
Fraus: Launching Cost-efficient and Scalable Mobile
Click Fraud Has Never Been So Easy

Elliott Wen
The University of Auckland

jq.elliott.wen@gmail.com

Jiannong Cao, Jiaxing Shen, Xuefeng Liu
The Hong Kong Polytechnic University

csjcao, jxshen@comp.polyu.edu.hk

Abstract—Mobile click fraud is a type of attack where an ad-
versary deceptively generates click events on mobile applications
in pursuit of revenue. Conventionally, the attack is carried out by
automating a massive number of physical devices. However, pur-
chasing the devices incur substantial costs. A cheaper alternative
to the physical devices is emulators. However, existing emulators
are inefficient and vastly blocked due to their immense resource
demand and defective device signatures. In this paper, we propose
Fraus1, a cost-efficient and scalable approach to conduct large-
scale click fraud using device emulators. Fraus maintains a
low resource profile by circumventing graphics emulation and
applying lazy-loading techniques on system components. Besides,
Fraus provides a seemingly authentic device signature and
disguises itself as a legitimate device by fully emulating the
missing hardware components including WiFi interfaces and
cellular modems. To facilitate the management of numerous
emulator instances, Fraus also offers a distributed management
system, which is scalable and fault-tolerant. We evaluate the
performance of Fraus by mocking attacks against the top 300
applications from the Google Play store. The results demonstrate
that Fraus has high system stability and application compatibility.
It also significantly reduces CPU usage and memory footprint
up to 90% and 60% respectively compared with the existing
emulators.

I. INTRODUCTION
Nowadays, Mobile Click Fraud Attack (MCFA) has be-

come a frequent topic of cyber security experts [1]. In such an
attack, malicious individuals repeatedly generate click events
on a mobile application with the intention of increasing
revenues or personal influence. The common examples include
boosting product ratings or increasing the ‘like’ number in
social media pages. According to [2], the attack is causing
a substantial damage of $16.7 billion on mobile application
economy in 2017.

To launch a MCFA, a simple approach referred to as Click
Farms [3] is widely adopted. Figure 1 demonstrates the general
set-up of such a farm where thousands of mobile devices
are deployed and automated by computers to generate click
events. Since the click actions are originated from the physical
devices, they all appear to be triggered by real users without
sophisticated examinations [4]. It makes this approach fairly
effective for most applications.

However, despite the effectiveness, setting up such a farm
incurs a substantial cost. The major expenses is for purchasing
the massive number of devices. Meanwhile, the subsequent
deployment and maintenance tasks also involve huge labor
costs. These drawbacks naturally inspire us to investigate

1In Roman mythology, Fraus was the goddess or personification of treach-
ery and fraud.

the potential of replacing the physical devices with device
emulators. Device emulators are in essence virtual machines
that are mainly designed for developers to swiftly prototype
mobile applications without using hardware devices. Com-
pared with physical devices, emulators are significantly more
cost-effective because they can be massively deployed in cloud
platforms or local servers in a cheap price. For instance, the
average price for a low-end smartphone with one-year lifespan
is approximately 215 USD [6], while the money can enable us
to host 6 emulator instances without optimization in the cloud
for a same timespan [7]. Besides, deploying and maintaining
emulators is less labor intensive owning to existing automated
management systems [8].

Though the idea of launching click fraud with emulators
seems quite straightforward, practical implementation entails
substantial challenges. First, existing device emulators are
CPU-intensive and memory-intensive. It likely results in poor
performance and application failure due to resource con-
straints. Moreover, the high resource demand also decreases
the number of emulator instances that can be run concurrently,
which limits the power of the attack. Second, the existing
emulators are easily blocked by various mobile applications
due to their defective device profiles. A profile serves as a
unique device signature, usually consisting of properties such
as WiFi MAC addresses or phone numbers that are hardware-
specific. Since the corresponding hardware components are
not emulated, the property values remain empty. Therefore,
by scrutinizing the defective device profile, an application can
easily identify and block the emulator. Finally, it is challenging
to deploy and manage numerous emulator instances in a large-
scale attack, because existing emulator management systems
are centralized and they fail to cope with the scale-out and
fault tolerance issues.

USB Bus

…

…

(a) (b)

Fig. 1: (a) A photo inside a real-life click farm [5]. (b) The
general set up of a click farm, where phones are powered up
and connected to a central server via USB connections.

The following publication E. Wen, J. Cao, J. Shen and X. Liu, "Fraus: Launching Cost-efficient and Scalable Mobile Click Fraud Has Never Been So Easy,"
2018 IEEE Conference on Communications and Network Security (CNS), Beijing, China, 2018, pp. 1-9 is available at https://doi.org/10.1109/CNS.2018.8433126.

This is the Pre-Published Version.

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

In this paper, we propose Fraus, a novel approach that
enables individuals to launch MCFA using device emulators.
Specifically, Fraus significantly reduces CPU usage by cir-
cumventing the compute-intensive graphics emulation. It also
maintains a small memory footprint by applying the lazy-
loading and deduplication techniques on system components.
To bypass device-profile scrutiny, Fraus implements two vir-
tual hardware components including cellar modems and WiFi
interfaces. They enable each emulator instance to generate a
seemingly authentic device profile. Meanwhile, Fraus offers
a distributed emulator cluster management system, which is
scalable, fault-tolerant and easy-to-use. Its API abstraction
features a logically centralized view, which allows an user to
easily program and launch an attack task without concerning
the details of the underlying distributed protocols.

We consolidate the above techniques and implement the
prototype of Fraus on top of Android 6.0. We conduct
comprehensive experiments to evaluate Fraus against the top
300 applications from the Google Play store. Experimental
results show that Fraus has high application compatibility and
system stability because 96% of the selected applications run
successfully, while the number is only 59% for existing em-
ulators. Fraus also reduces CPU usage and memory footprint
up to 90% and 60% respectively compared with the existing
emulators. The small resource demand enables fitting 125
instances in a low-end server equipped with 32GB RAM,
reflecting the high cost efficiency.

