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Abstract

Although many of the software engineering activities can
now be model-supported, the model is often missing in soft-
ware development. We are interested in retrieving state-
machine models from black-box software components. We
assume that the details of the development process of such
components (third-party software or COTS) are not avail-
able. To adequately support software engineering activi-
ties, we need to learn more complex models than simple
automata.

Our model is an extension of finite state machines that
incorporates the notions of predicates and parameters on
transitions. We argue that such a model can offer a suitable
trade-off between expressivity of the model and complexity
of model learning. We have been able to extend polynomial
learning algorithms to extract such models in an incremen-
tal testing approach. In turn, the models can be used to
derive tests or for component documentation.

1. Introduction

Many of the software engineering activities such as code
analysis, test case generation, component management and
documentation etc, can be supported with formal models
for their effective implications. Typically in an industry,
due to limited exchange of information among component
providers and component users [4], engineers find difficulty
in providing a required system integration if they have lim-
ited knowledge of the behaviors of the components, which
they use in the system. Normally, these components that
are obtained from external sources, also known as COTS
(commercial-off-the-shelf), are not provided with formal
models or with precise documentation. In this situation, en-
gineers test each component to get a rough idea of its in-
tended behaviors on typical requests it would have to serve
in the assembly, and then test the integrated system of these
components based on variations of use cases. Thus absence
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of formal models is a daunting prospect for providing an
effective and quality integrated solution.

Our approach to address this problem is to learn the mod-
els directly from the components and then steer the test-
ing effort using these models. This approach provides us
with a key towards automata learning to support integration
and testing of components that can be regarded as black
boxes whose internal structure is unknown. We deal with
the domain of complex telecommunication applications. A
typical framework is the process associated with design-
ing a service as an assembly of communicating distributed
components. Integration entails experimenting with various
use cases to elicit component interactions, and in particu-
lar potential interoperability problems in data values passed
around. Therefore we need to advance from simple state-
machine inference to the inference of more expressive mod-
els that can maintain the fine granularity of complex sys-
tems, i.e., parametric details and also some notion of non-
determinism. Thus, our current work proposes a parame-
terized model as an extension of simple finite state machine
that can be learned in polynomial time with modifications
in existing learning algorithms in this domain.

In section 2, we present our model and compare it to the
state of the art in the learning methodologies. We show in
section 3 how we combine testing and model derivation in
an iterative approach. The algorithm for model inference is
briefly presented and illustrated on a small example.

2. Parameterized Model

In this section we give a formal description of our param-
eterized model and then a brief comparison with the existing
work.

2.1. Definition

A Parameterized Finite State Machine (PFSM) M 1is a
tuple M = (Q,1,0,D;,Do,T,qp), where @ is a finite
set of states, I is a finite set of inputs, O is a finite set of



outputs, Dy is a set of input parameter values, Do is a set
of output parameter values, gy € @ is an initial state, and T’
is a set of transitions.

A transition ¢ € T is described as: t = (q,¢’,4,0,p, f),
where ¢ € @ is a source state, ¢/ € @ is a target state,
1 € T'isaninput, o € O is an output, p C Dy is a predicate
on input parameter values and f : p — Dy is an output
parameter function. We consider that the model is restricted
with the following three properties.

Property 1 (Input Enabled) The model is input enabled,
ie, Vg € Q, Vi € I andVx € Dy, 3t € T such that
t=1(q,q,i,0,p, f), in which x € p.

The machine can be made input enabled by adding loop
back transitions on a state for all those inputs which are not
acceptable for that state. Such transitions contain a special
symbol Q2 € O as output. Similarly, there exists transitions
which do not take input parameter values into account. Such
transitions contain a special symbol L € Dy in the place
of parameter value to expresses the absence of parameter
value. For the sake of simplicity, we do not write this sym-
bol while modelling with PFSM. For example, in Figure 1,
the transition from state 1 to state 2 has an input ON with-
out any parameter value. This is simply represented by O N
instead of ON({L}).

