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Abstract

In this paper, we consider single-user transmission over
a Rayleigh flat fading channel, in which the Channel State
Information (CSI) is known by the receiver only. Subject to
an average transmit power constraint, we study the capacity
of an Additive White Gaussian Noise (AWGN) channel with
Rayleigh fading. Under an independently identically dis-
tributed fading assumption, lower and upper bounds of the
channel capacity are given and proved and they are com-
pared to the capacity results numerically computed. Be-
sides, an approximation result of such channel capacity is
proposed, and by conducting numerical comparison it is
shown that our suggested approximation result has a bet-
ter performance in approximating Rayleigh fading chan-
nels capacity than the bounds given above. In addition, the
channel capacity with outage probability is discussed and
compared with different outage probabilities.

1. Introduction

The discrete-time channel with Additive White Gaussian
Noise (AWGN) model is expressed by

Vi=Us+ Ny, ey

where U; is the channel input, V; is the channel output, and
N; is an AWGN random variable with mean zero and vari-
ance Vg at time ¢. Assume that the channel total bandwidth
is B and the transmit power is S. Then the noise power in
the bandwidth B is then NygB. The channel Signal-Noise
Ratio (SNR) is
S

 NoB’
Then the channel capacity, which is defined to be an upper
bound for the data rate that can be achieved with an arbitrar-
ily small error probability in an AWGN channel, is given by
[6]

¥ @

C = Bloga(1+7) 3)

where a is a positive real number, and C' is the channel ca-
pacity expressed in bits per second (bps) when a = 2 or nats
per second (nats/s) when a = e. In the following discussion,
we use nats per second as the unit of channel capacity.

A radio channel exploits an extremely random charac-
teristic, which does not allow us to use the simple AWGN
channel model mentioned above to analyze the channel ca-
pacity. Radio signals propagate by means of reflection,
diffraction, and scattering, which result in three effects a ra-
dio signal experiences: attenuation, large-scale shadowing,
and small-scale fading. It was proved that these three effects
are independent of each other. Signal attenuation is mainly
introduced by the location of a receiver (distance between
the transmitter and the receiver), which can be predicted by
a deterministic model. Large-scale shadowing of a signal
is mainly caused by multiple reflections and/or diffractions
of the signal while propagating, whose characteristics can
be captured with a log-normal distribution model. Small-
scale fading of a signal is caused by multiple versions of a
transmitted signal with different delay times such that it has
both time and location varying property. One type of chan-
nels with the fading effect caused by the multi-path time de-
lay spread is flat fading channels in which the period of the
transmitted signal is larger than the multi-path delay spread.
Since the received signal power varies significantly (in 20
or 30 dB) in a flat fading channel, it is critical to precisely
capture the distribution of the channel gain for designing a
radio communication system [5]. The most common used
signal amplitude distribution in flat fading channels is the
Rayleigh distribution, which is the focus of this paper.

The outline of this paper is as follows. Section 2 an-
alyzes the Shannon capacity of a Rayleigh fading channel
mathematically. Section 3 compare the numerically com-
puted capacity results with the capacity bounds and the pro-
posed approximation capacity result. Conclusions are made
in Section 4.
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2 Rayleigh Fading Channels’ Capacity

For a flat-fading channel, we consider the system model as
shown in Figure 1, which is expressed by

&\

Figure 1. System Model of a Fading Channel

Vi = VAwexp(jo)U; + Ny, 4)

where V;, Uy, and N, are the same as defined in (1).
VAiexp(jp) is a complex channel gain with amplitude
v/A; and phase ¢ at time t. The phase ¢ is uniformly dis-
tributed in [0, 27), and the signal amplitude \/A; is a ran-
dom variable with a Rayleigh probability density function
(pdf). A, is referred to as the channel power gain with the
time-varying property, which is independent of the chan-
nel input Uy, and could be either independent or correlated
over time. The scope of this paper is limited to the channel
power gain that is independent of each other over time such
that a flat-fading channel has the discrete-time and memo-
ryless properties, i.e., the signal amplitude /A; is constant
over ' > 1 symbol period time units, and after 7" time units,
v/A; is changed to an independent value according to some
density function f (the Rayleigh pdf in this paper).

Let S be the average transmit power. The channel band-
width and the power spectral density of the noise are B and
Ny, respectively. The instantaneous SNR at time ¢ is given
by
 SA
~ NoB’

Theoretically, v; is greater than or equal to zero and does not
have an upper bound since the range of the signal amplitude
V/A; is between zero and infinity with the density function
f. The distributions of A; and ~; are determined by each
other, and the mean 7 of SNR is given by

Ve &)

SA
NoB

7= (6)
where A is the mean of the channel power gain A;.

