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Abstract - Many real-time distributed collaborative applicati® are

emerging that require exchange of critical sensatad among

geographically distant end users under resourcestramed network
conditions. The QoS requirements, e.g., requireatbadth, latency,
acceptable data quality, and reliability are intemendent, and
critical to the operation of these applications.iF paper presents an
AWON Application-aVare Overlay Networks) architecture for
deploying application-aware services in an overtatwork to best
meet the application requirements over the avadaldverlay

networking infrastructure. An application programnmyi interface

(API) is presented to facilitate development ofleagions within the

AWON architectural framework. The API supports ¢baefiguration

of overlay nodes for in-network, application-awapFocessing.

Application-defined plug-in modules are used tolog@mpplication-

specific functionality at each overlay node. Thel Ao enables
communication between application and the overtayting protocol

for the desired QoS support. The effectiveness hef AWON

architecture and the API is demonstrated for a @l weather
radar data dissemination application using planbtl&xperimental
results show that AWON-based application-aware isesv
significantly improve the quality of the contentidered to the end
users in bandwidth-constrained conditions.

1. Introduction

Distributed collaborative adaptive systems relying the
Internet for connectivity are increasingly used dpplications
such as weather monitoring, industrial
monitoring, and distributed target tracking [13].1® many
of these applications, a variety of data must Istributed in
real time to multiple end users at distant geodgbh

locations. These data streams and end users mag hawfrastructure  to

differing QoS requirements for the data based enuitimate
use of the data. The data-dissemination infrasiracinust
therefore be able to adapt in an application-sfeniainner to
meet these differing data requirements. Collabezatidaptive
Sensing of the Atmosphere (CASA) [16], an examplthese
emerging distributed collaborative adaptive systembased

the available network facilities. The use of anrtase network
paradigm is helpful in meeting such applicationdwee

Application-aware processing such as selective dram
discards for video streaming has shown promisirsglte in
improving the content quality [9] under congestestwork
conditions. However, adaptive data-selection meisinas in
traditional applications based on end-to-end dattivery
relied on end-host applications to adapt to netvaankditions
[2, 9, 21]. Active networks [20] introduced the cept of in-
network processing, where routers and switchesehetwork
perform customized computations on messages being
forwarded.

Overlay networks have been proposed to providengera
of useful services for enhancing QoS for Internmiligations
including bandwidth guarantees [1,3,11,19,22]. Witkerlay
networking, application-aware processing can bdempnted
at intermediate nodes, thus significantly enhanc¢ivegability
of the application to adapt to network conditionsl amprove
the QoS provided to the end users. Examples ofethes
functionalities include application-aware data farding and
data drops, as well as application-aware rate obiluring
network congestion at intermediate nodes [7]. Itoften
desirable to use the same overlay infrastructurenfaltiple
simultaneous applications such as weather radama dat
streaming, and video streaming to multiple end suséx

environmengeneral-purpose overlay architecture that supptapdoyment

of application-aware services on the overlay nogteshe
network, and a programming interface required fachs
services that can leverage such an overlay network
support  application-specific QoS
requirements will significantly enhance the ovedtmsed
application deployment. This paper proposes the AWO
(Application AVare Overlay Networks) architecture for
application-aware overlay networking, and presentgeneral
purpose programming interface. The AWON architextand

the API presented in this paper allows the apptoat to

on a dense network of weather radars that operat@gulate the flow of data through overlay nodes an

collaboratively to detect tornadoes and other I
atmospheric conditions. The underlying networkasfructure
itself may be affected by such adverse weatheritond, and
as such one cannot rely on ISP-provided QoS gusganbr
service-level agreements. CASA application sofevarust
thus monitor the underlying network, link availétyil link
quality, and other performance measures, and tlsenthis
information to get the best possible service out of

application-aware manner, selecting data to bedoed, and
extracting/repackaging data, taking applicationetfie
constraints into account.