Property 2 (Input Deterministic) The model is input de-
terministic, i.e., for ti,to € T such that t; =
(QI»qllvilvolaplafl)’ t2 = (q27q/277;27027p27f2) and tl 7é
to, if 1 = q2 Niy = iy then py Npy = ¢.

Property 3 (Observable) The model is observable, i.e., for
ti,to € T such that t; = (Q1,qi,i1,01,p1,f1), to =
(92, q5,12,02,p2, f2) and t1 # to, if 1 = g2 N i1 = g
then 01 # 0o.

For a PFSM with properties 1 and 2, we can define the
following functions: § : @ x [ x Dy — (@ is target state
function, and A\ : @ x I x Dy — O is output function.

When M is in state ¢ € @ and receives an input ¢ € [
along with the parameter value x € Dy, the target state ¢
and the output o are determined by the functions § and A

respectively.
For an input sequence v = 41 - i3 - ... - i and an in-
put parameter value sequence « = 1 - T3 - ... - T, Where

ij € I,z; € Dr(1 < j < k), we define the association of y
and avas Y@« = 41 (21)-92(x2) ... ik (2 ), where each x; is
associated with 4;. The association of output sequence and
output parameter value sequence is defined analogously.
Then, for the state ¢; € (), when applying a complete pa-
rameterized input sequence 7 ® «, M moves successively
from ¢ to the states g1 = 6(g;,%;,2;)(1 < j < k). We
extend the functions from input symbols to parameterized

T(x<12) f LT(h(x))
OFF/ack
1={ON,OFF,T}
Tx=[12,15) /M D: = Z (set of integers)
LH,x=[8l1]
Ohfack h(x)={MH,x=[3,7]
HH,x<3.
F,x=[16,30]
e(x)=
AC,x>30

Abbreviations: T(x>15) / HT(c(x))
T: Temperature
MT: Moderate Temp.
LT: Low Temp.
HT: High Temp.

LH: Low Heating

MH: Moderate Heating

HH: High Heating

F: Fan, AC: Air Conditioning

Figure 1. An example of PFSM model

input sequences as 6(q1,7y,®) = qx+1 to denote the final
state gr41 and A(q1,7,a) = o1(y1) - 02(y2) - ... - 0k (Yk),
where each 0o; = A(g;,%5,2;5),y; = o(gj,4;)(x;), V1 <
7 < k, to denote the complete parameterized output se-
quence, when applying v ® « on ¢;. An example of PFSM
is shown in Figure 1.

2.2. Learning Models in Practice

Our model is an extension of simple finite state machine
enriching it with parameters and predicates. At the same
time, it is a restricted model that does not capture the in-
depth details of a system, e.g., variables, assignment func-
tions and complex guards, etc. This restriction is applied in
order to mitigate the complexity of the learning algorithm,
since our approach is to learn the formal models from black
box components. It is hard to obtain fully accurate mod-
els in the form of, e.g., EFSM (Extended Finite State Ma-
chines) [16, 15] and ASM (Abstract State Machines) [5],
from a black box component. Actually, most works [9] [2]
about learning models from the behaviors of components
are limited to simple state models. For example, a poly-
nomial time algorithm [1] is well-known that conjectures a
DFA through active learning technique. Recently, another
approach [11] to learn DFA is proposed using genetic algo-
rithm.

Basic DFA or FSM learning algorithms have been reused
in the context of model-checking [7]. Actually, model-
checking builds reachability graphs akin to DFA, so the
techniques can be integrated at that level. Here, we need
to address arbitrarily complex data values in parameters
exchanged between components. Modelling at FSM level
could result in a combinatorial blow up on transition labels
(and the required number of tests to learn them), and in loss
of genericity of the models. Therefore, in the study of learn-
ing reactive systems [8], an I/O automaton is taken into ac-
count with certain optimization in the basic Angluin’s DFA



algorithm [1]. As an extension, we have presented an al-
gorithm [12] to learn Mealy machines from a black box
component. Recently, a parameterized model [3] has been
proposed for which the existing algorithm is adapted. This
model preserves all the properties of DFA, plus incorporates
parameters and guards on transitions. However, it does not
associate outputs with actions (or inputs) and assumes only
boolean space for the parameter values. There are other
similar works, e.g., [14] and [19] that propose techniques
to extract more in-depth knowledge and considerably high-
level state based models from a component, but they are
mostly relying on source code. On the contrary, we have
proposed a simple parameterized model [13] and an algo-
rithm to infer it from a black box component. In this paper,
we extend our work to enrich this model with the notion of
predicates and observable nondeterminism.

