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Abstract

This paper presents a probabilistic method for active localization of needle and targets in robotic 

image guided interventions. Specifically, an active localization scenario where the system directly 

controls the imaging system to actively localize the needle and target locations using intra-

operative medical imaging (e.g., computerized tomography and ultrasound imaging) is explored. 

In the proposed method, the active localization problem is posed as an information maximization 

problem, where the beliefs for the needle and target states are represented and estimated using 

particle filters. The proposed method is also validated using a simulation study.

I. Introduction

Physicians commonly perform needle insertion procedures for diagnostic or therapeutic 

purposes, such as tissue biopsy or drug delivery. In these procedures, the needle must be 

inserted in such a way that the needletip intersects a target of interest; a tumor, for example. 

These procedures are complicated by the fact that needles are subject to bending while 

inside the tissue, and that the target may move, due either to physiological motions, such as 

breathing, or due to tissue deformations resulting from the needle-tissue interaction. To 

mitigate problems caused by the the uncertainty of the target position and the needle 

configuration, intra-operative medical imaging techniques, such as X-ray fluoroscopy, 

ultrasound, computerized tomography, and magnetic resonance imaging, can be used to 

provide real-time information about the needle and target locations, and thus allow the 

needle to be steered and enabling a closed-loop needle insertion.

In this paper, a probabilistic formulation of the problem of needle and target localization 

using intra-operative medical imaging is presented. The proposed framework aims to 

simultaneously localize a target embedded in tissue and a flexible needle as it travels toward 

a target, the motion of which is modeled stochastically. The probabilistic measurement 

models account for noise and false detections in the intra-operative medical images. Particle 

filters are used to track the motions of the needle and target, using the data obtained from the 

intra-operative imaging systems. An entropy minimization technique is then introduced to 

actively control the intra-operative imaging system. The proposed models and algorithms 

are evaluated in simulations using artificial motion and imaging data.
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The remainder of this paper is organized as follows. The related work in the literature is 

briefly described in section II. The models for the target and needle motion and the intra-

operative medical imaging, are introduced in section III. The proposed localization and 

active imaging algorithms are presented in section IV. Simulation results are presented in 

section V, followed by discussion and conclusions in section VI.

II. Related Work

DiMaio et al. [2] first proposed steering flexible needles to reach targets embedded in soft 

tissue, without touching obstacles or critical areas inside the tissue. Di-Maio and Salcudean 

observed deformations that happen during needle insertion into a gel and simulated needle 

insertions using a quasi-static finite element method with measured tissue phantom 

parameters [3]. DiMaio and Salcudean [4] formulated a needle manipulation Jacobian using 

numerical needle deflection and soft tissue deformation models. In both simulation and 

experiments, they were able to steer needles to the target in the presence of obstacles in soft 

tissue by manipulating the needle base.

Webster et al. [7], proposed a kinematic model that describe the trajectory of flexible bevel-

tip needles in rigid tissue. Parameters were fit using experimental data. Their model did not 

consider the interaction of the needle with an elastic medium. Misra et al. [9] presented a 

two dimensional model for a bevel tip needle embedded in an elastic medium. Their 

mechanics based model is based on both microscopic and macroscopic observations of the 

needle interaction with soft gels.

Park et al. [12] demonstrated a nonholonomic kinematic model to describe how an ideal 

needle with bevel tip moves through firm tissue with a numerical example. The reachability 

criteria are proven for this model, and an inverse kinematics method based on the 

propagation of needle-tip pose probabilities is presented.

Glozman and Shoham [6] developed a needle-steering system with fluoroscopic imaging-

based guidance. The system can insert flexible needles with a custom RSPR 6-DOF robot 

designed to drive the needle tip in a predetermined, curved trajectory by maneuvering the 

needle base, based on a needle-tissue interaction model. The system can detect the needle tip 

position and considering natural obstacles, can updated the needle path in real-time. An 

inverse kinematics algorithm based on a virtual spring model is applied to calculate flexible 

needle model. More recently, Neubach and Shoham used the same model for flexible needle 

steering inside soft tissues under real-time ultrasound imaging [10].

Dong et al. [5] proposed a framework for localizing needles in ultrasound image frames, in 

which they formulated the localization problem as a segmentation problem. Their proposed 

method can track needles in highly noisy ultrasound images during image-guided 

interventions using level set and partial differential equation based methods.
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III. Probabilistic Motion and Measurement Models

This section describes the probabilistic motion and measurement models used as part of the 

proposed active localization algorithms. Specifically, the needle and target motion models 

and the models of the intra-operative imaging of the needle and the target will be presented.