A significant amount of research has been donehen t
design and development of overlay routing protoctas
improve an underlay network’s resilience and penfomce
[3,14,18]. Our work complements and takes advantdgech
ongoing research effort of performing QoS-awardinguin
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Figure 1. Overlay network for application-aware dat dissemination

overlay networks such as RONJ[3]. OverQoS[19], aarlay-
based architecture can provide a variety of QoSecing in-
network services in the intermediate nodes of awerl
networks, such as eliminating the loss bursts, ripidng
packets within a flow, and statistical bandwidthd aloss
guarantees. Our work is motivated by the same wisib
enhancing QoS support within the network withoet shipport
from IP routers. An important difference betweea KWON
and the OverQoS architectures is that in the AWQiseD
approach, quality of service provided to an apfilica is
enhanced by performing application-aware processiitigin
the network. Moreover, the AWON architecture is Hiyg
flexible and can accommodate QoS requirementsrgé lelass
of applications. OCALA [10] and Oasis [15] enaliie users
of legacy applications to leverage overlay funciiity
without any modifications to their applications aoplerating
systems. Opus [8], which is motivated by activewoeking,
provides a large-scale common overlay platform ane
necessary abstractions to service multiple disteidbu
applications. In contrast to our work, Opus focusesthe
wide-area issues associated with simultaneousliogiegy and
allocating resources for competing applicationa large-scale
overlay networks. XPORT([17] is a tree-based ovenletwork,

requirements must be able to configure overlay sote
perform in-network application-aware processingfléxible,

efficient approach for the deployment of QoS-séresit
applications using overlay networks should fadditathe
monitoring of the QoS received by an application time

overlay network, and allow easy deployment of aggtion-

aware processing at intermediate overlay noddsaework
is thus required for realizing such application-eavaverlay
networks. A programming interface is needed to lifat®

development and deployment of applications withiis t
application-aware framework.

The API provides a layer of abstraction between an
application and the underlying dynamics of the mekw
infrastructure. It is desirable for the APl to sopp
application-aware adaptation in the overlay netwarikh each
participating node possibly performing differentpagation-
aware operations to meet the overall goals of diaation(s).
The API must support node configuration in an agtion-
aware manner, with each node being configurablsufmport
multiple applications concurrently. There is alsomeed for
communication between the application and the uyider
overlay layers for supporting application-specifiQoS
requirements [3,4,19,22]. For this to be realizbd, APl must
allow an application to specify its QoS requirensetd the
system. When the underlying system is able to dctep
application with its QoS requirements, the API dddwe able
to communicate this acceptance to the applicatiosections
3 and 4, we describe AWON architecture and its API
respectively. We consider a weather-monitoring oekw
application to illustrate the need for an applicataware
architecture and a programming interface for sugkrlay
networks.

3. Application Aware Overlay Network (AWON)
Architecture

Fig. 1 shows an application-aware overlay netwodt f
distributing data to multiple sink nodes with difat end user
requirements such as data quality and bandwidthinements.
Let us now illustrate the myriad roles overlay nodeay play

which can create dissemination trees based on sdiverin meeting application requirements.

performance requirements of the applications.

In Fig. 1 source nodes 1-3 may perform applicatéel

Section 2 provides motivation for AWON and the packet-marking to indicate the usefulness of thea da a

programming interface for overlay networks. Secti@n
explains the AWON architecture for deploying apation-

aware services in overlay networks. Section 4 dessrthe
API. Section 5 describes the flow of API calls tgpgort the
AWON architecture. An example implementation igstrated
in Section 6. Section 7 presents Planetlab-baspdremental
results that demonstrate the effectiveness of t#OMN and

the corresponding API for weather radar data stiegm
Conclusions are presented in Section 8.

2. Motivation

Applications relying on overlay-based implementasioto
achieve performance, reliability and other applaratspecific

particular application; nodes colored blue (nodes) Inay
perform packet forwarding/drop based on the markioge by
the source node; nodes colored green (multicadeshd, 7,
and 8) may distribute data to multiple end useid perform
independent congestion control for each end userarn
application-aware manner. The multicast nodes coenlbhe
requests from the end users and send an aggregsiieam
request to the specific source node.

If the network experiences congestion, congestaset
packet (information) discard can be performed atsburce or
at intermediate nodes, according to the availabreidth. A
source node can thus mark packets based on theveela
importance of the information sent to the multicastes 4, 7,
and 8. This facilitates application-aware selectiveps (rather
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Figure 2. AWON architecture for application-aware data dissemination
using overlay networks — An example node with mulfile plug-ins

than random drops) within the network.
forwarding nodes 1-5 may use this marking inforomtat the
time of forwarding during network congestion. Siniy node

6, a fusion node, may combine data from multiplerses to
reduce the downstream data bandwidth requirements.

In addition to the packet handling functions dismds
above, there are two other classes of function®de rmay
implement. First, there is a need to support migltip
applications simultaneously on the same overlayvord
Also, it may be necessary for an application tockra
performance of the underlying networking infrastume in
meeting the application requirements.