Our model (in def. 2.1) exhibits the following exten-
sions: 1) parameterized inputs and outputs, 2) arbitrary
(non-finite) domains for parameters, 3) guards on input pa-
rameters, i.e., p defines a guard for the corresponding tran-
sition, 4) observable nondeterminism when interacting with
input parameter values, 5) arbitrary functions f for output
parameter calculation, 6) f can be a partial function.

At the same time, it entails the following restrictions
w.r.t. to EFSM: 1) single parameter for inputs and outputs,
and a single domain for all I/O symbols, 2) no (state) vari-
ables: all state information must be encoded in Q.

The first point is not a real restriction to the model, in
fact, it is purely a notational simplification. Since we allow
arbitrary domains and output parameter functions, it sim-
ply means that we need some mapping between the vectors
of types of parameters for actual interactions and a suitable
domain to represent them. However, the second point is
more tricky. The problem stems from the fact that since the
internal structure of a component is unknown, the encod-
ing of state information between () and variables might be
arbitrary, so the learning process can hardly infer a mean-
ingful state structure. We can argue that the main limitation
is not the absence of variables but the fact that the number
of states is finite. Anyhow, since we are set in a testing con-
text, the number of tests sets a limit on observations and we
shall learn finite approximations of machines.

Our major contribution has been in the corresponding al-
gorithm needed to learn such a complex model. In the next
section, we shall present the key points of our approach,
extending previous algorithms.

3 Usage of PFSM Model in Component Inte-
gration Testing

In this section, we describe the approach of integration
testing guided by machine learning, in which the PFSM
model is used.

3.1 Integration Testing Approach

Here we adapt the approaches described in [12] and [13]
for PFSM. The components we deal with are viewed as
black boxes with known input alphabets. The integrator has
a number of test scenarios for the global interaction of the
system with its environment.

The outline of the component integration testing ap-
proach is as follows:

1. In the first step, for each component C', an input alpha-
bet I~ is defined which corresponds to the invocations
on interfaces, and an input parameter domain Dy is de-
fined by mapping from vectors of types of parameters
for actual interactions. A simple mapping mechanism
is to define D; as the Cartesian product of the domains
of all the related parameters for each input ¢ € I, and
to define Dy = UZEIC D;.

2. Each component is (unit) tested separately using the
learning algorithm until a conjecture can be made. The
basic ideas of learning algorithm for PFSM are de-
scribed in Section 3.2. This provides the first model
c® for C.

3. The components are integrated. The assembly is tested
in two stages.

In first stage, we systematically test the provided
system-wide test scenarios expected from the assem-
bly. In that stage, we select input parameter values
according to test scenario to construct parameterized
input sequences, observe the parameterized output
sequences, and determine whether a test scenario is
respected. With the help of domain expertise, faults
can be detected, or a discrepancy with the inferred
model may be identified, leading to incremental
refinement of the model.

In a second stage, we generate (interoperability)
tests from the models of the components. Existing
works on integration (interoperability) testing [10] [6]
[18] can be adapted to the PFSM model. Since we are
dealing with parameterized model, for each test case,
we select input parameter values in addition to input
symbols. Tests are performed until a discrepancy
between predictions from the models is found or
some coverage criteria on the models are achieved.
Classifying discrepancies as faults may require expert
1mput.

In our previous work with simplified PFSM [13],
from a source state, transition is only determined by
the input symbol. Thus, parameter selection in testing



is not as important as in this work. In our context, the
main focus is to make sure the interactions between
the components are correct. Thus, the test generation
approach is to cover all the reachable interactions
between components. In order to achieve this, we
select parameter values used in unit testing which can
trigger interactions according to the current models
of components. On the other hand, since the current
models are only approximations of the component
implementations, we want to observe more behaviors
of the components. So, we select parameter values
which have not been used in unit testing. In test
generation, the two parameter selection strategies are
combined.