A. Motion Models

1) Needle Motion Model—The needle is assumed to be flexible and inserted into a 

relatively stiff medium. Therefore, the needle will deform while it is being inserted. In this 

study, a kinematic model is used for the needle. The shape of the needle as it is subjected to 

deformations is modeled as a piecewise cubic spline. At time t, the shape of the needle is 

given by the parametric equation

(1)

(2)

where aj,t, bj,t, cj,t, dj,t ∈ R3 are the coefficients of the spline segment j at time t, K is the 

number of segments, and λ is the parameter of the splines. The continuity of the needle 

curve and its tangent direction is enforced by the boundary conditions

(3)

(4)

for j = 1..(K – 1). The state of the needle at time t, denoted by xn,t, can then be defined by the 

x, y, z coordinates and tangents at the end points of the spline segments, subject to the 

continuity conditions of (3-4).

The needle control input, un,t, consists of the displacement of the entry point, the change in 

the tangent direction at the entry point, and the insertion length. In this study, the 

incremental motion of the needle as it is inserted into the tissue is modeled as a random 

process to account for uncertainties in the needle motion and deflection. As the proposed 

active localization algorithms (section IV are based on Bayes’ filtering using particle filters, 

it is sufficient to sample from the motion model p(xn,t|un,t, xn,t–1), instead of computing the 

posterior probability density function for arbitrary states and inputs.

Given the needle control input, the motion of needle is modeled as the composition of three 

motion phases. The first phase is the change in the needle configuration as a result of the 

motion of the needle base, i.e., the displacement of the entry point and the change of the 

tangent direction. The second phase is the axial insertion of the needle into the tissue. The 

third phase is the random perturbations to the shape of the needle due to unmodeled tissue-

needle interaction forces, which modifies the state of the needle by perturbing the positions 

and tangents of the control points.
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Algorithm 1 is used to generate random samples from p(xn,t|un,t, xn,t–1), for a given prior 

state xn,t–1 and needle control input un,t. Lines 1–4 perturb the commanded control 

parameters. Line 5 calculates the needle configuration as a result of the base motion. Line 6 

then calculates the needle configuration after needle insertion. The final needle 

configuration is then additionally perturbed by randomly perturbing the positions and 

tangents of the control points in line 7. Examples of needle insertion simulations are shown 

in Fig. 1.

2) Target Motion Model—The target is assumed to be a spherical object, with radius R, 

undergoing Brownian random motion to account for the displacements of the target as a 

result of unmodeled tissue deformations. The state of the target at time t consists of the x, y, 

z coordinates of the center of the target, and will be denoted as xg,t. Then, each coordinate of 

the state of the target at time t + Δt will be drawn from a Gaussian probability density 

function

(5)

where κ is the variance of the Brownian motion for unit time, and  is the normal 

distribution function with mean μ and variance σ2. For brevity, in the rest of the paper, the 

time step Δt is not explicitly specified, and, instead, the time variable t is used as integer 

time index.

B. Measurement Models for the Intra-Operative Medical Imaging System

In many medical imaging technologies, such as ultrasound and computed tomography, the 

images are acquired serially, and each image represents a single slice of the patient. These 

images are typically processed using an image processing algorithm, which is used to detect 

if the target or the needle is present in the image, and, if present, determine their locations. 

As with any sensor system, measurement of target and needle locations using the intra-

operative medical imaging system is prone to measurement errors due to noise. The 

proposed measurement models explicitly model the inherent uncertainty in the sensor 

measurements, characterized in the form of a conditional probability distribution function 

p(zt|xt). Here, xt is the system state, including the needle and target locations as well as the 

current image plane, and zt is the measurement vector.

In this study, the image processing performed on the intra-operative medical images is 

treated as a black-box system, whose output is two logical variables, znd,t and ztd,t, which 

indicate, respectively, if the needle and target have been detected in the current image, and 

two corresponding image coordinate variables, znc,t and ztc,t, which return the locations of 

the detected needle and target on the image plane. Furthermore, the measurements of the 

needle and the target are assumed to be independent, i.e., p(zt|xt) = p(zn,t|xt)p(zg,t|xt). For 

notational simplicity, the measurement outputs for detection and location the needle and 

target are denoted by zn,t and zg,t, respectively.