Fig. 2 shows the AWON architecture to support
application-aware data-dissemination services. §lee two
key components of the AWONi) Application Manager, (ii)

Application Plug-ins.Each of these components focuses on

two different areas of functions with a common gasdl
providing best effort QoS services to the applaadi and
providing a layer of abstraction to the applicatdevelopers.

Application developers are not required to be avedrether

applications deployed on the same node. Moreokey, heed

not be aware of the implementation of the undedyaverlay

routing infrastructure.

(i) Application Manager: The key responsibilities of the

application manager are:

1. De-multiplexing packets received for different
applications at the same node

2. Logging QoS status information for each appiica
and informing (when appropriate) the underlying
overlay routing layer about the QoS status/requirs
of the applications

3. Authorization of a new user in the system basecd

local policy

(i) Application Plug-ins:In the application-aware paradigm,
each application is required to configure its fimmality in the
participating overlay nodes. The AWON architectsupports
application-specific plug-ins that implement thendtions
performed by the participating overlay nodes in theta
dissemination. For a particular application, midtipodes can
play different roles, motivating the need to deplajevant
plug-ins on those nodes that implement particulenctions.
For an example, with a collaborative radar applca{16],
the source node in Fig. 1 has application plug-ishtwn in
Fig. 2 for supporting data selection and markingmil&arly
nodes 1-5 in Fig. 1 may have application plug-ito Zupport
application-aware forwarding based on the souroggsking.
Nodes 4, 7, and 8 may have application plug-in 3upport
application-aware multicasting and congestion aintNote
that the same node may have multiple plug-ins fopsct
multiple functions performed by a node for a giagplication.
For an example, in Fig. 1, node 4 acts as a forwgrdode
and a multicasting node for the same application.

As seen in Fig. 2, the AWON architecture requires
communication between application-manager and pisg-
application manager and routing layer, and betwgeag-ins

Intermediateand routing layer. Section 4 describes the progrisngm

interface to support deployment of application-aavservices
using AWON.
4, Application Programming Interface

Following are the key goals of the application pesgming
interface:

0] Enable deployment of application-aware serviceghe
overlay network infrastructure.
(i)  Provide real-time monitoring of the QoS ts® of the

application.

Facilitate communication between applicatimanager
and plug-ins, application manager and routing layer
and between plug-ins and routing layer.

(iif)

There are three broad categories of the API callsleploy
applications within the AWON framework:

1. API calls for node configuration

2. API calls for communication between applicatphng-ins
and application manager

3. API calls for communication with overlay rowgitayer

4.1. API calls for node configuration:As shown in Fig.

1 and Fig. 2, each participating node from soumethe

destination may play a different role for a parécu
application. Theapp_config()API is used to perform node
configuration for a particular application:

int app_config (app_id, plug-in()): app_config()is used by
the application developer to deploy application cé#je
functionality at all the participating overlay neadé-or a given
application, a unique application identificaticepp_id is
defined and is used as an input parameterapgm idvalue of



0 is reserved for the special case of the apptinathanager
module. It is important to note thapp_idis a globally unique
identifier for a given application deployed ovee tbverlay

network. However, th@lug-in() function reference parameter

may be different for different nodes. The functilityaof the
plug-in() function depends on the application-specific fiorct
to be performed by a particular node during datadfer.

The API allows the same overlay node to be conaotlyre

used for multiple applications. Therefoemp_config()can be
called by different applications with differenapp_id
parameter to configure the operation of the nodemeet
application-specific requirements.

4.2.

API calls for message exchange between user

application and application manager: An API is required
for three different types of messages that are angbd
between application plug-ins and the applicatiomagger as
shown in Fig. 2:

0]
(i)
(iii)

Packets received by the application managemftbe
overlay routing layer for the user applications
Authorization messages to allow new users e t
system
Periodic
messages

exchange of application-specific

We define three API calls for message exchange deatvan
application and the application managengssage_send(),
message_recv(), and recv_upcall()

int message_send(dest_app_id, msg_buff)s shown in Fig.
2, themessage_send API is used by the application managerrecv_upcall() APl is used by the application manager to
and the application plug-in module to send mességesach
other within the same node. It accepts two inputpeters,

dest_app_id and msg_buff

dest_app_id is a unique

destination application identifiemsg_bufis the actual

Packet Buffer Format

Source
Message Format Destination
Application Id
Application Id
Version
Routing Packet
Message Type Type
Application Packet
Type
Length i
Application Data
Total Length Length
Routing
Message Information
Application
Information
(@) (b)

