed

2 1.28 10171 0.86 0 8760 0.71 85
5 5.97 109870 2.94 392 79313 1.87 190
10 10 283169 4.91 321 187093 2.75 39

Table 4. SCLP vs. Autoscaling by initial replicas

Initial replicas Cost Avg time Failed
5 144073 2.06 21215
10 128846 1.83 21216
15 121138 1.72 21348
20 119476 1.69 21109
30 119638 1.69 20557
40 120243 1.70 20188
50 120712 1.70 19805

Fluid 79626 1.14 20963
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To further illustrate the behavior under the different policies, Figure 3 depicts
the number of replicas over time for two function types during a single simulation,
comparing the scenarios of 5 and 50 initial replicas for the autoscaler with the fluid
model. The orange lines represent the fluid model, while the blue lines represent
autoscaler. It can be observed that the fluid model has the flexibility to increase
the number of replicas until the server capacity is fully utilized. In contrast, au-
toscaling does not maintain a large number of replicas as the failure rate is not high.
Consequently, the average response time achieved by the fluid model is significantly
better than that of autoscaler.
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Figure 3. Replicas over time.

4.6. Results for heterogeneous functions. In this experiment, we investigate
the impact of function heterogeneity on the relative performance of the fluid model

Table 5. SCLP vs. Autoscaling by heterogeneity of functions

Autoscaling Fluid model
Rate
spread

Cost Avg time Failed Cost Avg time Failed

0 141422 2.08 20659 80415 1.19 17692
2 163377 1.20 44251 131081 0.93 29696
5 221774 0.95 76499 194387 0.79 42924
10 208885 0.62 125334 241527 0.71 56154
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compared to autoscaling. For each function, we randomly sample the arrival and
processing rates independently and uniformly from the range [100, 100+2.1x], where
x represents a range spread value that indicated in the corresponding column of
Table 5.

The results indicate that the fluid model demonstrates significantly greater ro-
bustness against failures compared to autoscaling. The number of failures increases
at a slower rate for the fluid model, while autoscaling experiences a much faster
growth in failures. Autoscaling failures start at a modest 16% higher for homoge-
neous function types (with a rate spread of 0) and escalate to a substantial 320%
worse for the most heterogeneous case.

On the other hand, the holding cost and response time exhibit improvement with
an increasing rate spread. This improvement is more pronounced for autoscaling,
ultimately surpassing the performance of fluid model. We propose that this outcome
is a consequence of the large number of failures in the autoscaling policy, primarily
caused by the uniform configuration employed to handle a heterogeneous load.
Manual configuration of autoscaling rules for each function type may alleviate this
issue.

5. Related Work

In recent studies, significant attention [9] has been devoted to the exploration of
various serverless platforms that have surfaced from industry, academia, and open-
source contributions. OpenLambda, an open-source solution for the development
of sophisticated web services and applications within the serverless computing en-
vironment, is presented in [10]. A new performance-focused serverless computing
platform, constructed in .NET and deployed on Microsoft Azure using Windows
containers for function execution environments, is detailed in [11]. Sequoia [3] is
a drop-in front-end for serverless platforms that allows policies to dictate how or
where functions should be prioritized, scheduled, and queued. The ideal perfor-
mance for a specific workload is achieved by carefully designing and evaluating sev-
eral scheduling algorithms, such as resource-aware scheduling and explicit priority-
based scheduling. Atoll [12] is a delay-sensitive serverless framework that exploits
a shortest-remaining-slack-first algorithm for scheduling serverless functions. Atoll
uses a threshold-based resource scaling method based on queuing delays.

In addition, there is more research work on managing resources or guarantee
performances for serverless platforms [13, 14, 15, 16]. The latency-utilization trade-
off in serverless platforms is explored in [17], using IBM Cloud and a private cloud
data to study how workload consolidation, queuing delay, and cold starts affect
end-to-end function request latency.

Even though resource allocation is managed by the serverless platform, users
still have to provide resource requirements for their functions. This may be done
through profiling, yet under- or over-allocation is possible. [18] provides a method
for estimating the optimal resource size for serverless functions using monitored
data.

ENSURE [2] is another rule-based function resource manager. It allocates R +

c
√
R containers to a function with load R, scales the resources within an invoker

based on a latency degradation threshold, and scales the number of invokers based
on a memory capacity threshold, tuned per function and per workload. The open-
source HPA is a simplified version of heuristics-based horizontal autoscaling for
containers and it scales out an application based on a customized metric.