4. In both stages, discrepancies can lead to model refine-
ment. The counterexamples found are injected in the
learning algorithm to obtain the new model C'**1) of
component C.

5. At the end of integration testing, for each component,
we have a PFSM model, which is consistent with all
the tests that have been passed. At the same time, the
joint behavior of these components have been system-
atically tested. Faults could be discovered during inte-
gration test execution.

3.2 Unit Testing / Learning Algorithm

Assume an  unknown PFSM M =
(Q,1,0,D;,D0,T,q) with known input symbols [
and input parameter domain D; is used to model a
component C'. Since we can submit any input sequence
with parameters to the component and observe the corre-
sponding output sequence with parameters, for any input
sequence r ® x(r € I*,xz € Dj,|r| = |z|), A(qo,T, x)
can be known from testing. We also assume that each
component can be reset to its initial state before each test.
A full formal description and illustration of the learning
algorithm are addressed in our recent paper [17]. Here we
provide a broad view, covering the basic elements of the
algorithm.

3.2.1 Observation Tables

The basic data structure of the learning algorithm is an ob-
servation table, denoted by (S, E, R, T'). S is a nonempty
finite set of access sequences as they are used to access the
different states of the PFSM we are learning from its initial
state. In PFSM, starting from the initial state, the end state
is determined not only by input symbol sequence but also
input parameter value sequence. Based on this observation,
we call the association of an input symbol sequence and a
set of input parameter value sequences as Composite Input

ON OFF T

eRe (Liack® 1) | (L,Q® 1) 4,99 1),(12,Q® 1)
ON® L (L,a® 1) (LQ®l) | 4, LToMH),(12,MT ® 1)
ON T®l -4 (Lo®1) | (Lak®l) | (4, LT@MH),(12,MT ® 1)
ON T®l-12 (Lol | (Le®L) | (LT@MH),(12,MT® 1)

ON.-T-OFF®1-4-1 | (Lack®l) | (LQ®L) (4,0 1),(12,0® 1)
ON.T-T@l-4-4 (Lo®1) | (Lackel) | (4, LT @ MH),(12, MT 1)
ON-T-T®l-4-12 | (L,Q®1) | (LQ®1) | (4LT®MH),(12,MT® 1)

Table 1. An Observation Table

Sequence, and take composite input sequence as access se-
quence.

F is a nonempty finite suffix-closed set of input strings.
They are called Separating Sequences, as their goal is to
separate between different states of the conjecture.

R is a superset of S. Whenever an access sequence is
added into S, we obtain a group of new composite input
sequences by extending the input symbol sequence with all
1 € I and selecting x € Dy to extend the set of input param-
eter value sequences, and add these new composite input
sequences to R.

Initially, R = S = 0, and & = I. The first operation of
the learning algorithm will be adding ¢ ® ¢ ! into S.

The function T is defined on R x E. In PFSM, start-
ing from a parameterized input sequence, different parame-
terized output sequences can be observed by inputting the
same separating sequence with different input parameter
value sequences. So, forr € Rand e € E, the entry T'(r, €)
is the mapping from input parameter value sequences to pa-
rameterized output sequences.

Observation table can be visualized as a two-dimensional
array with rows labelled by the elements of R and columns
labelled by the elements of F, with the entry for row r and
column e equals to T'(r, e).

An example of observation table is shown in Table 1 for
learning a PESM model given in Figure 1.

3.2.2 Make Conjecture from Observation Tables

In the learning procedure, the observed behaviors of the
component C' are recorded in observation table. Finally,
we make a conjecture model of the component from obser-
vation table. The conjecture has the minimum number of
states among the models consistent with observation table.
In order to make the conjecture well defined, the observa-
tion table should exhibit three properties.

In making a conjecture from observation table, access se-
quences in S represent states. In order to determine whether
two composite input sequences correspond to the same state
or not, we need to compare rows in the table. For this pur-
pose, we introduce the following definitions.