To the best of our knowledge, Fraus is the first system that
is designed to launch a cost-efficient and scalable MCFA via
devices emulators. By designing Fraus, we aim to raise public
concerns about the simplicity of committing click fraud and
to suggest countermeasures to mitigate such risks.

The rest of this paper is organized as follows. Section. II
investigates the problems of launching MCFA using existing
emulators. Section. III presents the approach to disable the
compute-intensive graphics emulation. Section. IV describes
optimization techniques that reduce the memory footprint.
Section. V illustrates the methodology to bypass device profile
scrutiny. Section. VI elaborates the architecture for the dis-
tributed emulator instance management system. Section. VII
reports the evaluation results. Section. VIII discusses the
countermeasures to combat Fraus. Section. IX surveys the
related work and Section. X concludes this paper.

II. BACKGROUND AND MOTIVATION
Little research has been conducted to investigate the us-

ability of emulators on MCFA. In this section, we attempt
to evaluate the usability and identify the potential problems
pending to be addressed via preliminary experiments. We first
select 4 target mobile applications from two genres that are
frequent victims of MCFA, including social media and online
advertising. The selected social media applications consist of
Facebook and Wechat. The selected online advertising appli-
cations, which reward users for every view of a commercial
video clip, include Daily Cash and Lucky Cash. We run these
applications on three widely-used options including Android
Official Emulator [9], BlueStacks [10] and GenyMotion [11].
These emulators are allocated with an one-core 2.2 GHz
virtual CPU, 512 MB RAM, and 12 MB video RAM with
GPU acceleration disabled. This resource configuration is
chosen to be close to the specification of a low-end virtual

TABLE I: System Wide CPU Usage When Running Selected
Applications.

CPU Usage Offical BlueStack GenyMotion
Wechat 43% 47% 45%
Facebook 57% 54% 59%
Daily Cash 79% 76% 78%
Lucky Cash 87% 83% 84%

TABLE II: CPU utilization of each running process in an
emulator.

CPU Usage SurfaceflingerMediaserverSystemserviceApp. itselfOthers
Wechat 25% 0% 3% 11% 4%
Facebook 37% 2% 4% 13% 1%
Daily Cash 11% 49% 7% 7% 5%
Lucky Cash23% 43% 5% 10% 6%

machine provided by most cloud platforms [7]. In our mocking
attack, we identify the following difficulties.

Performance Issues. The first difficulty arises from the
performance issues of emulators. We observe that the emula-
tors tend to be CPU-intensive. To demonstrate our observation,
we measure the average system-wide CPU usage when the
emulators are automated to perform predefined tasks such
as clicking a like button or viewing a video clip in the
4 applications. The results are shown in Table I. It can
be seen that all the applications are incurring high CPU
workload regardless of the types of emulators. Specifically,
the social media applications consume almost half of the CPU
processing power. The advertising applications appear to be
more compute-intensive and nearly saturate the CPU.

To pinpoint the root cause of high system-wide CPU
utilization, we further demonstrate the usage of each running
process in an emulator in Table II. Note that we only list the
CPU statistics for the Android official emulator because differ-
ent emulators yield similar CPU performance. One essential
finding from the table is that although the overall CPU usage
is high, only a small proportion is attributed to the application
itself. Two system processes Surfaceflinger and Mediaserver
are the main culprits of the excessive CPU usage. Surface-
flinger is an Android system service, in charge of compositing
graphical user interfaces (GUI) of applications into a single
buffer, which is finally displayed by a screen. Mediaserver is
another important system service that entitles an application
to play various types of video files. The two system services
involve a great amount of graphical computation, which can
be offloaded to GPUs in physical devices. However, GPUs are
not available in an emulator and the graphical computation has
to be conducted by CPUs inefficiently, which justifies the high
CPU workload of the Surfaceflinger and Mediaserver.

Another performance concern is the excessive memory
usage. The minimum memory requirement of BlueStack and
GenyMotion is 2 GB. It means that the only way to run
them in the virtual machine with 512 MB RAM is to enable
swapping. However, swapping may negatively impact the
system performance due to the potential thrashing behavior.
The Android official emulator somehow possesses a smaller
footprint, which is approximately 500 MBs right after the
system starts up. Nevertheless, the free RAM is extremely
limited and swapping is still required in order to run any other
applications.

Defective Device Profile. We meet the second obstacle
when running applications that enforce device profile scrutiny.
A device profile serves as a unique device identification.
It usually consists of several hardware-specific properties.
Commonly used properties include:

1) WiFi Media Access Control (MAC) Address, a
unique identifier assigned to WiFi interfaces.

2) The cell phone number of the device.
3) International Mobile Subscriber Identity (IMSI), a

unique number to identify the user of a cellular
network.

4) International Mobile Equipment Identity (IMEI), a
unique 15-digit serial number given to every mobile
phone’s cellular modem.

All the properties are retrieved from hardware components
including cellular modems and WiFi interfaces. Since they
are not emulated, the above property values remain empty
in an emulator. The artifact then allows application providers
to easily identify and block the emulators. To make mat-
ters worse, the authenticity of the properties, especially the
phone number, can be easily verified by the applications.
For instance, many applications send the number a SMS
containing verification codes to ensure the number is genuine.
It makes randomly generating the property values an infeasible
approach to bypass the scrutiny.

Deployment and Management. We encounter another
challenging issue when launching a large-scale MCFA. In such
an attack, a massive number of emulator instances have to be
deployed and managed. To avoid this labor-tensive procedure,
we adopt a centralized cluster management system [8] in our
preliminary study. However, we discover that the centralized
architecture quickly fails to cope with the scale-out and fault
tolerance issues when the number of emulators dramatically
increases. To address this issue, we need to design a distributed
management system. Meanwhile, to preserve the simplicity of
the centralized management system, we aim to design a high-
level API abstraction presenting a logically centralized view,
which can conceal the complicated details of the underlying
distributed protocols.

In light of the above issues, we design Fraus, a system that
is lightweight and able to bypass the device profile scrutiny.
Meanwhile, Fraus’s distributed emulator management system
enables us to launch a large-scale MCFA in an effortless
manner. In the following sections, we will elaborate Fraus’s
solutions towards the above issues one by one.