To build serverless applications and avoid provider lock-in, Knative was proposed
as an open-source, unified Kubernetes serverless API platform [19]. A method for
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determining the number of pods needed to run functions, based on past and future
predictions, is provided in [20].

A potential means to model the simultaneous execution of applications, each
consisting of running a chain of serverless functions is multichain queueing networks.
In such networks, the service stations correspond to functions, a chain corresponds
to the sequence of functions that are executed in order to fulfill an application
request, and customers correspond to requests. The analysis of such networks may
be tractable in some cases, using mean-value analysis [21], or using approximate
analysis [22]. Autoscaling involves the optimal determination of resource capacity
and the number of servers at the service centers, given the load and some global
constraints. This may be achieved by using a combination of an optimizer and a
multichain queueing network analyzer.

6. Conclusion

We have addressed the challenge of dynamic autoscaling in serverless cloud com-
puting by proposing a resource allocation approach that adjusts computational
resources based on changes in demand. Our model, built upon the MCQN frame-
work, supports function chains, diverse function types, different resource types, and
captures the network state within the serverless ecosystem. By employing a fluid
approximation of the MCQN model, we formulated the SCLP problem to obtain
an optimal dynamic resource allocation policy. The optimal resource allocation is
then transformed into the optimal resource allocation per replica and determines
the optimal number of replicas within fixed time intervals.

Our approach is capable of proactively finding an asymptotically optimal control
policy for large-scale problems in a reasonable timeframe. Moreover, it allows for the
recomputation of the optimal fluid policy at desired intervals, enabling adaptation
to changing function demand.

To evaluate our approach, we developed a simulation framework that facilitated
the analysis of serverless function network models. Through simulation experi-
ments, we compared our method to a simple auto-scaling approach, which adjusts
the number of replicas based on load balancer failures or the detection of idle
replicas. Performance measures such as holding cost, average response time, and
the number of failures and timeouts were assessed. Our method demonstrated
superior performance across all measures, although there were instances where it
outperformed in average response time and holding cost but underperformed in the
number of failures.

Future research directions include conducting additional simulation experiments
to cover larger problem sizes. Moreover, there is a need to consider more realistic
serverless scenarios and compare our method with existing autoscalers in real-world
systems. By addressing these areas, we can further validate the effectiveness and
applicability of our approach in practical serverless environments.
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[15] L. Schuler, S. Jamil, and N. Kühl, “AI-based resource allocation: Reinforcement learning for
adaptive auto-scaling in serverless environments,” arXiv preprint arXiv:2005.14410, 2020.

[16] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness,

M. Russinovich, and R. Bianchini, “Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider,” in 2020 USENIX Annual Technical Conference

(USENIX ATC 20). USENIX Association, July 2020, pp. 205–218.

[17] H. Qiu, S. Jha, S. S. Banerjee, A. Patke, C. Wang, F. Hubertus, Z. T. Kalbarczyk, and R. K.
Iyer, “Is function-as-a-service a good fit for latency-critical services?” in Proceedings of the

Seventh International Workshop on Serverless Computing (WoSC7) 2021, 2021, pp. 1–8.

[18] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev, “Sizeless: Predicting
the optimal size of serverless functions,” in Proceedings of the 22nd International Middleware

Conference, 2021, pp. 248–259.

[19] N. Kaviani, D. Kalinin, and M. Maximilien, “Towards serverless as commodity: a case of
knative,” in Proceedings of the 5th International Workshop on Serverless Computing, 2019,

pp. 13–18.

[20] D. Fan and D. He, “Knative autoscaler optimize based on double exponential smoothing,” in
2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC).

IEEE, 2020, pp. 614–617.
[21] M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed multichain queuing networks,”

J. ACM, vol. 27, no. 2, pp. 313–322, April 1980.
[22] C.-H. Hsieh and S. S. Lam, “Pam-a noniterative approximate solution method for closed

multichain queueing networks,” in Proceedings of the 1988 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, ser. SIGMETRICS ’88. New York,

NY, USA: ACM, 1988, pp. 261–269.

https://arxiv.org/abs/2103.04405

	1. Introduction
	2. The Model
	2.1. Simple network
	2.2. General model

	3. Simulations and Performance measures
	3.1. Simulation Model
	3.2. Performance measures

	4. Experiments and Results
	4.1. Experimental setup
	4.2. Comparison on a small network
	4.3. Results by network size
	4.4. Results by request timeout
	4.5. Results by initial number replicas
	4.6. Results for heterogeneous functions

	5. Related Work
	6. Conclusion
	References

