1809.06972v1 [cs.RO] 19 Sep 2018

arxXiv

Mapless Online Detection of Dynamic Objects in 3D Lidar

David J. Yoon, Tim Y. Tang, and Timothy D. Barfoot

Abstract—This paper presents a model-free, setting-
independent method for online detection of dynamic objects
in 3D lidar data. We explicitly compensate for the moving-
while-scanning operation (motion distortion) of present-day 3D
spinning lidar sensors. Our detection method uses a motion-
compensated freespace querying algorithm and classifies be-
tween dynamic (currently moving) and static (currently station-
ary) labels at the point level. For a quantitative analysis, we
establish a benchmark with motion-distorted lidar data using
CARLA, an open-source simulator for autonomous driving
research. We also provide a qualitative analysis with real data
using a Velodyne HDL-64E in driving scenarios. Compared to
existing 3D lidar methods that are model-free, our method is
unique because of its setting independence and compensation
for pointcloud motion distortion.

I. INTRODUCTION

An autonomous system must be aware of dynamic ele-
ments in its environment. Our focus is on detection using
lidar (light detection and ranging), specifically spinning
lidars, which operate by sweeping multiple lasers about an
axis for a 360° field of view (FOV). For the remainder of
this paper, we refer to detectable elements as objects.

We place detection methods into three categories: methods
that use class-specific detectors [1] [2], methods that use
maps [3] [4] [5], and methods that only use recently acquired
data (live data) [6] [7]. Class-specific, or model-based, de-
tectors use prior information of objects and therefore have
restricted use. Methods that use maps are also restricted, but
may not require prior information on objects, which we refer
to as model-free. Lastly, methods that only use live data
may not require prior information on objects or the setting
(e.g., maps), at the cost of being unable to detect stationary
objects that have the potential to move (e.g., stationary cars
in traffic). The categories are complementary, and therefore
a combination can be effective [8] [9] [10].

Our work belongs to the category that only uses live data.
We detect objects, regardless of the class or setting, as long
as they are moving in the current scene. Our method is
therefore applicable to a large variety of applications. In
the urban driving setting, an application dominated by deep
learning methods, our model-free detector could be used as
a safety net. In a disaster zone scenario, where a prior map
does not exist because of dramatic changes to the scene, our
detector could be used to identify survivors. Our method is
isotropic to the setting (e.g., we do not exploit knowledge of
the gravity vector to help detect a ground plane), which is a
contributing factor to setting-independence.

The authors are with the University of Toronto Institute for Aerospace
Studies, Toronto, Ontario, Canada. {david .yoon,
tim. tang}@robotics .utias.utoronto.ca,
tim.barfoot@utoronto.ca

Fig. 1: Example pointcloud of simulated lidar data (CARLA
[11]). The output of our dynamic object detection method
is indicated by the coloured points. We make our motion-
distorted datasets with point-level groundtruth on dynamic
objects available as a public benchmark.

Our main contribution is setting-independent detection that
outputs point-level labels as dynamic (currently moving)
or static (currently stationary). We use a lidar odometry
algorithm from previous work that compensates for motion
distortion caused by the moving-while-scanning operation of
spinning lidars [12] [13]. We use a novel freespace querying
algorithm that also compensates for motion distortion. To the
best of our knowledge, our method is the only existing among
other model-free ones that combines all of the following
traits: motion-compensation, environment isotropy, only uses
live data (i.e., no maps or training data).

Our secondary contribution is a benchmark of simulated
data using CARLA [11], an open-source simulator for au-
tonomous driving research (see example in Fig. [I)), which
we believe to be the first to provide motion-distorted data
with per-point groundtruth labels on moving objects. We also
provide a qualitative evaluation of our pipeline with real data
collected with a Velodyne HDL-64E sensor on a vehicle.

The remainder of the paper is organized as follows. Sec-
tion |l discusses literature; Section [I1I| describes the pipeline
methodology; Section presents the simulation, experi-
ment, and performance analysis; and Section [V] provides
concluding thoughts and future work recommondations.