III. PRESERVING CPU RESOURCES
As stated in the previous section, due to the lack of

GPUs in an emulator, graphical computation such as GUI
composition and video playback has to be conducted by CPUs
inefficiently, which results in a huge waste of CPU resources.
In this section, we elaborate our approaches to preserve the
CPU resources for an emulator. The main intuition is that we
can circumvent the graphical computation in Android because
attackers most of the time do not care about the graphical
output of the emulators, which are running automation scripts
to generate click events.

A. Overview of the Android Graphics System
To make our approaches better understood, we first in-

troduce the architecture of the Android graphics system. As

Application 1 Viewroot->Skia

Application 3

Application 2 CMD->OpenGL

URL->Media

Buffer
Queue

Buffer
Queue

Buffer
Queue

Su
rfa

ce
Fl

in
ge

r

Co
m

po
se

r

LC
D

Sc
re

en

Fig. 2: Android Graphics Overview

shown in Fig 2, an Android application can draw its contents
on the device screen via three different routines including Skia,
OpenGL and Media Server.

Skia. The most commonly-used routine relies on the Skia
library to performs 2D graphics drawing. Specifically, an
application provides the Skia with its GUI layout hierarchy,
which organizes all the GUI components (such as texts,
buttons and images) in a tree structure. The tree’s root is
referred to as ViewRoot. Beginning with the ViewRoot, draw-
ing is performed by walking the tree and rendering all child
components by invoking their draw() method. The method
draws the GUI component’s appearance on top of a graphics
buffer. The resulting buffer then can be inserted into a buffer
queue and wait for the further processing from the underlying
system service.

OpenGL. An application can perform 3D graphics draw-
ing with the help of the OpenGL ES library. OpenGL ES is
a cross-platform graphics API set that specifies a standard
interface for GPUs. By invoking the APIs, applications could
deliver 3D drawing commands to GPUs. Once GPUs finish
the tasks, the resulting buffers will be also inserted to a buffer
queue. Note that emulators possess no GPUs, thus they have
to be emulated via software.

Media Server. An application can utilize a system service
named Mediaserver to display video contents on the screen.
Specifically, the media server accepts a media file and pro-
cesses it by using built-in media decoders. The decoded buffers
then will be sent to the buffer queue. Note that the video
decoding is considered to be a fairly CPU-intensive procedure,
a physical device therefore usually offloads it to the a dedicated
hardware decoder that does not exist in an emulator.

All the routines places the resulting buffers to the buffer
queues. The queues are managed by a system service named
Surfaceflinger. Specifically, Surfaceflinger will dequeue the
buffers from all the queues and forward them to the underlying
composer. The composer then composites all the buffers and
generates a final picture on the screen. The process is carried
out periodically and the frequency is decided by the LCD
screen hardware. In brief, the hardware will indicate the
Surfaceflinger to start the process by generating a VSYNC
signal. In an emulator, the VSYNC signal is generated from
a software timer every 1/60 second.

B. Naive Approach: Suppressing VSYNC Signal
A simple solution to skip the graphical computation is to

suppress the VSYNC signal by adjusting the software timer.
Without the VSYNC signal, the Surfaceflinger would stop
dequeuing buffers from the buffer queues. Then the number
of buffers in the queues would start accumulating. Once the
number reaches a limit, which is three by default, the Android
applications would not be able to enqueue more graphics
buffers and have to stall the drawing process. In order words,
no more draw() methods would be invoked and the graphical

computation would be circumvented.
Despite the simplicity of the approach, it may affect

the stability of certain applications that contain custom GUI
components. Custom components entitle developers to create
novel user interfaces for special needs. To implement such a
component, developers have to write their own draw() method
and manipulate the graphics buffers to sketch the component’s
appearance. Besides, auxiliary functionalities such as perfor-
mance tuning and logging may also be implemented in the
draw() method. Since the draw() method is suppressed by
our approach, the auxiliary functionalities would never get
the chance to be executed, which may potentially crash the
applications.

C. Sophisticated Approach: Submitting Blank Buffers
Clearly, the main drawback of the naive approach is that

it may interfere with the application execution and the final
outcome varies from application to application. Motivated by
this issue, we propose a more sophisticated approach that is
more reliable and fully application-independent. The main idea
is that we alter the behavior of the three graphics routines; they
now simply submit blank buffers to the buffer queues, when
applications request them to draw any contents. This approach
not only circumvents the intensive graphical computation,
but also poses no interference to all applications. From the
applications’ viewpoint, they can invoke the draw() method
periodically as they are running in a normal Android system.

We implement this approach by adopting a technique
named Dynamic Linker Hooking [12]. Specifically, hooking
is the process of intercepting a program’s execution at a
specific point, typically entries of functions, in order to alter or
augment the program’s behavior. The dynamic linker hooking
technique enables hooking in the runtime by forcing a program
to load shared libraries specified by the user instead of the
original ones provided by operating systems. This technique
allows us to avoid recompiling the source codes of Android
and to quickly apply the following patches to the three
graphics routines.

Skia. We patch all the low-level Skia APIs to avoid the
drawing procedures. Specifically, Android internally draws
each GUI components by invoking a series of low-level
Skia APIs such as SkBitmapDevice::drawPaint, SkBitmapDe-
vice::drawPoints, and SkBitmapDevice::drawRect. The APIs
originally conduct compute-intensive linear algebra computa-
tion to place correct shapes on a graphics buffer. After the
patching, these APIs become stub functions which simply
return a result indicating the rendering operation has been
successful.