1) Needle Measurement Model—The proposed model of the needle measurement using 

the intra-operative imaging system incorporates both needle detection errors, i.e., false 
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positives and misses, and error in image locations of correctly detected needle. In a noise 

free sensor, the needle would be detectable in an image if the needle intersects the current 

image plane, and the intersection point on the image plane would be the corresponding 

image coordinates of the detected needle. The visibility of the needle in the “noise-free” 

image will be denoted by the logical variable In, where a “true” value corresponds to an 

actual intersection between the needle and the image plane, and the corresponding image 

coordinates will be denoted by pn.

In the actual (noisy) imaging system, the needle imaging is assumed to have true positive 

and false positive rates of αn,tp and αn,fp, respectively. Then, the true and false positive 

probabilities can be written as:

(6)

Adding the true and false positive rates yield the needle detection probability

(7)

and

(8)

For a true positive (TP), the measured needle location in the actual (noisy) imaging system 

is assumed to have zero-mean Gaussian noise. For a false positive (FP), the measured 

locations is assumed to be uniformly distributed over the image plane. Then, for each of the 

two coordinates i = 1, 2 on the image,

(9)

(10)

where mini, maxi is the minimum and maximum coordinates of the image plane in the 

corresponding dimension, and  is the uniform distribution function in the 

domain [min, max].

Combining the probability density functions for the needle detection and coordinates, using 

the conditional probability and total probability equations, yields the probability density 

function of the needle measurement model as:
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(11)

where, in the last step, the independence of the measured needle location's noise in the two 

dimensions is used. It is important to note that, in the derivations above, the dependence of 

the needle measurement to the configuration of the imaging plane has not been explicitly 

included in the equations to simplify the notation.

2) Target Measurement Model—The target measurement model used is very similar to 

the needle measurement model described above, except for one difference. In the target 

measurement model, a “true positive” probability value that is a function of the target's cross 

section area visible in the image plane is used instead of a constant true positive rate. 

Specifically, the “true positive” detection probability is defined as:

(12)

where Ag is the target's cross section area visible in the image plane, and Ao is a critical area 

above which the detection probability is equal to 1. Then the true and false positive 

probabilities for target detection can be written as:

(13)

where the variables are defined analogously to the needle model case. The remaining 

equations of the target measurement model are similar to the needle measurement equations 

(7-11), with the relevant variables defined in an analogous way, and will not be repeated 

here. Similar to the needle measurement model equations, the dependence of the target 

measurement on the configuration of the imaging plane has not been explicitly included in 

the equations in order to simplify the notation.

IV. Active Localization Algorithms

In this study, a scenario where the system directly controls the imaging system to actively 

localize the needle and target locations using various forms of intra-operative imaging (e.g., 

computerized tomography, and ultrasound imaging) is explored. This active localization 

problem are posed as an information maximization problem (e.g., [1], [14], [8]), where the 
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beliefs for the needle and target states will be represented and estimated using particle 

filters.

A. Needle and Target Localization

In order to reduce the computational complexity of the problem by reducing the 

dimensionality of the state, the beliefs of the target and needle states will be estimated by 

using two separate particle filters; one to track the target, and the other to track the needle. 

Algorithm 2 shows the particle filtering algorithm used for needle localization (adapted from 

the generic particle filter algorithm, e.g., from [14]). The algorithm for the target localization 

is analogous.

The particle filter for localizing the needle uses particles of dimension 6K, where K is the 

number of control points. These dimensions correspond to the position and tangent vectors 

for each control point, and each particle represents a possible needle shape. The particle 

filter for localizing the target uses 3-dimensional particles that represent possible (x, y, z) 

positions of the target.

B. Active Localization Using Information Maximization

In active localization, the system actively controls one or more of the control inputs to 

maximize information about the state of the system. In the considered application there is a 

natural decomposition of the control inputs of the system. The intra-operative medical 

imaging system can be controlled to actively localize the needle and the target, while the 

needle control inputs can be used to execute the task (such as, direct the needle towards the 

target). In this study, a greedy exploration algorithm based on entropy minimization is 

employed (Algorithm 3). In the algorithm, the entropy of the needle and target's beliefs, 

which are represented using particle filters, are estimated using the differential entropy 

calculation approach [11], [13].

V. Simulation Results

The proposed models and algorithms are demonstrated by the following simulated needle 

insertion task and observing the performance of the algorithms in tracking the needle and the 

target.