II. RELATED WORK

Class-specific, or model-based, detectors take advantage of
prior information of the objects to be detected. Petrovskaya
et al. [1] model vehicles as 2D bounding boxes, which is
applied to 3D data by processing it into a 2D representation.
Rather than manually crafting models, recent work focuses
on learning methods. Chen et al. [2] (among many others)
take lidar and camera data as input to a deep neural network
(DNN) and output class-specific detections. While this cate-

gory is proven to work well, such methods will simply not
detect objects for which they have not been trained.

Detection without prior object information is possible by
comparing current data to a reliable prior map. Given a
reliable map of the stationary world, differences from the
comparison are indicative of dynamic objects. Sometimes
called change detection [3] [4], these methods make use
of pointcloud comparisons (i.e., end-points of lidar mea-
surements) and freespace comparisons (i.e., paths traced by
lidar measurements). Hebel et al. [3] raytrace lidar data
into occupancy voxel grids for their freespace representation.
Occupancy voxel grids are expensive computationally and
in memory, so instead, Pomerleau et al. [5] query lidar
freespace by matching measurements with local spherical
coordinates. The method is efficient, but assumes pointclouds
are not motion distorted. Note that while existing works that
use occupancy voxel grids do not consider motion distortion,
compensation is trivial with a continuous-time trajectory.

Our interest is in methods that do not require prior
information on the objects or the setting, only making use
of the latest lidar data (live data). Such methods are limited
to detecting objects that are moving in the current scene.
Objects that are stationary, but may be of interest (e.g.,
stationary cars in traffic), are not detectable by such methods.

Among live data methods are ones that only use pointcloud
information. Dewan et al. [6] compare subsequent point-
clouds and sequentially identify motion through a voting
scheme. The first detected motion will always be the relative
motion of the stationary environment, followed by the largest
dynamic objects. They directly compared their work to
Moosmann and Stiller [8] and showed superior performance
at the object level. In another publication, Dewan et al.
[7] produce scene flow (i.e., point-wise velocity estimation),
from which dynamic labels are trivial. However, both of their
methods are not setting-independent because they remove
ground points as a pre-processing step. Live data methods are
challenging because there are significant differences between
subsequent pointcloud comparisons due to viewpoint occlu-
sions or data sparsity. Removing ground points is helpful in
avoiding false detections, but it is not clear how to handle
occlusions with only pointclouds.

Live data methods that use freespace handle viewpoint oc-
clusions well. Azim and Aycard [14] raytrace over occupancy
voxel grids and compare them over time, but only provide a
qualitative analysis of their method. Postica et al. [15] also
make comparisons with occupancy voxel grids. They present
quantitative results using short sequences from the KITTI
dataset [16], for which they have manually annotated for
groundtruth, but have not made public. Notable limitations
of their work include relying on pre-processing ground points
and ignoring measurements further than 30 m.

The three categories are complementary to one another, so
a combination can be more effective. Moosmann and Stiller
[8] segment pointclouds into object proposals, which they
track over time. Consistent ones are labelled dynamic by a
learned classifer. Ushani et al. [9] use freespace and learning
to compute scene flow. Occupancy voxel grids coarsely

identify dynamic points, which are then refined by a learned
classifier. They make a planar motion assumption and limit
their method to a 50 m x 50 m grid. Dewan et al. combine
their prior work on scene flow [7] with a DNN to produce
point labels of dynamic, static, and a third label for objects
with the potential to move (e.g., stationary cars) [10].

Our method belongs to the live data category and is model-
free, labelling each point as dynamic or static. We motion-
compensate both pointclouds and freespace querying, which
existing methods do not consider. We make full use of
the sensor range, which is often limited for methods that
use freespace. Since our method only uses live data and is
isotropic, it is setting-independent. If setting independence is
not important, our method can be combined with strategies
from the other categories for greater performance.

III. METHODOLOGY

We are interested in labelling lidar points as static or
dynamic. We define a lidar scan as a full revolution of
the spinning lidar which, depending on the lidar, can have
more than 100000 points. Each laser of a spinning lidar
has a unique position and orientation on the rotating base.
This means the laser ray paths (i.e., freespace) are not
equivalent to azimuth and elevation computations of the
endpoints, which are defined in a local reference frame.
Thus we refer to scans as including both pointcloud and
freespace information. We refer to measurements as points
when appropriate. In a full pass of the pipeline, we label all
points in a single scan of interest (query scan).

