ANL [MCS [cp-105480

Programming with MPI on Clusters

Ewing Lusk
Mathematics and Computer Science Division
Argonne, IL 60439
lusk@mcs.anl.gov

Abstract

We discuss the current state of development for the key
aspects of MPI programming on clusters. These aspects
are the evolution of the MPI Standard itself, developments
in cluster hardware and system software that directly affect
MPI implementations, and supporting software that facili-
tates th use of MPI on scalable clusters. In each case we
give a brief background and summarize the current status.

1. Introduction

Clusters are becoming a mainstay of high-performance
computing. Some applications can take advantage of clus-
ters by exploiting their capability for running large numbers
of individual serial jobs, particularly when the cluster is run-
ning a batch scheduler. The most demanding applications,
however, are implemented with true parallel algorithms and
run as single parallel jobs. The development of the pro-
gramming and execution environment for such applications
is ongoing and quite active.

One of the central elements of such environments is the
MPI (Message Passing Interface) parallel library specifica-
tion, which enables programmers to write parallel, portable,
scalable programs that can take advantage of the latest
in cluster technology and run on a wide variety of high-
performance computing platforms, of which large and small
clusters are examples.

Here we review and summarize the state of three impor-
tant elements of MPI programming on clusters: the evo-
lution of the MPI standard itself, the state of current MPI
implementations for clusters and promising new develop-
ments in the area of MPI implementation, and the software
environment outside MPI itself that interacts with MPI ap-
plications.

2. The MPI Standard

MPI was defined over the period 1593-1994 by the MPL
Forum, a group of parallel compute vendors, computer sci-
entists, and application developers. The goal of the Forum
as to develop a community standard that would attract both
implementors and users. Key aspects of the MPI specifi-
cation process was that it was open to anyone and both its
internal deliberations and its final results were freely avail-
able.

The MPI Standard was released in 1994 [7]. Its inno-
vative features included a wide variety of communication
modes, a complete set of collective operations, commu-
nicators for encapsulation of communication in libraries,
MPI datatypes for describing noncontiguous messages and
for dealing with heterogeneous environments, and process
topologies. Implementations both vendor and public, ap-
peared shortly, and implementations of this release of the
MPI specification are now available on all parallel machines
and MPI is widely used.

In 1995-96 the MPI Forum reconvened to add features
that had deliberately not been addressed in the first round,
including dynamic process management, parallel /O, re-
mote memory access, and a number of convenience fea-
tures. this part of the standard is often referred to as MPI-2,
Currently there are a number of complete MPI-2 implemen-
tations by compuier vendors. As yet no complete MPI-2
implementations on clusters exist, but a number of partial
implementations are in use.

The Forum is currently addressing small errors and in-
consistencies in the MPI-2 standard, and expects to re-
lease version 2.1 in the fall. References on MPI itself
are [5, 6, 9, 31, and the MPI Forum Web site www.mpi-
forum.org.

3. MPI Implementation Issues

Currently there are multiple widely distributed MPI im-
plementations for clusters. MPICH [4] is portable to other



environments as well, including clusters based on Win-
dows 2000, and is particularly designed to be customized
for multiple low-level communications systems. LAM is
a daemon-based implementation well-suited for clusters,
which has partial support for MPI-2’s remote memory ac-
cess and dynamic process management functions. MPICH
and LAM share code for parallel YO and the C++ bindings.
MPI-Pro is a commercial MPI implementation from MPI
SoftTech, with both Linux and Win2000 versions. Myricom
distributes and supports a customized version of MPICH,
called MPICH-GM, with its Myrinet switch hardware.

MPI implementation remains a fertile research area. The
MPT Standard gives substantial opportunities for MPI im-
plementors to develop custom algorithms for communica-
tion in modern hardware environments, which are evolving
rapidly. The increasing use of SMP’s in clusters calls for
multimethod and/or multithreaded implementations. New
low-level communication specifications such as VIA and
hardware standards, such as Infiniband, are rapidly pushing
cluster implementations beyond their original design point
of TCP over Ethernet. New developments like OpenMP
encourage implementations to interact smoothly with other
mechanisms for expressing parallelism. And “the Grid” en-
courages MPI implementations to provide interfaces that
facilitate communication among different MPI implemen-
tations over wade-area networks. One approach is the defi-
nition of an interface for multiple implementations to adopt
(IMPI); another is a single implementation that coordinates
other, vendor implementations (MPICH-G2).