In the simulation experiment, a computerized tomography (CT) system is used as the intra-

operative imaging system. The slices of the CT scanner are orthogonal to the initial needle 

insertion direction. The scanner has needle and target measurement error variances of 

, with αn,fp = 0.02, αn,tp = 0.98, αg,fp = 0.01, and Ao = 75 mm2. In 

order to reduce the computational complexity, at the expense of reduced resolution, CT 

scanner image planes are assumed to be positioned in 5 mm increments. The needle is aimed 

at a 0.5 mm radius target at depth of approximately 140 mm from the needle entry point. 

The location of the target is not initially known by the system, except for the fact that it lies 

in a (60 mm)3 region. The target is also undergoes Brownian motion with κΔt = (0.1 mm)2.

The target region is initially scanned linearly in 12 steps to locate the target. In the initial 

scanning phase, only the target localization algorithm is executed, as the needle is not 
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inserted, and the imaging is performed linearly. Once the target is located, the needle is 

inserted straight towards the target in 27 steps, each with 5 mm insertion increments. 

Although the model used in the active localization algorithm assumes a nominally straight 

needle, the actual needle used has a bevel tip. The bevel tip of the needle would result in a 

lateral deviation of approximately 12 mm in the actual needle trajectory, for the 140 mm 

needle insertion (effective curvature of 1.410–3 mm–1). For illustration purposes, the needle 

is inserted in open loop mode, without any explicit feedback control, in order to investigate 

if the needle will be successfully localized or not.

The performance of the proposed algorithm was measured by performing 20 repetitions of 

this experiment and measuring the error between the actual and estimated (using expected 

value of the belief functions) locations of the needle tip and target. The resulting absolute 

needle tip and target localization errors were 0.80 ± 0.36 mm, and 0.68 ± 0.35 mm (mean ± 

standard deviation), respectively.

Fig. 2, 3, and 4 shows sample results from the simulated needle insertion tasks. Fig. 4 shows 

the active localization algorithm's beliefs of the needle and target at four different steps in a 

sample execution of the task. As it can be seen from the figure, the active localization 

algorithm was successfully able to accurately capture the deviated shape of the needle. Fig. 

2 shows the kernel smoothed density estimates for the target and needle tip location beliefs, 

estimated from the corresponding particle filter outputs, at the end of a sample execution of 

the task. The results indicate that the target and needle locations were estimated accurately. 

Finally, Fig. 3 shows the change in the entropies of the target and needle tip location beliefs 

during a sample execution of the task. As it can be seen from the figure, the algorithm 

successfully alternates between imaging the target and the needle in order to minimize the 

total entropy of the belief.

VI. Discussion and Conclusions

This paper describes the formulation of a framework for active localization of a flexible 

needle and targets embedded in the tissue in needle-based image-guided medical 

interventions. In this proposed paradigm, the system directly controls the imaging system, as 

the needle is being inserted into tissue, to actively localize the needle and target locations 

using intra-operative medical imaging data (e.g., from computerized tomography, or 

ultrasound imaging). The uncertainties in the needle and target motions as well as the 

imaging system have been explicitly considered using a probabilistic formulation. The 

proposed algorithms were successfully validated using a simulation study.

The simulation results indicated that the proposed algorithms were able to localize the 

needle and the target with accuracy comparable to the imaging resolution. Furthermore, the 

proposed active localization approach, which greedily minimized the entropy of the target 

and needle state belief probability density functions, was successful in simultaneously 

localizing the target and the needle by alternating between imaging the target and the needle 

as necessary.

It is important to note that the presented results, which only includes a simulation based 

validation study, is intended as a proof-of-concept of the proposed active localization 
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approach for robotic image-guided interventions under intra-operative imaging assistance. A 

hardware validation of the proposed algorithms using data from an actual intra-operative 

medical imaging system is a subject of future work.

Computation time, which has not been addressed in the current study, is an important 

concern as it is in any particle filter-based algorithm for high dimensional state spaces. In 

the current implementation with MATLAB (version 7.11), one time step of the algorithm, 

which includes execution of needle and target state belief updates (Algorithm 2) and the 

entropy minimization computation (Algorithm 3), takes 88 seconds on a PC with 2.66 GHz 

Intel Xeon processor and 8 GB of memory. A real-time implementation of the proposed 

algorithm is a subject of the future work. The necessary speedup can potentially be achieved 

by a more computationally efficient implementation, and by employing parallel processing 

(including, GPU-based computation), as particle filtering algorithms can be trivially 

parallelized.
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Fig. 1. 
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(a) An example 4 control point needle, showing flexion of the needle as it is partially 

inserted into the simulated tissue. (b) 20 samples from the posterior distribution of the 

needle shape after execution of the needle command shown in (a).