A pipeline diagram is shown in Fig. [2| The sequential
steps to the pipeline are explained as follows:

1) Odometry: Align latest scan using lidar odometry.

2) Pointcloud Comparison: Comparison of query scan
against another. Discrepencies are set to dynamic.

3) Freespace Check: Check dynamic points against
freespace of another scan. Points not in freespace are
not dynamic and changed to static.

4) Box Filter: Apply a sliding box filter on the image
representation of the query scan for outlier rejection.

5) Region Growth: Cluster the dynamic query scan points.
Add nearby points to clusters if they satisfy conditions
that indicate they are part of the same object.

We spend the rest of this section to discuss each step in more
detail and highlight its contribution to the pipeline.

A. Odometry

Our lidar odometry considers the exact timestamps of
measurements to produce a continuous-time trajectory of
the moving sensor platform. For detail, please see our
previous work [12], which uses the trajectory representation
of Anderson and Barfoot [17].

With a continuous-time trajectory, we can query for any
pose and velocity given a timestamp, t. We use the notation
T, (t) € SE(3), where T, is a transformation from the
world frame, 50, to the moving sensor platform, fyw w(t)
is the body-centric velocity of the sensor platform.

Latest lidar
scan

Trajectory +

- Reference 1
Latest lidar scan

Query Ildar
scan

Reference 1

2

3
Pointcloud Freespace

Check

3 Freespace

Check

Comparison (Backward)

(Forward)

Query scan with Query scan
dynamic/static with refined
labels labels

Query lidar Latest lidar
scan scan

Reference 2 (Latest lidar scan)

4
. Region
= | BoxFilter | ==lp Growth -
(b) (© (d)
Query scan Query scan Query scan with final
with refined with refined dynamic/static labels
labels labels (Pipeline Output)

Fig. 2: The pipeline describes the sequence of operations on the lidar scan of interest (query scan), outputing the scan with
points labelled dynamic or static. A lidar odometry algorithm computes the sensor trajectory, which aligns the latest scan.
The labels (a) to (d) correspond to the images in Fig. [3| The numbers correspond to the enumerated steps in the text.

(d) After region growth.

(c) After box filter.

Fig. 3: A vehicle throughout the detection pipeline. Refer to
the pipeline in Fig. |2 for corresponding letters (a) to (d).

B. Pointcloud Comparison

We compute a pointcloud comparison between the query
scan and a previous reference scan. The scans are of different
time intervals, so dynamic objects cause discrepencies.

We identify discrepencies using error metrics commonly
used in pointcloud alignment problems. We use a point-
to-plane metric when points have sufficient neighbours to
compute surface normals. Otherwise, we use a point-to-point
metric. All points are transformed to .7_>70 using T, 0 (%),
creating motion-compensated pointclouds. Given a query
point, qo, its normalized surface normal, n?, and its nearest
reference scan neighbour, pg, the point-to-plane metric is
|n? - (po — qo)|. The point-to-point metric is ||po — qo||2-

We compute the error metric for all query points. Static
points have low error because there should be a correspond-
ing reference scan point of the same surface observation.
We expect high error from dynamic points since they are
observations of moving surfaces. However, a moving gv
causes new surface observations and viewpoint occlusions,

which also cause high error. Regardless, we take a constant
scalar error threshold. Those greater than the error threshold
are labelled dynamic, the rest are static (see Fig.). We
refine incorrect dynamic labels later in the pipeline.

Notice there is a scan gap of 4 between the query scan
and reference scan (Reference 1) in the top-right illustration
of Fig. 2l We require a scan gap to ensure dynamic objects
sufficiently displace between the two scans. Fig. B shows
a partially labelled object since the ideal scan gap requires
unknown quantities (i.e., object speed and size). Instead, we
aim to partially label objects and recover the rest later in the
pipeline. The error threshold, scan gap, and lidar scan rate
together define the minimum speed of detectable objects.