Figure 3. (a) msg_buffformat used for communication betweer
application manager and application plug-ins. (bpkt_buffformat -
an example

message sent to the destination node. It returnghé&n
message is successfully transmitted otherwisétitmes 0.

int message_recv(src_app_id, msg_buffAs shown in Fig.
2, message_recv(p used by the application plug-in and the
application manager to receive messages from etr.dt
accepts two argumentstc_app_idandmsg_buffsrc_app_id
is the source application id of the message sendflethe
source is the application manager therc_app_id is O
otherwise it is a positive integer when sourceni@pplication
plug-in. msg_buffcontains the copy of the message received
from the sender side. Now we explaimsg_buffformat in
detail as follows:

Fig. 3(a) shows the format of timesg_buff Following are
the fields ofmsg_buffas shown in the figure:
Application Id: This is the unique application id of the sender
application.
Message Type: There are three types of messages that are
exchanged between application manager and the iplug-
modules depending on the context. This field can be
QosRequesQosAccep or QosStatus.
Length: The Lengthfield indicates the size of thmsg_buff

QoS that includes variable lengthessagdield.

Message: The messagdield content varies witmessage_type
When the message type @osRequestthe message field
contains target_bw, minimum_bw,and latency requirement
fields Alternatively, when thenessage typ&s QosAccepbor
QosStatusmessage field stores TRUE or FALSE flags.

void recv_upcall(app_id, pkt_buffer, length): The
deliver a received packet from the overlay roufaygr to the
appropriate application. It accepts three inputapuaters:
app_id pkt_buffer andlength app_idrefers to the application
identifier of the application for which packet igceived,
pkt_buffer is the pointer to the packet received from the
overlay routing layer, and tHengthfield denotes the size of
thepkt_buffer

4.3. APl calls for

routing layer

communication with overlay

An APl is also required to support communicatiohnsen the

overlay routing layer and the application plug-imd to

support communication between the overlay routayt and

the application manager. As seen in Fig. 2, the AWO

architecture requires the following communicatioport:

0] Packet delivery from an application plug-in to the
overlay routing layer

(i) Packet delivery from the overlay routing layer he t
application manager
(iii) Exchange of an application’s QoS requirements with

the overlay routing layer
To support these requirements, we define three Ainber
this categoryonl_send(), onl_recv(), and onl_QoS().



int onl_send(dest, pkt_buff, length):Theonl_send(function Application Plug-in Application Manager Overlay Routing

is used by an application to transmit applicatiatadusing the

overlay routing protocol. It accepts three inputapaetersiest, (message_recv()) message_sent()

pkt_buff,andlength destrefers to the destination address of

the packetpkt_buffis the pointer to the application packet

buffer, andengthindicates the size of thEkt_buff It returns 1 message_sent( <message-recv()> Consider

when packet is transmitted successfully and retutns : Application QoS

otherwise. QoS Status onl_QoS() ™ Requirements
Theonl_send(pelects the next hop for transmission based Monitoring _

on the overlay routing protocol implementation.ehitatively, onl_recv() |« Rfece“f; fa‘:ket

the application may use overlay source routing ¢oite Application v rom T maver

packets through pre-determined paths. Under most pg:::;tng < recv_upca"())

circumstancegkt_buff should containapp_id source and Select Next

destinationaddresses. Fig. 3(b) shows a possible structure of Con'_send() > Hop

the application packet, i.gpkt_buff All non-shaded fields are
configurable and can be determined based on afiplea
specific characteristics and in conjunction witke tbverlay

routing protocol used in the network. The differgracket

fields shown in Fig. 3(b) are as follows:

Source: The unique address of the source node.

app_config()
Figure 4. API calls Example

Based on thapplication idfield in the received packet, the

Destination: The address of the remote sink node or the nexpacket is demultiplexed to the appropriate appbcausing

hop in the path from source to the destination sindte.

recv_upcall()as explained earlier. When a packet is received

Application 1d: The unique application identifier which is set successfullypnl_recv()returns length of the packet otherwise

by the application plug-in module at the time affsmission.
Version: Current version of the packet format.

Application Packet Type: Depending on the application, this
field is used to indicate the contents of the padeta. Some
of the possible packet types are: DATA, ACK, REQUES
TERMINATE.