We analyze the channel capacity for the case that channel
distribution information (CDI) is known by the transmitter
and the receiver, and meanwhile, the instantaneous signal
amplitude +/A; (the channel state information or CSI) is
known at the receiver at time ¢. So is ;. There can be two
types of channel capacity: the Shannon capacity and the ca-
pacity with outage. Shannon capacity is the maximum data

rate that can be sent over the radio channel with asymptoti-
cally small error probability, so is also called the ergodic ca-
pacity. Capacity with outage is the maximum data rate that
can be transmitted over a channel with some outage proba-
bility that is the percentage of data that can not be received
correctly due to the deep fading. Apparently, a higher data
rate (capacity with outage) can be achieved by allowing sys-
tems to lose some data in the event of deep fading compared
with the data rate always received correctly regardless of
the deep fading event (Shannon capacity). However, such
capacity with outage only exists in the case where only the
receiver knows CSI, since if the transmitter also knows the
instantaneous signal amplitude value, then it knows the in-
stantaneous SNR value, thus can decide not to transmit data
while over a deep fading channel.

Since the instantaneous SNR +; is not known by the
transmitter, the channel data rate is constant regardless of
~¢. The maximum data rate can be achieved after the chan-
nel has experienced all possible fading states during a suf-
ficiently long transmitting time, which can be expressed as
follows in the unit of nats per second [1].

+oo
Cs = / Bloge(1 4+ v)p(v)dy (7)
0

where p(7y) is the pdf of the channel SNR ~;, which is de-
termined by the channel power gain A;. We can ignore the
time ¢ since the channel is observed in steady state. The
concavity of the logarithmic function curve gives rise to

Cs < Bloge(1+7) (8)

by applying the Jensen’s Inequality [2]. (8) leads to the con-
clusion that the Shannon capacity of a fading channel with
CSI known by the receiver is less than the Shannon capacity
of an AWGN channel with the SNR 7.

The following lemma gives an expression of Rayleigh
fading channels capacity and its lower/upper bounds .

Lemma 2.1 A Rayleigh flat-fading channel has the average
transmitting power S, receiving bandwidth B and the mean
channel gain o+/7/2 . Assume the AWGN experienced by
the channel has the power Ny. Let d = % be a constant
real number. When CDI is known by both the transmitter
and the receiver and CSI is known by the receiver only, the
Shannon capacity of the Rayleigh fading channel C,. . can
be expressed by

1

1
Cre= Bewp(w)ﬂ(m)

€))

where E, (x) = 1+OO %:tdt, (x>0, n=0,1,---)isthe
exponential integral, and

B
51096(1 +4do?) < C,.. < Bloge(1 + 2do?).  (10)
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Proof: The channel gain v/ A; has a Rayleigh distribution
with pdf

iZ?2

J () = Zeap(~

By the transformation theorem for single random variables,
the channel power gain A; has an exponential distribution
with the mean 202. The pdf of A; is

Y

1
p(y) = Feﬂﬂp(—ﬁ)a y > 0. (12)
From (5), we have v; = dA¢, where d = % is a real con-

stant number. Therefore, ; has an exponential distribution
with the mean 2do?. Now for a Rayleigh fading channel,
by (7), we have

—+oo

C, .= Blog.(1
: ; 0ge( +y)2d0

Yy
2do?

5 erp(— )dy. (13)

Let u = loge(1 +y), and dv = exp(—5is)dy. Using
integral by parts, we have

)+oo

C,. = i{loge(1+y)(—2d026xp(— 0

’ 2do?
o0 _9do? Y
- ~ Y g
/0 Ty P g57) y]
+oo 1 y
= B — - d
/0 T35 P 502 W

oo q 1 x
= B = - d
/1 P (2d02)exp ( 2d02) *

1 teoq T
2do? ) /1 Ee;vp(— 2do? Jdz,

which is the Shannon capacity expression given in the
lemma. Next, we prove the capacity lower and upper
bounds of a Rayleigh fading channel. Apparently, the the
second inequality of (10) can be shown by applying the gen-
eral result of (8) using the fact E [y;] = 2do?. Now we give
proof for the first inequality of (10) and an easier proof to
the second one. For the exponential integral Fy (z) (z > 0),
we have known that [3]

Yy
2do?

= Bexp(

1 2 1
Eloge(l—i——) < e*Ei(x) <log.(1+=), Vx>0, (14)
x T

which is followed by (10) through replacing x by 1/(2do?)
and multiplying each expression by B. The lemma is now
proved.