For r1, 79 € R, if starting from states reached by r; and
ro respectively, we can obtain different parameterized out-
put sequences by inputting the same parameterized input

le is an empty string.



sequence, we say the rows corresponding to r; and ro are
dissimilar. In this case we are sure 71 and ro correspond to
different states.

For two rows which are not dissimilar, in order to com-
pare them, we need to make sure that the same group of
parameterized input sequences has been executed starting
from their corresponding states. If for each pair of rows
which are not dissimilar, the observation table has this prop-
erty, we say the observation table is balanced.

For balanced observation table, we can compare rows
by the normal relation of equality “=". Then, the concepts
closed and consistent can be defined accordingly. In the
observation table, the states represented by r € R\S are
successive states of the states represented by s € S. If all
these successive states are also represented by some s’ € S,
then the observation table is closed. If for all s1,s9 € S
representing the same states, they have the same successive
states for all executed input symbols and parameter values,
then the observation table is consistent.

When the observation table is balanced, closed, and con-
sistent, we can make a conjecture PFSM from the observa-
tion table in which states are defined based on S and transi-
tions are derived from 7'. The information recorded in the
cells is used to label transitions with parameterized inputs
and their corresponding parameterized outputs and R helps
in selecting correct source and target state from .S for each
transition.

For an interesting reader, we refer to [17] for complete
formal definitions of the algorithm and its complexity dis-
cussion.

3.3 Illustration

We have given an example of HVAC (Heating-
Ventilating-Air-Conditioning) controller in Figure 1. It
works on different temperature values (provided externally
through temperature sensor etc.) and controls heating and
cooling systems with respect to those values. Suppose that
this component is integrated in a system of home appliances
where various other components are working and interact-
ing with each other. Consider that HVAC controller is a
black box component and needs to be tested for this inte-
grated environment. According to our approach, we learn
this component with its basic input set I = {ON,OFF, T}
and using the learning algorithm given in 3.2. We obtain a
conjecture of this component, given in Figure 2, from the
observation table given in Table 1. Other components are
learned individually following the same unit testing proce-
dure.

The conjecture depicts the behavior of the controller for
the temperature values exercised in its unit testing, i.e., 4
and 12. In the integration testing, we generate test cases
using the learned models to test the interoperability of this

TU12) I MT

T(4) fLT(MH)

OFF fack

Figure 2. Conjecture of the example in Figure
1 from Table 1

component with others in the system. The model in Fig-
ure 2 does not portray the behavior of the controller when
weather is extreme. To fulfill the objective of discovering
more behaviors, we generate test cases with parameter val-
ues other than used in the unit testing, i.e., values higher
than 12 and lower than 4. This leads to find more behaviors
of the actual component, followed by its refinement using
the learning algorithm (by injecting new parameter values
in the observation table). The new model will then be de-
rived and put again under integration testing.

We reason that the parametric structure of the model
steers a reasonable testing effort that improves compre-
hension about black box components iteratively (by using
learning algorithm) as well as helps in testing their interop-
erability within an integrated system.

4. Conclusion

We have presented a parameterized model that can be
learned from black box components using existing tech-
niques. For that, we have given a flavor of learning algo-
rithm in order to learn this parameterized model. We also
illustrated our integration testing approach for components
using their learned models with the help of an example.

We advocate the need of expressive models in ma-
chine learning that are more adequate for using in model-
supported tasks. Actually, our model provides a subset that
could be easily integrated into the state-based part of mod-
els (such as SDL or UML) and associated tools. The core
notation that we use is adequate for the learning algorithm
and engine. But it uses a standard semantics extended state
models (leaving apart our syntactic restrictions). Our next
step is to optimize the overall process of learning and testing
of integrated system of COTS with a comparative analysis
of our algorithm with the existing ones, e.g., [11] [8] [3].
We are also considering moves towards extended FSM with
variables, by assuming some extra information on the struc-
ture of the components. The other directions is to start in-
vestigating statistical methods that can be used to calculate
the relationship between learned models and actual black
box components. We intend to use case-studies in this do-
main to analyze our techniques on real world problems, es-



pecially in the telecommunication sector.
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