Routing Packet Type: Depending on the routing protocol
implementation, this field is used to define diffet packet
types that can be used by the routing protocoékecs the next
hop for routing the application packet. Some of plussible
routing packet types are SOURCE_ROUTING,
QOS_ROUTING.

Total Length: The size of the packet in bytes.

Application Data Length: The size of theApplication
Informationfield in the packet in bytes. The value of thldi
may vary from application to application, and cdsoavary
from packet to packet within the same application.

Routing Information: The contents of this field are defined
based on the overlay routing protocol implementatior
example, when QoS-aware routing is supported, then
overlay routing protocol may store QoS requiremethizst
should be considered for the next hop selectionemM&ource
routing is used, then this field includes the caetplpath to be
followed between source and the destination node.
Application Information: The content of this field is
determined by the application transmitting the ddtamay
contain application-specific header and data payl&»me of
the possible application-defined fields a®quence number
packet markingQoS requirementandmetadata

int onl_recv(pkt_buffer) : As shown in Fig. 2, thenl_recv()
API call is used to receive data from the overlayting
protocol layer. It accepts one argumeaktt_buffer which is a
pointer to the packet received from the overlaytingulayer.

-1 is returned.

void onl_QoS(app_id, bandwidth, latency):As shown in Fig.
2, theonl_QoS()API is called by the application manager to
inform the overlay routing layer of an applicatisnQoS
requirements. It accepts three input parametersp_id
bandwidth andlatency app_idis the application id for which
QoS requirements are specifidshndwidthis the minimum
bandwidth requirement of a particular applicatiandlatency

is the maximum latency that an application mayrtike

5. Summary of API Calls

Fig. 4 shows the API calls that may be made on \arlay
node to support application-aware serviceqmp_config()
configures a particular overlay node by deployipgleation-
specific plug-in modules. An application plug-in dute may
call message_send@nd message_recv(p exchange control
information with an application manager. An apgiica may
send aQosRequednessage to the application manager before
accepting a request from any new user. A module aisy
periodically = exchange  application-specific QosStatus
information with the application manager. As shawrkrig. 4,
the application also uses tbal_send() @ send packetsto the
underlying overlay routing layer.

As mentioned earlier, the application manager uses
message_send(and message_recv(to exchange control
information with the application plug-ins. In padilar, the
application manager sends authorization messagetheo
application plug-in for accepting or rejecting regts from
new users. The application manager uses local ypdlic
determine the type of authorization messages. Ppécation
manager communicates with the overlay routing laysng
theonl_QoS()andonl_recv()interfaces. As shown in Fig. 4,
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when the application manager determines that tipéicapion
is not meeting its QoS requirements, tmd_QoS()interface

Application-aware framing and packet making.
Each non-white color represent rate for which packe is
marked ,i.e., rate R1-R8 [12].

Select Next Hop

Jake Bunnoy Aelanp

is used to request the overlay routing layer topadés
operation for meeting application specific QoS isgments.
The application manager uses tr@_recv()interface to
receive a packet arriving at the overlay node ftbennetwork.
As seen in the figure, a received packet is deplaited to the
application plug-in module by callingcv_upcall()interface.

6. AWON Implementation Example for the CASA
Application

To demonstrate AWON capabilities, let us consider a
CASA application as shown in Fig. 1, where datamfra
radar source node is distributed to multiple endrsisvith
distinct bandwidth and data quality requirements. this
application, an application-aware multicast nodeiaes data
from the source node for further distribution toltiple end
users. AWON architecture is used to perform appbtica
aware processing at source nodes and multicast toodest
meet the QoS requirements of multiple end users.

Fig. 5 shows the implementation details of a somage
and a multicast node based on the AWON architecBoéh
nodes use application-specific plug-ins to implemen
application-specific functionalities. The applicati manager
implementation is same for all nodes in the overlafwork.



As shown in Fig. 5, the source node plug-in implatee
application-level packet marking and a rate-basmthestion
control algorithm. Packet marking determines thbsst of
the information that should be transmitted at a eow
transmission rate for acceptable data quality atrdteiver
end. Fig. 6 explains the marking scheme used irctient
implementation [12].