C. Freespace Check

We check all dynamic query points, which can be as
many as half the query scan points, against the freespace
of another scan to correct mislabels from the pointcloud
comparison. Recall that points are mislabelled dynamic
because of viewpoint occlusions or they are new surface
observations. Dynamic points inside freespace are consistent
with their current label, while ones on the border or outside
freespace may not truly be dynamic. We use this argument to
refine incorrect dynamic labels (see Fig. [3h and Fig. [3p). We
do not check freespace for static points since a pointcloud
comparison is equivalent to a freespace border check.

Given a query point and reference scan that defines the
freespace of interest, we wish to determine if the query point
is inside, on the border of, or outside freespace. Recall that
the spinning lidar continuously sweeps lasers about an axis
for a 360° FOV. The laser ray paths, from the sensor to
their endpoints, define freespace. We designed our freespace
method specifically for a single lidar configuration that has
its lasers approximately radiate outward vertically (i.e., along
the sweeping axis). This is important because we exploit the
elevation order of the lasers to speed up our freespace query.

Representing freespace in its entirety is possible, but ex-
pensive (e.g., occupancy voxels). Instead, we only determine
the reference scan measurement ray that has a direction that

passes nearest to the query point (i.e., smallest point-to-line
distance). Consider the query point surface plane and the
identified reference scan ray — there are three cases:

o Case 1: Ray intersects the surface plane.
o Case 2: Ray lies on the surface plane.
o Case 3: Ray does not reach the surface plane.

Case 1 means the surface plane is absent during the time
period of the reference scan, which is possible if the query
point is dynamic and inside freespace. Case 2 means the
measurement is an observation of the same surface plane
(freespace border). Finally, Case 3 means another surface
obstructed the measurement (outside freespace).

Pomerleau et al. [5] also use a nearest-ray strategy by
searching a kd-tree of spherical coordinates, but assume their
pointclouds are instantaneous snapshots (ideal pointcloud) of
the scene. Instead, we compensate for the sensor platform
motion by using our continuous-time trajectory, T, o(t).

We assume a total of L lasers rotate together at constant
speed, w. Each laser /, indexed by increasing elevation, has a
unique pose with respect to the sensor hub (i.e., the rotating
base), gh, defined by the transformation Ty, € SE(3).

Given a query point, qg, we formulate for each laser, /,
the point-to-line distance as a continuous function of time:

||ef(t)||2=‘DTf,hTh,v(t)Tv,()(t) ho] !
2

. 000 0

T,,,U(t):{RO(;"t) ﬂeSE(S), D=0 1 0 of,

00 10

where R*(wt) € SO(3) is the constant rotation of J; with
respect to J, at rotation speed w. Note we define ?U such
that there is no translation between F; and F,, and Fj,
rotates about the z-axis of % ,. We define F, such thatTﬁe
laser points along the z-axis. See Fig. [4] for a visualization.

s
/E,
Fig. 4: A visualization of the point-to-line distance (see Eq.
. T, o is the sensor trajectory, T}, , is the spinning lidar
rotation, and T j, is the unique pose for laser £. We require
the time, ¢, and laser, ¢, combination that minimizes ||e’(t)]|.

E

We require t* and ¢* that minimize e’ (¢) 2. Unfortu-
nately, ¢ is discrete. We minimize ||ef () || iteratively by
selecting ¢ and solving for ¢ using least-squares optimization:

1
t= arg n}in B e‘(t)Tel(t). (2)

We iterate by exploiting laser elevation order. We first solve
Eq. [2] using initial guesses for ¢ and ¢, the laser neighbour

0 0 0 O
1 1 1 1
0 0 0O

Fig. 5: We apply a filter (middle) to a scan’s image repre-
sentation to remove mislabelled dynamic points (red) while
maintaining correct ones (green). We show a before (left) and
after (right) example (64 lasers, limited horizontal FOV).

above it, /41, and below it, /— 1. If a neighbour optimizes to
a smaller ||’ (t) ||2, we iteratively search along that direction
by single laser increments, re-solving Eq. 2] and compar-
ing optimized ||e’ (t) ||z values. The iteration stops once
llef () ||2 no longer decreases or we run out of neighbours.

Our iterative method relies on a good initial condition
for ¢ and ¢, which we select by using the ideal pointcloud
method of Pomerleau et al. [5]. We experimentally verified
this initialization choice always converges.