OpenGL ES. The stock OpenGL ES library only supports
a very basic set of OpenGL commands and it is barely
compatible with modern Android applications [13]. To address
this issue, we first replace the stock OpenGL ES library with
a fully-fledge open-source one [14]. Two kinds of patches are
then applied on the library. First, we rewrite all the graphics
APIs whose names start with glDraw. The modified functions
skip the complicated 3D geometry rendering and simply
report a result indicating operations are successful. Second,
we also patch the memcpy function used in the graphics APIs
including glBufferData and glCopyTexImage2D. The two APIs
are originally designed to copy bulky texture data from the
user process to the GPU emulator. Realizing the excessive

EOF Access
 Unit 1

… Decode
Algorithm

Decoded
Frame

Decoded
Frame

…

Media Source Buffer Queue

Blank
Frame

Blank
Frame

…

Buffer Queue

Decoder

Patched Decoder

Access
 Unit 2

EOF Access
 Unit 1

…

Media Source

Access
 Unit 2

Infer
Frame

Number

Produce
Blank

 Frame

(a)

(b)

Fig. 3: (a) The decoding process of the media server. (b) The
patched decoder avoiding the decoding computation.

data transfer may negatively degrade system performance, we
replace the memcpy function with a no-operation (NOP) to
skip the data copying.

Media Server. We patch the commonly-used media de-
coders including mpeg2dec, avcdec and aacdec in the media
server. As shown in Fig. 3 (a), the origin decoders repeatedly
request a media access unit from the source. The unit then
can be decoded into a displayable frame or a few milliseconds
audio clip, which will be sent to a buffer queue. The playback
is finished if the decoders successfully detect the end of stream
(EOF) in the source.

To avoid decoding computation, we let the decoders dump
the access units received and directly send frames filled with
zero to the buffer queue. However, this method has a limi-
tation; without running the decoding algorithm, the decoder
now cannot determine how many audio frames exist in an
audio access unit. If the decoder cannot generate a correct
number of audio frames, the duration of the playback may be
either shortened or prolonged. It may affect the stability of
certain applications, for instance, advertisement applications
which rely on the duration of playback to count a view.

To address this issue, we propose an alternative solution
as shown in Fig. 3 (b). The patched decoder will infer the
number of frames needed to be generated by examining the
timestamp property existed in access units. Specifically, every
access unit carries a timestamp indicating the time at which
its first decoded frame is played. The timestamp difference
between the current and consecutive access units then can be
used to calculate the available frames given the audio sampling
rate.

IV. REDUCE MEMORY FOOTPRINT
In this section, we demonstrate how to optimize the mem-

ory footprint of an emulator. The memory-exhausted problem
comes from that Android loads nearly all system components
to the memory during the booting process, even most of them
are not used by applications. In Fraus, we defer the loading
of those components until when they are needed.

We first measure the memory usage in the official emulator
running Android 6.0. Note that the measurement is conducted
right after the booting process and the emulator has been
restored its factory settings. The memory statistics shows that
the total memory usage is approximately 500 MB, specifically,
290 MB of which is allocated to built-in applications (e.g.,
calendar, email, and music) while the remaining is consumed
by a set of system services (e.g., Systemserver, Surfaceflinger
and Mediaserver).

It can be seen from the statistics that a huge memory
overhead lies in the built-in applications, which automatically
start along with the system. This behavior is usually referred
to as preloading, which helps improve user experience by

shortening the applications’ loading time. Since these built-
in applications are seldom used in a MCFA, preloading them
is simply a waste of memory. To reclaim the memory, we
patch the applications to disable preloading. Specifically, an
application can be preloaded by either registering a listener
for the boot completed event or setting the android:persistent
property in its manifest file. Thus our patches remove all the
listeners for the boot event and the android:persistent property
if existed.

Apart from the built-in applications, we discover that
another major memory consumer are the system services.
Android possesses approximately 70 Android system services
that provide applications with the information and capabilities
necessary to work. Typically, all the services are instantiated
by Android during the booting process. However, a great
number of them may never be used by an application, which
results in the waste of the memory space.

To reduce the memory footprint, one naive approach is to
directly disable certain system services which are unlikely to
be used. Clearly, this method may impede the system func-
tionality and stability, because applications are likely to crash
when they attempt to communicate with the disabled services.
Instead, we propose an alternative approach making use of
the lazy-loading and deduplication techniques. Specifically,
we first divide all the system services into three categories
including futile occasionally-used, and critical based on the
necessity of their functionalities. Then we applied different
approaches to reclaim the memory.

Futile Services The futile services such as Battery Service
and Vibrator Services are highly unlikely to be used in an
emulator due to the lack of the corresponding hardware
components like batteries and vibration motors. However,
these services still occupy a certain amount of RAM space
due to the memory allocation of internal data structures. To
reduce the services’ memory overhead, we replace them with
stub services. Stub services expose identical API interfaces
as the original ones do, but the implementation of the APIs
just serves as a placeholder and no memory is allocated.
Applications that invoke the APIs will simply receive a result
indicating the corresponding operations are successful.

Occasionally-used Services The occasionally-used ser-
vices such as MediaRouter and TextService still provide
infrequently-used functionalities to a small number of ap-
plications. To reduce their memory overhead, we propose a
lazy loading mechanism. It allows these services to postpone
the instantiation to when they receive the first request from
applications. To implement this mechanism, we first design
a set of proxy objects of those services. A proxy object
implements same API interfaces as the original services do
and forwards the API requests to the corresponding services
if they already instantiate. Otherwise, the proxy then is in
charge of instantiating the services. Meanwhile, we patch a
system process named SystemServer such that Android loads
the proxy objects instead of the real services to the memory
during the booting process.

Critical Services The critical services such as Activity
Manager and Window Manager provide the basic system func-
tionalities to every application and thus should remain intact.
Nevertheless, realizing these critical services are identical and
run in every emulator instance, we can easily infer that in the

physical server hosting the emulators, there exists enormous
duplication in memory. To reduce the memory usage, we
adopt a deduplication technique named Kernel Same-page
Merging (KSM). It merges identical memory pages from
multiple emulator instances into one memory region, which
significantly reduces the memory consumption and increases
the number of instances that can be run concurrently.

V. BYPASSING DEVICE PROFILE SCRUTINY
As stated in Section II, current emulators are not likely

to pass device profile scrutiny, because their device profiles
are missing properties including 1) WiFi MAC addresses, 2)
IMEI, 3) IMSI, and 4) phone numbers. The main cause of this
problem is that the emulators possess no WiFi interface and
cellular modem, from which the above properties are retrieved.
In this section, we demonstrate the approach that bypasses
the device profile scrutiny by emulating the missing hardware
components. The components help provide a complete device
profile and disguise the emulator as a legitimate device.