4. Related Software in the Parallel Program-
ming Environment

Any MPI implementation interacts with the systems en-
vironment on the cluster. An interesting area of research
is in the architecture of such system software in general,
including such components as the process manager, job
scheduler, resource monitor, accounting system, etc. While
these components have been traditionally integrated into
monolithic systems, currently there is substantial interest in
designing components and component interfaces that will
allow a degree of standardization in parallel system soft-
ware without constraining implementations. Making these
system components both scalable and fault-tolerant is a par-
ticular challenge.

One area of particular interest is the interface between
parallel process managers and MPI implementations. One
desires fast startup so that short, interactive MPI programs
(like the Scalable Unix Tools[8]) make sense, yet the pro-
cess manager must provide information to the MPI imple-
mentation that supports dynamic process creation and con-
nection. One approach is to create a standard interface, in-
dependent of both MPI and of process manager, that will let

multiple process managers interact with multiple MPI im-
plementations. Some work along these lines, along with a
prototype scalable process manager, is outlined in [1].

Parallel debugging on clusters is still a major challenge.
Two approaches that have been taken are the development
of a debugger interface that implementations can support
and that debuggers can use [2]. This is the approach taken
by TotalView and MPICH.

MPI was intended to accelerate the encapsulation of
much parallel programming in libraries, and this as oc-
curred, particularly in the area of scientific programming.
Important MPI-based libraries include Scal.APACK (for
linear algebra), PETSc (for solving partial differential equa-
tions) and Paramesh (for managing data for adaptive mesh
refinement).

An unusual recent development is an MPI binding for
the Ruby scripting language [10]. In Ruby, everything is an
object, and the MPI-Ruby module allows form communi-
cation of objects among Ruby programs. Ruby simplifies
MPI enormously (no datatypes, for example). This pro-
vides an extremely flexible parallel programming environ-
ment whose capabilities have just begun to be explored.

5. Conclusion

The evolution of MPI, MPI implementations, and MPI-
related software is an active research an development area.
The rapidly evolving cluster hardware and system software
environment is a good fit for MPI, and stands to both chal-
lenge and benefit from MPL.

References

[11 R. Butler, W. Gropp, and E. Lusk. Components and inter-
faces of a process management system for parallel programs.
Parallel Computing, 2001. (to appear).

{2] J. Cownie and W. Gropp. A standard interface for debugger
access to message queue information in MPL In J. Dongarra,
E. Luque, and T. Margalef, editors, Recent Advances in Par-
allel Virtual Machine and Message Passing Interface, vol-
ume 1697 of Lecture Notes in Computer Science, pages 51—
58. Springer Verlag, 1999. 6th European PVM/MPI Users’
Group Meeting, Barcelona, Spain, September 1999.

[3] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI—The Complete
Reference: Volume 2, The MPI-2 Extensions. MIT Press,
Cambridge, MA, 1998.

{4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI Message-
Passing Interface standard. Parallel Computing, 22(6):789—
828, 1996.

{5] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface,
2nd edition. MIT Press, Cambridge, MA, 1999.



[6] W. Gropp, E. Lusk, and R Thakur. Using MPI-2: Ad-
vanced Features of the Message-Passing Interface. MIT
Press, Cambridge, MA, 1999.

[7] Message Passing Interface Forum. MPI: A Message-Passing
Interface standard. International Journal of Supercomputer
Applications, 8(3/4):165—-414, 1994.

{8] E. Ong, E. Lusk, and W. Gropp. Scalable Unix commands
for parallel processors: A high-performance implementa-
tion. In J. Dongarra and Y. Cotronis, editors, Proceedings
of Euro PYM/MPI. Springer Verlag, 2001. To appear.

[9] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI—The Complete Reference: Volume I, The
MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

[10}] D. Thomas and A. Hunt. Programming Ruby: The Prag-
matic Programmer’s Guide. Addison-Wesley, 2001.

This work was supported by the U.S.
Dept. of Energy under Contract W-31-109-ENG-38.

The submitted manuscript has been created
by the University of Chicage as Operator of
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on benalf of
the Government.