Given t* and ¢*, the reference scan ray is the one with
the closest timestamp. Adhering to the three possible cases,
we check for an intersection between the ray and surface
plane of the query point. This is easily done by computing
the point-to-plane error metric of Section [[II-B| with the ray
endpoint for a freespace border test. Otherwise, the query
point is inside or outside freespace depending on which side
of its surface the endpoint resides in.

Fig. 2| shows two freespace blocks, backward (comparison
with a previous scan), followed by forward (comparison
with a later scan). Ideally, only backward is required. Unfor-
tunately, objects moving away from the sensor will never
be within freespace of a previous scan. Backward shares
the same reference scan (or scan gap) as in the pointcloud
comparison. A scan gap is not needed for forward because
objects moving away have surface geometry perpendicular to
the movement direction. We only need to compute forward
for points identified as outside freespace in backward.

D. Box Filter

Our freespace check is susceptible to error because of
finite lidar resolution (e.g., consider freespace at far ranges),
leaving sparse traces of mislabelled dynamic points (see
Fig. Bp). The query scan measurements are arranged into
an image representation. Each laser forms a row and the
consecutive measurements the columns. Dynamic labels have
an image value of 1 and static labels have a value of 0.
We filter outliers (dynamic mislabels) by sliding a box filter
thoughout the image (see Fig. 5 for an example).

We apply our filter (Fig. [5 middle) with a pixelwise
XNOR (exclusive logical NOR) operation. The sum of all
XNOR operations is a numerical score. Scores greater than
a constant score threshold are considered outliers. The score
threshold depends on the lidar resolution.

E. Region Growth

Often, the scan gap is not large enough for an object to
completely displace from its previous position (see Fig. [3f).
Thus we require a method for region growing (see Fig. [3d).

We first cluster the dynamic query points into object clus-
ters. We use the 3D pointcloud clustering method presented
by Klasing et al. [18]. A radially bounded nearest neighbour
strategy incrementally groups dynamic points into clusters.

We region grow clusters using the iterative pointcloud
segmentation method of Moosmann et al. [19]. Clusters
are grown by testing neighbouring points for parallelism or
convexity, until none are found. Given two points p* and
p2, with unit surface normals n! and n2, the two points are
convex if the following two conditions are both true:

n'. (p?-p') <0, n’-(p'-p?) <.
IV. RESULTS
A. Simulated Lidar Benchmark (CARLA)

We chose to create a simulated dataset because of the
difficulty in obtaining accurate groundtruth labels at the
point level. The KITTI Vision Benchmark Suite [16], a
popular dataset, lacks point-level labels and does not provide
raw lidar data (range and bearing with laser positions and
orientations). The Paris-Lille-3D lidar dataset [20] has point-
level labels, but similar to KITTI, only provides motion-
compensated pointclouds. They also removed points with
range further than 20 m. Publications with work comparable
to ours either omit quantitative results or use short sequences
of manually labelled data, which they do not make public.

CARLA is an open-source simulator for autonomous
driving research [11]. Two urban scenarios are provided
with 2.9 km (Town 1) and 1.9 km (Town 2) of driv-
able roads. We currently made 5 min sequences of each,
which we plan on expanding in the near future (visit
http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html).

We encourage use of our dataset for comparison. We made
modifications to the CARLA source code to produce datasets
matching a real Velodyne HDL-64E (e.g., laser positions and
orientations). We capture motion distortion by making each
laser activate once every simulation step, resulting in 128000
measurements (120 m maximum range) at 10 Hz frequency.
See an example pointcloud in Fig.

For groundtruth, points moving faster than 0.2 m/s are
dynamic. True positives (TP) are points correctly labelled
dynamic. False positives (FP) and False negatives (FN) are
points incorrectly labelled dynamic and static, respectively.

We compute precision, P, and recall, R, in two ways. Given
the scan index, n, and the total number of scans, N, the fotal
computation is:

SNT1p, _ ¥R,
SN (TP, +FP,)’ SN (TP, +FN,)
Given the total number of valid scans for P, N,, and

the total number of valid scans for R, N, the average
computation is:

B Zﬁ[” TPy /(TP,, +FP.,) Zﬁh TPr /(TP,,+FN,,)
- N, N, '
Scans where the denominator is O are ignored (e.g., TP,, +
FP,, = 0), which is why we distinguish N, and N,..