A. Integrating Simulated WiFi Interfaces
We first focus on the WiFi MAC address property. A

MAC address is an identifier assigned to WiFi interfaces for
communications at the data link layer. In a physical device, the
MAC address can be accessed by an application using the APIs
from the WiFi service, for instance, WifiInfo.getMacAddress()
or NetworkInterface.getNetworkInterfaces(). However, in an
emulator these methods simply return an empty value or raise
an exception complaining of the missing WiFi interface.

To address this issue, we enhance the emulator with a
simulated WiFi interface. In brief, we implement a loadable
Linux kernel module that simulates major wireless function-
alities and exposes itself as a wireless driver in the same way
a common physical WiFi interface does. It maneuvers the
Android system and WiFi service into believing that a WiFi
interface is properly installed. The simulated WiFi interface
then can provide a randomly-generated MAC address. MAC
address randomization is widely acceptable [15] and it is
unlikely that an application will verify the authenticity of the
address.

B. Emulating Cellular Modems
Compared with MAC addresses, generating legitimate val-

ues for the remaining properties (i.e., phone numbers, IMSI
and IMEI) is more challenging. These properties are obtained
from a cellular network via a modem and they can be easily
verified by an application. For instance, an application provider
can examine the authenticity of a given phone number by send-
ing it a SMS containing secret codes. The codes are typically
required before the user can start using the application.

It can be seen that we cannot bypass the scrutiny mech-
anism by simply generating random property values. Instead,
the emulator is required to possess a working phone number
and receive SMS from a real cellular network. In Fraus, we
achieve this by implementing a software modem that bridges
emulators to a cellular network just like a physical modem
does. It enables the modem to provide verifiable device profile
properties.

To make our approach better understood, we first introduce
how the Android telephony system works. As shown in Fig 4,
Android applications can request the telephony service to
perform a set of cellular-related tasks (e.g., sending SMS or

Telephony Service

Radio Layer Interface Deamon

Physical Modem

App 1

Physical RIL Library Virtual RIL Library

Virtual Modem

Solicited UnSolicited
AT&T Serial HTTP
AT&T Unix Socket

Programmable Tele. Service

App 2 App 3App Layer

Telephony
API

Ph
ys

ic
al

M

od
em

Dr
iv

er

Fr
au

s’s
Dr

iv
er

Fig. 4: Overview of the Android Telephony Architecture

dialing numbers) via APIs. These tasks will be forwarded to a
native process named radio interface layer daemon (RILD).
The daemon further forwards the requests to the device’s
modem driver library. The library then translates the requests
to modem-recognizable commands (e.g., AT&T commands)
and sends them to the modem for execution. Note that these
commands are referred to as solicited commands as they
are initiated by the telephony service. Meanwhile, the driver
library will continuously monitor the responses of the deliv-
ered commands and other radio events (e.g., network ready
or new message arrived) that originated from the modem.
The responses and events are called unsolicited commands,
which will then be propagated to the RILD and upper layers.
Note that the driver library serves as a hardware abstraction
layer (HAL), which exposes unified interfaces to the RILD
regardless of the model of the modem. It allows RILD to
be agnostic about lower-level driver implementations. In other
words, to integrate a new modem to Android, developers
do not have to modify the RILD and they solely need to
implement the corresponding driver library.

In Fraus, a ‘virtual’ modem and its driver library are
implemented and loaded by the Android telephony system.
Figure 4 depicts the work flow of the implementation. Upon
receiving a request from the RILD, the library now delivers the
commands via a inter-process communication socket to a user
space program. This program serves as the software modem
and emulates the essential functionality of a physical modem,
which is to connect to a cellular network and perform cellular
communication (e.g., send/receive SMS).

Specifically, the modem achieves this by taking advan-
tages of cloud programmable telecommunication services
(PTS), which allow developers to acquire a genuine mobile
phone number and to programmatically make phone calls
or send/receive SMS via HTTP requests. On one hand, the
modem is in charge of parsing the received solicited com-
mands and repacking them to corresponding HTTP requests
understood by the PTS. For example, when a command to send
a SMS is received, the modem then makes a HTTP post to the
PTS containing the body of the message and the phone number
of the recipient. On the other hand, the modem continuously
sends HTTP polling requests to PTS to determine whether
certain cellular network events occur. Upon the arrival of a
phone call or SMS, the modem then generates an unsolicited
command to notify the Android telephony system.

VI. PREPARING FOR LARGE-SCALE ATTACKS
To alleviate attackers’ burden of manually setting up and

managing emulator instances in a large-scale MCFA, Fraus

provides an emulator cluster management system. The system
features a distributed architecture such that it can cope with
scalability and fault-tolerance issues. Furthermore, it provides
high-level APIs that present a logically centralized view and
conceal the details of the underlying distributed protocols.

A. Enabling Scale-out and Fault Tolerance
One important feature of our architecture is its support

for scale-out. As shown in Fig 5, Fraus incorporates multiple
management nodes named Device Manager, each of which
acts as the exclusive controller for a proportion of emulator
instances. More specifically, an individual device manager is
solely in charge of assigning MCFA tasks to and collecting sta-
tus information from the emulator instances it controls. Such
an architecture ensures the scalability by adding additional
device managers to the cluster when the number of instances
increases.

The distributed architecture is also designed to provide
fault tolerance. The intuition is that the architecture allows
multiple redundant manager instances waiting to take over
in case a manager fails. By this mean, the failed manager’s
work could be immediately redistributed to another manager.
In details, an emulator, upon creation, will establish multiple
connections with available managers, but exactly one of which
will be elected as the primary manager by performing a
consensus-based leader election [16]. From that moment on,
the primary manager starts controlling the emulator and the
other managers remain idle. When the primary manager fails,
an election will be held again and a newly-elected manager
will take over the emulator.