Consider an example as shown in Fig. 6, wherengose
node generates 8 application data units (ADU) witthe
bounded time at rate R1. The ADU is defined as
fundamental application data entity that can bedusg an
end user algorithm for processing. Each row in Bighows
the subset of ADUs that are selected for transomissit a
lower transmission rate when a higher rate cannet
supported because of bandwidth constraints. Theesulf
data selected at lower rate depends on the end dagar
quality requirements. For example, certain end susered
uniformly spaced ADUs when only a subset of theadzn
be selected for transmission. Alternatively, otkead users

a

b Application:

processing. The overlay routing layer may thencéelee next
hop for the transmitted packet based on the locéty If

QoS-aware routing is supported, the next hop magelected
based on the application’s QoS requirements. Adtidraly,

when source routing is used, the routing protocmlilel select
the next hop based on the path information inclustethe
packet.

7. Performance Evaluation

In this section, we demonstrate the effectivendsaWON
architecture and the API for implementing and dgipig real-
time applications on overlay networks such as plahg23].
We consider a mission-critical CASA [16]
application for the performance evaluation. One thé
requirements of CASA application is to distributeghh
bandwidth real-time weather radar data to multgrel users
[7] with distinct critical bandwidth and data quglheeds. For
such applications, it is not only important to methe

prefer a contiguous group of ADUs when bandwidth is bandwidth and latency requirement, it is also intgatr to
constrained. Consider the case when the source nodmeet the minimum content-quality requirement fa tiroper

transmits data at rate R1, and as seen in theefithe data
transmitted at lower rates is a subset of the tlatesmitted at
rate R1 and ADUs are selected uniformly at lowéesaThe
packet containing ADU 1 is marked with differentaroflags

corresponding to different rates, i.e. rates R1-Bimilarly

packet containing ADU 3 is marked with differentlars

corresponding to different rates, i.e., R1, R2, &#J R5. As
shown in the Fig. 6, every packet contains a ftagefch rate
for which it is transmitted indicated by differestlors. Note
that multiple flags can be set to indicate suithbibf the

packet for multiple transmission rates.

The QoS monitoring component of the plug-in moritor
the quality of the service received by the appiwausers at a
source node. Currently, the component monitors méreénd
users’ bandwidth requirements are méthe multicast
application plug-in supports application-aware ratntrol
using a token-bucket scheme and on-the-fly forwaydif data
based on the packet marking. More information enghcket-
marking and token bucket scheme used for the imghtation
can be found in [12]. This application-specific giin selects
data for forwarding based on the available netviakdwidth
and the packet marking for multiple end users. Nb# the
packet marking performed at the sender node detesrthe
priority of the packet to be forwarded at the nual§it node. In
such systems, each end user may need a differesetsof the
data from the radar source based on the intendedishe
data [6,7]. During network congestion, overlay rodmn
perform a better job by selectively dropping [2,2]9 packets
(information) instead of dropping randomly withirhet
network, taking into account end-user requiremefus
different subsets of the data. Similarly, other e®d
participating in the data transmission can playedént roles
and thus may have different plug-in implementatioRsr
example, if a node is configured as a simple fodivey node
for a particular application, then the applicatigiug-in
forwards the data to its overlay routing layer faorther

operation of the system. For example, each CASA gwat
may specify its critical minimum rate (MR) requirent that
should be met for the proper operation of the sgste
Moreover, each end user may also dictate a taeget(TR),
i.e., the maximum rate at which data can be redebse the
end user. A source node periodically generatesoakbbf
digitized radar data, referred to as a DRS blogkg[5 Each
end user specifies its content-quality requiremprterms of
tolerance towards bursty losses or uniform lossikirwthe
DRS block. In the current implementation, we coasid case
in which all end users prefer uniform drops of mfiation
instead of bursty drops within a DRS block. In ca$eour
CASA application, during network congestion, theiosd

Overlay Source Node/ Muticast Server
(MIT Node)

Data Generation Rate =
10Mbps

Overlay Muticast Server

(Ohio Node) Forwarding Node

(Houston Node)

Forwarding Node
(Denver Node)

EndUser1 EndUser2 EndUser3
(British (Colorado State (UMASS
Node) Node)

Overlay Muticast
Server
Purdue Node)

TR=9, MR=5
Columbia)

TR: Target Rate in Mbps
MR: Minimum Rate in Mbps

@)
EndUser4 EndUser5 End User6
(Duke Node) (Korea Node) (Colorado State
Node)