Now we discuss the capacity with outage probability for
a flat-fading channel. With the discrete-time of a radio
channel, we consider that the instantaneous SNR ~; is con-
stant over a bursty transmission of data (a time block 7),
and then ~; changes to an independent value based on some

distribution. Over such a time block 7, the channel data
rate can reach Blog.(1 + ~;) with a negligible error prob-
ability. However, since the transmitter does not know the
instantaneous SNR value ~;, a constant transmission data
rate has to be used and it is independent of the instanta-
neous received SNR ;. Doyt 1 the defined outage probabil-
ity pout = Pr [”yt < 'y(pom)] , where VPour) is a threshold
value of SNR. The data bits received over a transmit time
block T are correctly received if the instantaneous SNR ~,
is greater than or equal to 7, .) over that time block, and
corrupted otherwise. Hence, it is the capacity of a fading
channel with an error probability p,,;. From [4], we can
have

1 oo
RS —— Bloge(1 +y)p(y)dv, — (15)
— Pout Jo
where R is channel data rate. Then the channel capacity
with outage probability pg,; is

1

Cout = 7
o 1_pout

—+oo
/O Bloge(1+y)p(7)dy, ~ (16)
from which we can treat Shannon capacity of an indepen-
dent flat fading channel, where channel state information is
known only by the receiver, as a special case of capacity
with outage with the outage probability zero. Since deep
fading happens rarely, capacity with outage could increase
by allowing a small error probability. This will be verified
in the next numerical analysis section. For a Rayleigh fad-
ing channel, the channel capacity with outage probability

Pout 18

1

1
W)El(m)v (17)

where d = S/(NoB).
3 Numerical Analysis of Channels’ Capacity

In this section, we compare the results of (9) by numerical
methods with its lower and upper bounds. We also provide
an approximation formula.

It is easy to prove the following results

>0 when0<:1c<%,
=0 whenzxz =3,

1 1 2
lOge(1+_)_§lOge(1+_)
r <0 whenz> 4.

2x

N

(18)
Then, when 0 < 2 < 1, we have

1 2 1 1
Z 2y < V< Z
2loge(l + a:) <log.(1+ Zx) <loge(1+ a:)’ (19)

where the second inequality follows from the monotonicity
of log function. Let x = ﬁ and multiply 19 by B, we
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obtain, when do? > 2,

B

51098(1 +4do?) < Blog.(1+ do?) < Blog.(1 + 2do?).
(20)

Using 10, when the mean value of a Rayleigh fading chan-

nel power gain is no less than 4 (or 6 dB), we have an ap-

proximation expression of Shannon capacity as follows

Cy.e = Blog.(1 + do?). 3))

Figure 2 illustrates a comparison of the Shannon capac-
ity to their lower and upper bounds, and to approximated
capacity computed using (20) with different average SNR
values subject to the average transmit power constraint. The
top curve corresponds to the capacity upper bound, which
is also the AWGN capacity with the same average SNR. It
shows that, for this range of average SNR values, the fad-
ing channel capacity is located between the AWGN capacity
and the capacity lower bound computed using (10). It veri-
fies the result in Lemma 2.1. The curve of the approximated
capacity is much closer to the curve of numerically com-
puted results than the lower bound curve when the mean of
SNR is greater than 6 dB, which shows that our approxi-
mation of Shannon capacity of a Rayleigh fading channel
in (20) is valid with the range of the average SNR 6 dB to
50 dB.
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Figure 2. Rayleigh Fading Channels’ Capacity

Figure 3 shows a comparison of the channel capacity
with outage with different outage probabilities. The AWGN
and Rayleigh fading channel Shannon capacity curves are
added to the figure for comparison. It shows that, capacity
with outage is at least the Shannon capacity. The larger is
the outage probability, the greater increase is the capacity.
For a fixed outage probability, the capacity may exceed the
AWGN Shannon capacity after some average SNR value.

T T T
—+— AWGN Channel Capacity
—s— Fading Channel Shannon Capacity R
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Normalized Capacity (Nats/Sec/Hz)
~
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Figure 3. Channel Capacity with Outage

4 Conclusion

Given an average transmit power, we have studied the ca-
pacity of a Rayleigh flat fading channel, in which the Chan-
nel State Information (CSI) is known by the receiver only.
With an independently identical distributed fading assump-
tion, a lower bound and an upper bound of Shannon channel
capacity for such a channel have been derived mathemati-
cally. An approximation result of a Rayleigh fading channel
capacity was proposed. The comparisons of the Shannon
capacity to its approximation result and to its lower/upper
bounds were made, which verified our approximation re-
sult.
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