Fraus implements the above mechanism with the help of
Multicast DNS (mDNS) [17] and ZooKeeper [18]. Specifi-
cally, mDNS enables an emulator to discover and connect to
the IP addresses of available device managers. ZooKeeper is
utilized to perform leader election and failure detection. A
manager must contact the ZooKeeper ensemble in order to
become the primary manager for an emulator. If a manager
loses its connection with ZooKeeper, a failure will be an-
nounced and another manager will attempt to take over the
control by undergoing an election.

B. Presenting a Logically Centralized View
Although the cluster is now running across multiple device

managers, Fraus preserves the simplicity of a centralized
architecture with a useful API abstraction exposing a logically
centralized view. It allows individuals to program and launch
attack tasks without concerning the low-level details such as
how the emulator instances are set up and how the tasks are
dispatched and executed under the distributed environment.

Specifically, Fraus provides four types of APIs which cover
every aspect of a large-scale MCFA:

1) Development APIs. Deployment APIs allow users
to specific the number of emulators needed in each
MCFA.

2) Automation APIs. Automation APIs assist individ-
uals to compose the GUI automation scripts for an
application.

3) Configuration APIs. Configuration APIs entitle users
to adjust the setting of an emulator (e.g., device
profile and network configuration).

Cassandra

Deployment API

Task 1 Task 2 Task 3

Cucumber

Configuration API Automation API Monitor API

Zookeeper

Vagrant

Emulator

Device Manager

Emulator Emulator

System Components

Emulator

Device Manager

Emulator Emulator

Logically Centralized View

Fig. 5: System Architecture.

4) Monitor APIs. Monitor APIs provide real-time in-
formation of each emulator (e.g., memory or CPU
usage).

Figure 5 depicts the implementation details of these APIs.
They are implemented on top of a set of open-source building
blocks. Specifically, The deployment APIs rely on Vagrant
[19] for creating and maintaining virtual machine instances
in physical servers. We also extend the original Vagrant with
a variety of plug-ins to bring the support for various cloud
platforms.

The automation APIs encapsulate an Android testing
framework named Cucumber [20]. It enables users to express
the automation instructions using natural language that can be
easily understood by non-technical individuals. For instance,
an user can easily enter his username to an application with
a simple instruction like Enter text ‘username’ into field with
id ‘username textfield’. Note that if the user is not in favor
of the automation APIs, he can also choose other automation
frameworks written in a variety of languages such as Python
and Ruby.

The configuration APIs and monitor APIs make use of the
distributed database Cassandra [21] to maintain the config-
uration and status information of every emulator. In details,
Cassandra serves as a hub facilitating information exchange
between users and emulators. For instance, the status infor-
mation from an emulator is stored in the database and can be
queried by users in the near future. Similarly, configurations
specified by users are stored in the database and they can be
retrieved by emulators via polling.

Note that the above building blocks run in each device
manager. Each manager can synchronize its information with
others using ZooKeeper and Cassandra such that everyone has
the access to the global information to provide the logically
centralized view.

VII. EXPERIMENTS
In this section, we provide detailed evaluation on Fraus

in terms of application compatibility, resource savings, and
cluster deployment.

A. Ethical Considerations
Note that the main motivation is to raise public awareness

of the effectiveness and simplicity of launching a MCFA using
Fraus. Therefore, all the following experiments are carefully
designed such that they incur neither monetary damages nor
service interruptions.

B. Application Compatibility
To evaluate the the application compatibility, we imple-

ment an automation script that downloads and runs the top
300 applications from the Google Play Store on Fraus. Note
that a large partition of them are games, which are the
hardest applications to support because of their CPU-intensive
and graphics-intensive nature. For comparison purposes, the
experiment is carried out in the Android official emulator.

The experimental results show that 96% of the applica-
tions run successfully on Fraus, while in the Android official
emulator only 59% can start properly. Fraus is highly stable
and compatible with existing applications. Out of curiosity,
we also pinpoint the causes of the failed cases. We discover
that the official emulator failed to run most programs mainly
because of the device profile scrutiny and the buggy GPU
emulation, which frequently leads to the crash of the graphics
system. These problems do not affect Fraus, which only fails
to run a small number of applications due to CPU emulation
defects. In brief, certain uncommon CPU instructions used
by the applications are not properly emulated, leading to the
crashing situations. The defects allow us to tell Fraus apart
from physical devices, which can be used as a countermeasure
to combat Fraus. We will discuss it in details in Section VIII.

C. Resource Savings
To measure the CPU saving of Fraus, we select 6 popular

social-media and advertising applications including Facebook,
Wechat, Instagram, Tumblr, DailyCash and LuckyCash, which
are the frequent victims of the MCFA. Specifically, every
application is automated to perform predefined tasks such as
clicking a like button or viewing a video clip. Each task is
performed for 30 times and the average CPU usage is reported.
Note that the CPU usage retrieved from the top command in
Android only updates every one second, which is relatively
coarse-grained. We overcome the issue by directly polling the
contents from the system file /proc/stat, which provides the
almost real-time CPU usage. For comparison purposes, we
repeat the experiments on the official emulator.

Figure 6 demonstrates the experimental results. It can be
seen that Fraus significantly suppresses the CPU utilization.
For instance, Wechat consumes approximately half of the CPU
resource on the unoptimized official emulator, while Fraus
manage to decrease the workload to 14.7%. A more obvious
example is that LuckyCash on the official emulator nearly
exhausts the CPU, while the same application on Fraus only
incurs tiny CPU usage of 17.9%, which is an approximate
90% reduction. A closer look at the usage of each system
process reveals that the saving is mainly attributed to the
Surfaceflinger and Mediaserver processes. It is expected as
their core computation is evaded in Fraus.

We also obtain the memory statistics of Fraus with the help
of the ps command. The footprint of Fraus is approximately
190 MB, which is significantly smaller than the official emula-
tor that nearly consumes 500 MB. The 60% memory reduction
indicates the effectiveness of the lazy loading mechanism.