Figure 7. Planetlab test-bed for application-awarenulticasting
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Figure 8. Impact of application-aware architectureon the content quality delivered to the end user &) Standard deviation of data for
end user 5 with low bandwidth requirement TR=4, MR=2, (ii) Standard deviation of data for end user 1 vth high bandwidth requirement
TR=7, MR=4. (c) Marked packet frequency for end use5, (d) Marked packet frequency for end user 1

rates are between MR and TR and the desired paekets
those that contain subset of the DRS block of daith
uniform drops. All these selected packets are nohfke rate
between MR and TR at the source node. We implertiesit
application using the AWON architecture, as it deab
application-aware processing within overlay nodaesrhance
the QoS under dynamic resource-constrained congitio
Overlay Network Topology: Fig. 7 shows the Planetlab-
based overlay network topology used for applicatdomare
data distribution and performance evaluation. hsists of 11
overlay nodes, each configured to perform appbeaspecific
tasks to meet the overall QoS requirements of ppdication.
In Fig. 7, there are four different types of nodéat are
present in the overlay network -saurce nodgea multicast
node a forwarding node and anend user nodeThe source
node performs selective data drop during network cotiges
as well as application-aware packet marking basethe end
user’s data quality requirement as explained intiGe®. The
goal of the marking scheme is to deliver the magtrapriate
subset of data for the end user under congestedoriet
conditions. Theforwarding nodemay decide to forward a

the-fly selection of the data for forwarding basmd packet
marking to the respective end users at the cutransmission
rate. Themulticast nodeuses TRABOL (TCP-Friendly Rate
Adaptation Based On Losses), a UDP-based rate-based
congestion control algorithm [5,6], to independguiétermine
the transmission rate for each end user. &hd-user node
performs content quality evaluation using applmwatspecific
performance metrics and provides periodic feedbackhe
multicast nodeabout its current receive rate. In Fig. 7, six
different end-user nodesl-6 at geographically different
locations receive weather radar data streams fl@msburce
node atMIT, Cambridge at their required TR and MR over the
planetlab. The source node generates data at tanbnate of
10Mbps.End user node&-3 make their data request with the
desired TR and MR requirement to the multicast retdghio.
Similarly end-user noded-6 make data requests with their
desired TR and MR to the multicast nodePairdue After
requests are received from the end users, bothoastiinodes
independently send aggregate bandwidth requeste tsource
node atMIT. A single stream of radar data is delivered from
MIT to theOhio node for further distribution tend user nodes

packet based on a packet's marking and the availabll-3. Similarly, a single stream from thélT source node is

downstream link bandwidth. Thaulticast nodeerforms on-

delivered to the multicast node durdue for further
distribution toend user node4-6.



Performance Metrics: The effectiveness of the AWON
architecture and the programming interface canaduated
by measuring the quality of the content deliveredhte end
users under different network congestion conditi¢i most
real-time applications, application-specific metrare used to
measure quality of the content; for multimedia agions,
these metrics include PESQ [1,19] for voice quaditg PSNR
[19] for video streaming. For the CASA applicatie use the
standard deviation of the estimated sensed vafpesifically,
reflectivity and wind velocity) to evaluate quality the radar
data [6,7]. A lower standard deviation indicatestdyeradar
data quality. A minimum standard deviation, i.&e thighest
content quality, is achieved when all the data fitbm source
node is delivered to the end users. Alternatively, also
evaluate the content quality by measuring the feeqy of the
desired packets at the receiver node based onriakings.
For better quality of the data, it is necessaryetteive more
packets with the desired markings. For an appboatvith TR
and MR bandwidth requirements, the “most approgftiat
packets are marked to result in data rates betivéeand TR.

TR=4Mbps and MR=2Mbps. Both end users can tolerate
uniform drop of data within the DRS block. Both easers
compute reflectivity [6] using raw data receivedrfrthe radar
source node. Fig. 8(a) and 8(b) show the standewdhtion of
reflectivity for all three experiments. In this exdapplication,
each end user computes reflectivity for multipléegd6]. (In
radar terminology, a gate refers to a volume inatmosphere
at a particular distance from the radar source rfodevhich
data is collected by a radar.) Fig. 8 thus showderd quality,
i.e., standard deviation for subset of gates. &# e Fig. 8(a)
and 8(b), experiment 1, with no application-awarecpssing
support within the network, has highest standardatien and
hence has the worst data quality among three cdses.
experiment 2, when limited application-aware dropse
performed at the source node, the quality of tha daproves
in comparison to experiment 1, as indicated by efs in
standard deviation. Experiment 3, which has supgdort
application-aware drop at the source node and mgutkased
selective drop at the multicast nodes, delivers daith the
highest quality, i.e., with the smallest standaedtiation. It is