Renfrew et al. Page 11

IEEE Int Conf Automation Sci Eng (CASE). Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Kernel smoothed density estimates for the needle tip (a) and target (b) location beliefs. The 

solid vertical lines indicate the actual value of the needle tip / target location.
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Fig. 3. 
Change in the entropies of the needle tip (dashed) and target (solid) location beliefs during a 

sample execution of the task. As it can be seen from the figure, the algorithm successfully 

alternates between imaging the target and the needle in order to minimize the total entropy 

of the belief.
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Fig. 4. 
The particle filter tracking the needle and target. The blue line (invisible) is the actual needle 

shape, the green lines are the shapes of the particles in the needle belief function, the large 

semi-transparent sphere is the actual target, the red circles are the centers of the particle in 

the target belief function, and the semi-transparent plane is the current imaging plane. (a) 

Initial particle distribution when the location of the target is unknown. (b) The target is 

localized at the end of the linear scanning phase. (c) Particle distribution at the mid point of 

the needle insertion. (d) Particle distribution at the end of the task. Figures show that the 

algorithm successfully localizes the needle and target configurations.
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Algorithm 1

Algorithm for generating random samples of needle state, xn,t, from prior needle state xn,t–1 and needle control 

input uxn,t. un,t consists of the displacement of entry port, db, rotation of the tangent direction, R̂b, insertion 

length, li, and rotation of the needle tip insertion direction, R̂
tip. The calculation of the perturbation terms dp, 

Rp1, lp, Rp2 have not been included because of space constraints.

function NEEDLEMOTIONSAMPLE(db, Rb, li, Rtip)

    d̂
b ← db + dp

    R̂
b ← Rp1 * Rb

    l̂i ← li + lp

    R̂tip ← Rp2 * Rtip

    x1 ← NeedleBaseMotion(xn,t–1, d̂
b, R̂

b)

    x2 ← NeedleInsertion(x1, li, R̂
tip)

    xn,t ← RandomPerturbation(x2)

return xn,t

end function
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Algorithm 2

Particle filtering algorithm for needle localization.  is the set of particles that represent 

the belief of the needle state at time t. N is the number of particles used.

function UpdateNeedleBelief(Bn,t−1, un,t , zn,t)

        B
‒

n,t ← ∅

        Bn,t ← ∅

    for n = 1 → N do

        sample xn,t
n ∼ p(xn,t ∣ un,t , xn,t−1

n )
                wt

n ← p(zn,t ∣ xt
n )

                B
‒

n,t ← B
‒

n,t + (xn,t
n , wt

n )
        end for

        Bn,t ← LowVarianceSampler(B‒n,t)
return Bn,t

end function
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Algorithm 3

Greedy active localization algorithm based on entropy minimization. Here, it is assumed that the needle 

control input un is separately determined by a needle motion planner and controller based on the current 

beliefs of needle and target states. Also, the dependence of the needle and target measurements to the 

configuration of the image plane, specified by ui, is explicitly included in the measurement model expressions 

for clarity.

function ActiveLocalization(Bn,t , Bg,t , un,t+1)

    ρu ← 0 for all image plane configurations ui

    for n = 1 → Nn do

        for all image plane configurations ui do

            sample xn
′ ∼ p(xn

′ ∣ un,t+1, xn,t
n )

            sample zn
′ ∼ p(zn

′ ∣ xn
′, ui)

                        Bn
′ ← UpdateNeedleBlf(Bn,t , un,t+1, zn

′)
                        ρu ← ρu − Entropy(Bn

′)
                end for

        end for

    for n = 1 → Ng do

        for all all image plane configurations ui do

            sample xg
′ ∼ p(xg

′ ∣ xg,t
n )

            sample zg
′ ∼ p(zg

′ ∣ xg
′.ui‘)

                        Bg
′ ← UpdateTargetBelief(Bg,t , zg

′)
                        ρu ← ρu − Entropy(Bg

′)
                end for

        end for

return arg maxu ρu

end function
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