D. Cluster Deployment
We launch a large-scale mocking attack with the help of

the Fraus’ cluster management system. Specifically, we set
up a cluster running across four physical servers (Intel i7-
6700 3.40 GHz CPU and 32GB RAM). The servers utilize

Fig. 6: Histogram of Elapsed Time for Three Devices

the KVM hypervisor to provide virtual machine containers.
We allocate each container with 512 MB RAM and one
virtual CPU. Theoretically, a physical server then can hold
less then 64 instances simultaneously. In reality, owning to
the small resource demand of Fraus, we manage to fit 125
instances, indicating the high cost efficiency. Inevitably the
huge number of instances may push the server’s CPUs to
its limit. Nevertheless, the impact is limited because most
Android applications are not time-critical and can bear the
small delay caused by the insufficient CPU power.

VIII. COUNTERMEASURES
In this section, we propose two feasible countermeasures to

combat Fraus. The intuition underlying our countermeasures
is that applications can detect the emulator environment and
refuse to perform any activities by terminating or stalling the
execution. The most common approach to detect the presence
of an emulator environment is based on the fingerprinting of
the runtime environment. This includes checking for specific
artifacts, such as some specific environment variables, back-
ground processes, or defective results obtained from certain
API interfaces [22]. However, we argue that these methods are
not fully reliable because an attacker can always modify the
system source codes to build a deceiving runtime environment.

Instead, our approaches detect the Fraus environment by
checking the platform-specific characteristics that are different
with respect to a physical device. The characteristics include
a tiny defect in the CPU instruction set and significantly
different timing properties of the graphics system.

Examining CPU Instruction Sets. An emulator is typ-
ically X86-based in pursuit of performance, because the
readily-available X86 instructions can be directly executed
owning to the Hardware Virtualization technology. Neverthe-
less, the X86-based emulator has to handle a practical issue;
because nearly all physical devices are equipped with ARM
CPUs, various Android applications written in C/C++ are
solely compiled with the ARM instruction set, which cannot
be directly executed by X86-based system. To address this
issue, a binary translator named native bridge is utilized to
translate the instructions from ARM to X86.

Our first approach makes use of the fact that the binary
translator does not provide support for the ARM NEON CPU
instruction set, which is intended for accelerating audio and
video encoding. This defect offers us a chance to distinguish
whether the device has an ARM CPU. In details, an application
can embed a C program containing the ARM NEON instruc-
tions. If the program can be successfully loaded, it means the
device is equipping with an ARM CPU and it is not likely an
emulator.

Examining Timing Properties of the Graphics System.
Fraus evades the intensive graphical computation in order to

Fig. 7: Normalized Histogram of Elapsed Time for Three
Devices

save CPU processing power. However, it comes with a side
effect that the timing properties of the graphics system are
affected. For instance, the time consumed by an application
to draw a frame is significantly shortened. To demonstrate the
effect, we first implement a test program that renders a rotating
3D color-cube and measures the elapsed time per invocation of
the draw() method (i.e., time consumed to draw a frame). The
program is then tested on two emulators including the official
emulator and Fraus as well as a physical device LG Nexus 5.
For each device, we sample the elapsed time for 10000 frames
and report the histogram in Fig. 7.

One important finding is that the devices are statistically
different from each other (Wilcoxon, p ≤ 0.001). For example,
Fraus and Nexus 5 possess a median of 11 ms and 18 ms
respectively, while the statistics value for the official emulator
soars into 59 ms. Thus, we can easily rule out the official
emulator. Meanwhile, we notice that Fraus exhibits a bell
curve with observable measurements from 9 to 11 and the
majority of measurements are clustered closely around the
median. In contrast, Nexus 5 presents a right skewed distribu-
tion ranging from 12 to 27 with the data points spreading far
from the median. The difference are mainly due to that in a
physical device, the elapsed time likely varies depending on
the complexity of each frame. For instance, it consumes more
time to draw a frame filling with 10 triangles than those only
with 1 triangle. Conversely, the complexity does not affect
Fraus because the involved computation is skipped and the
elapsed time for each frame should remain highly consistent.

Based on the above observations, heuristics can be devised
to detect the Fraus runtime environment. Specifically, We first
measure the standard deviation s of the sample. After that, we
obtain the L-skewness statistics r [23] as follows:

r =
1
3

(
n
3

)−1∑n
i=1

{(
i−1
2

)
− 2
(
i−1
1

)(
n−i
1

)
+
(
n−i
2

)}
xi

1
2

(
n
2

)−1∑n
i=1

{(
i−1
1

)
−
(
n−i
1

)}
xi

, (1)

where xi represents the ith sample. We will claim Fraus is
detected if s ≤ 1 and abs(r) ≤ 0.05. The intuition behind the
heuristic is that a tiny r and s indicates a highly-symmetry
and tightly-coupled bell curve, which is the Fraus’s unique
feature.

IX. RELATED WORK
MCFA is a serious threat to the Internet economy. From an

economics viewpoint, the research work [24] investigates the
mechanisms and processes associated with the click-fraud in-
dustry. Miller et al. [25], on the other hand, provides a detailed
survey on the click fraud techniques. Specifically, there exists
two common approaches to launch a MCFA. One is through
mobile malware [26], which performs click actions stealthily

as a background task. MadFraud [27] further discovers that
the click fraud malware attempts to remain stealthy by only
periodically sending clicks. Nevertheless, the power of this
attack is of uncertainty because it is mainly decided by the
number of infected phones. Moreover, the advance of security
countermeasures such as [28] and [29] also renders a majority
of click fraud malware ineffective. Thus, attackers shift their
focus on the second method, referred to as ‘click farms’ [30].
A typical click farm deploys thousands of mobile devices and
automates them to generate click events by computers. Clearly,
the power of this approach is increased along with the number
of devices, however, which also incurs a substantial purchasing
expense. One alternative to the expensive physical devices is
emulators. Though emulators have been utilized in a great
amount of literature for runtime analysis [31] and malware
detection [32], little research has been conducted to investigate
the usability of emulators on MCFA. We bridge the gap by
presenting Fraus, that enables us to launch a MCFA with
emulators.