Methodology: We demonstrate the effectiveness of theimportant to note that under high loss conditichs, AWON

AWON architecture for application-aware processimighin
the overlay network by performing three sets ofegipents.
In the first set of experiments, experiment 1,
application-aware processing is performed in thavok, i.e.,
the source node randomly selects data from a DR&kbf
radar data for transmission, without considering-aser loss
tolerance requirements. Packet marking is perforrbed
packet marks are not used at the forwarding nodest the
multicast nodes for on-the-fly selection of packets
transmission. In experiment 2, the source nodeopad
application-aware selective drop during network gastion
and marks packets at the time of transmission. Kewe
packet marking is not used at forwarding nodes raotticast
nodes for on-the-fly selection of data for transiue to the
end users. Experiment 2 is equivalent to a netwibikt
supports limited application-aware processing al @osts
without the support of AWON architecture. Experimgns an
example of the AWON-based implementation that ezgmbi-
network processing by performing different appicat
specific tasks within the network. In Experiment!® source

architecture is very effective in improving the tjiyaof the
data as shown in Fig. 8(b). Indeed, the standawihtien of

nothe AWON case approaches that of these casestandard

deviation, which corresponds to a scenario wélkdata from
the source node generated at 10Mbps is deliveradet@nd
users. Note that in experiments 1-3, end usersvecata at
approximately the same rate, but the content qualt
different. For an example, in Fig. 8(b), end useedeives data
at 3.88Mbps, 3.85Mbps, and 3.87Mbps for experinigng
and 3 respectively. However, the application-legedlity of
data delivered to the end users is significantffedént for all
gates. The gain in performance in terms of contgmatlity is
achieved because AWON modules deliver the most
appropriate application-specific content to the esdr within
the available bandwidth resources. This is madesiplas by
performing application-aware processing of the dasa it
traverses the network.

Fig. 8(c) and 8(d) show the impact of the thregesiment
scenarios on the delivery of most appropriate mégion to
the end user at a given rate. Packets are markedifferent

node atMIT performs application-aware selective drops andates for which it is most suitable for transmissas explained

packet marking. The multicast nodegtdtio and Purdueuse
token-bucket based rate control scheme along wétbket
marking to select
transmission to individual end users at their retpe
transmission rate. At present, in experiment 3, esoct

appropriate packets on-the-flyr fo indication

in Section 6. When an end user receives more paackith
markings corresponding to the desired rate, thisars
of a higher quality of received data.
Aforementioned, for CASA end users, the desire@saire
between MR and TR and the desired packets are thatare

Houstonand Denveract as simple forwarding nodes and domarked for rates between TR and MR. In Fig. 8(d &(d),

not make use of packet marking when forwarding ptck

Fig. 8 shows the result of experiments 1-3. Ratémce is
compared by measuring the quality of the conteliveled to
the end users for different experiment scenariosleun
different network congestion conditions. For ladkspace we
show results for two end users, End user 1 andused 5. As
mentioned earlier, data is generated at 10Mbp&eisburce
node but end user 1 requests for TR=7Mbps and MRpsMV
End user 5 has relatively lower bandwidth requineimeith

we show the number of packets delivered with thekimg
corresponding to rates between TR and MR requir&sneh
the end users. Fig. 8(a) and 8(c) both measureesbgtiality
using different metrics and corresponds to the samdeuser 1.
Fig. 8(b) and 8(d) illustrate the content quality €nd user 5.
As seen in the Fig. 8(c), and 8(d), experiment thwio
application-awareness, delivers fewer packets thighdesired
marking. Alternatively, the frequency of the packetith
desired marking increases with experiment 2 rewylin a



higher content quality. In the case of experimenttt3e

frequency of desired marked packets is the maxirouer all

three cases. As seen in Fig. 8(d), during high ogw
congestion, AWON based architecture is able tovdelb0%

more desired packets than the case when no apptieatvare

processing is done in the network. These resulteoborate

the results shown for data quality in Fig. 8(a) &), which

used the standard deviation quality metric for erdr 1 and
end user 5 respectively.

The above experiments demonstrate that the AWON1]
architecture enables the deployment of applicativare
services in the overlay networks and that suchlayeservices
can be very effective in improving the performarafean
application in resource-constrained conditions.

8.

Conclusions

The AWON architecture and a programming interfametiie
application-aware data dissemination has been gezband
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