To prevent the MCFA, a number of countermeasures have
been introduced. The simplest solution is to use threshold-
based detection; if a huge number of click events with the same
device profile are received, they can be considered as fraud.
This approach is not effective as device profiles can be easily
modified. More sophisticated solutions are typically based on
data-mining techniques [33]. For example, the research work
[34] utilizes group Bloom filters over click event time series
to detect the fraud. Another interesting approach is to use bait
contents [35] to check whether clients are automated. We can
combine these approaches with our proposed countermeasures
to further increase the resistance against Fraus.

X. CONCLUSION
In this paper, we raise public concerns of the simplicity

of launching a large-scale MCFA by presenting Fraus. Fraus
has a tiny CPU and memory resource demand. Besides, Fraus
can generate a seemingly authentic device profile and disguise
itself as a legitimate device. To facilitate a large-scale attack,
Fraus also provides a distributed emulator cluster management
system, which is scalable and fault-tolerant. We evaluate the
performance of Fraus and demonstrate that Fraus has high
application compatibility and cost efficiency. Finally, we also
propose countermeasures leveraging Fraus’s platform-specific
characteristics to combat such an attack.

REFERENCES
[1] “Mobile click fraud: What 24 billion clicks on 700 ad networks

reveal.” [Online]. Available: https://www.tune.com/blog/mobile-ad-
fraud-24-billion-clicks-700-ad-networks-reveals/

[2] “Businesses could lose 16.4 billion to online ad-
vertising click fraud in 2017: Report.” [Online].
Available: http://www.cnbc.com/2017/03/15/businesses-could-lose-
164-billion-to-online-advert-fraud-in-2017.html

[3] “The bizarre ’click farm’ of 10,000 phones that
give fake ’likes’ to our most-loved apps.” [On-
line]. Available: http://www.mirror.co.uk/news/world-news/bizarre-
click-farm-10000-phones-10419403

[4] G. Cho, J. Cho, Y. Song, and H. Kim, “An empirical study of click
fraud in mobile advertising networks,” in Availability, Reliability and
Security (ARES), 2015 10th International Conference on. IEEE, 2015,
pp. 382–388.

[5] “Inside chinese click farms.” [Online]. Available:
https://www.kotaku.com.au/2017/05/inside-chinese-click-farms/

[6] “Averge selling price for smartphones.” [Online]. Avail-
able: https://www.statista.com/statistics/283334/global-average-selling-
price-smartphones/

[7] “Vps comparsion.” [Online]. Available:
https://github.com/joedicastro/vps-comparison

[8] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat,
C. Kruegel, and G. Vigna, “Baredroid: Large-scale analysis of android
apps on real devices,” in Proceedings of the 31st Annual Computer
Security Applications Conference. ACM, 2015, pp. 71–80.

[9] “Official android emulator.” [Online]. Available:
https://developer.android.com/studio/run/emulator.html

[10] “Bluestack.” [Online]. Available: http://www.bluestacks.com/
[11] “Genymotion.” [Online]. Available: https://www.genymotion.com/
[12] “Dynamic linker hooking techniques.” [Online]. Available:

http://man7.org/linux/man-pages/man8/ld.so.8.html
[13] M. Zechner, J. DiMarzio, and R. Green, “An android in every home,”

in Beginning Android Games. Springer, 2016, pp. 1–14.
[14] T. Graphics, “Mesa3d source code. available from git,” anongit.

freedesktop. org/git/mesa/mesa, 2008.
[15] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens,

“Why mac address randomization is not enough: An analysis of wi-fi
network discovery mechanisms,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security. ACM,
2016, pp. 413–424.

[16] N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.
[17] C. N. Ververidis and G. C. Polyzos, “Service discovery for mobile ad

hoc networks: a survey of issues and techniques,” IEEE Communica-
tions Surveys & Tutorials, vol. 10, no. 3, 2008.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8. Boston, MA, USA, 2010, p. 9.

[19] M. Hashimoto, Vagrant: Up and Running: Create and Manage Virtu-
alized Development Environments. ” O’Reilly Media, Inc.”, 2013.

[20] M. K. Kulkarni and A. Soumya, “Deployment of calabash automation
framework to analyze the performance of an android application,”
Journal for Research— Volume, vol. 2, no. 03, 2016.

[21] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[22] T. Vidas and N. Christin, “Evading android runtime analysis via
sandbox detection,” in Proceedings of the 9th ACM symposium on
Information, computer and communications security. ACM, 2014,
pp. 447–458.

[23] D. Joanes and C. Gill, “Comparing measures of sample skewness
and kurtosis,” Journal of the Royal Statistical Society: Series D (The
Statistician), vol. 47, no. 1, pp. 183–189, 1998.

[24] N. Kshetri, “The economics of click fraud,” IEEE Security & Privacy,
vol. 8, no. 3, pp. 45–53, 2010.

[25] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson, “What’s
clicking what? techniques and innovations of today’s clickbots.” in
DIMVA. Springer, 2011, pp. 164–183.

[26] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices. ACM,
2011, pp. 3–14.

[27] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad
fraud in android applications,” in Proceedings of the 12th annual
international conference on Mobile systems, applications, and services.
ACM, 2014, pp. 123–134.

[28] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2015, pp. 89–103.

[29] S. Nath, “Madscope: Characterizing mobile in-app targeted ads,” in
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2015, pp. 59–73.

[30] A. Juels, S. Stamm, and M. Jakobsson, “Combating click fraud via
premium clicks.” in USENIX Security Symposium, 2007, pp. 17–26.

[31] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[32] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
USENIX security symposium, 2012, pp. 569–584.

[33] X. Zhu, H. Tao, Z. Wu, J. Cao, K. Kalish, and J. Kayne, “Ad fraud
categorization and detection methods,” in Fraud Prevention in Online
Digital Advertising. Springer, 2017, pp. 25–38.

[34] L. Zhang and Y. Guan, “Detecting click fraud in pay-per-click streams
of online advertising networks,” in Distributed Computing Systems,
2008. ICDCS’08. The 28th International Conference on. IEEE, 2008,
pp. 77–84.

[35] H. Haddadi, “Fighting online click-fraud using bluff ads,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 2, pp. 21–25,
2010.