=

3)

P, 4)

7Ra:

Precision

, 0.7 0.7
Noise Std Dev ()7 0.8 0.9 1 0.7 0.8 0.9 1
—0.00m Recall Recall
—0.0l m

0.02 m (a) Town 1 (total) (b) Town 1 (average)

—0.03m 1 1
—0.04 m \

L 09 \ -

2 \ g

g 1

A 0.8 ‘ \ fan)

0.7
0.7 0.8 0.9 1 0.9 1
Recall Recall

o
=)

Precision
o
[e<]

(c) Town 2 (total) (d) Town 2 (average)

Fig. 6: Precision-recall plots (total and average - see Eq.
and) on two simulated sequences. The standard deviation
of range measurement noise was varied. Note that a Velodyne
HDL-64E has a standard deviation rated less than 0.02 m.

1) B 1 o
/ 4
0.8 // 0.8 /
— / — / g
B B
8 0.6 Q 0.6
© ©
04 ——Total 04 E— Total
——Average —Average
0.2 0.2
0 50 100 0 50 100
Range Limit [m] Range Limit [m]
(a) Town 1. (b) Town 2.

Fig. 7: Recall (total and average - see Eq. 3| and El) using
groundtruth labels on two simulated sequences with varying
limited range. Total recall is high at low range limits because
nearby objects have more points, downplaying far-away ones.

B. Benchmark Results

We computed PR curves by varying the error threshold
(see Fig. [6). Noise was added to range measurements with
varying standard deviation. A Velodyne HDL-64E has a
range standard deviation rated less than 0.02 m. The scan
gap was set to 4, allowing sufficent object displacement for
a 10 Hz lidar. The score threshold was set to 10, which
was determined experimentally on data from Town 2. We
emphasize that the score threshold depends on the lidar
resolution and not the application setting. For these simulated
results, we used the groundtruth trajectory instead of lidar
odometry to focus on the detection aspect.

Fig.|7|shows R evaluated with groundtruth at varying range
limits. R; is higher for low range limits because there are
more points on closer objects, downplaying the neglection
of far-away objects. This also explains why range noise
affects the total curves more in Fig. [6] Greater noise reduces

http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html

Fig. 8: Real data examples (22 dynamic objects) of our detection method. False detections can occur (row 1, col. 6), but
rarely persist in the next scan. Inaccurate surface normals cause incomplete region growth (col. 1 and 2) or growth to static
points (col. 4). The green box in the last image indicates an unlabelled dynamic object due to occlusion by the other object
in the freespace scan(s). The example in row 2, col. 6 is a barely visible vehicle due to many faulty returns.

performance, but taking the average downplays scans with
more mistakes (i.e., scans with very close objects).

We perform worse in Town 2 because of more partial
occlusion instances (e.g., by fences), which we struggle with.
There is latency for detecting objects accelerating from being
stationary because of the scan gap, reducing R.

We hope for future comparisons to other works as our
dataset is public. For now we make an indirect comparison
to Dewan et al. [10] as the state of the art. They used two
manually labelled sequences of Velodyne HDL-64E data at
the point level. Their pipeline without deep learning, which is
setting-dependent because of ground point removal, reports
the following maximum F1-score PR values: 72.8 P and 92.3
R (38 s length), and 59.5 P and 69.6 R (50 s length). Adding
learning increases P at the cost of R. They do not distinguish
PR in two ways like we did and is unclear about the exact
computation. We stress that a fair comparison is not possible
since they used real data, but we at least see our total PR
values using longer, simulated sequences are comparable.

C. Experiments on Real Data

A Velodyne HDL-64E, mounted on a vehicle, was driven
through Richmond Hill, Ontario. Lidar odometry was used to
estimate motion. The error threshold was set to 0.5 m. Other
parameters were not changed from the simulated benchmark.

A limitation was the inability to distinguish between
maximum range measurements and faulty returns. Faulty
returns often occur on vehicles, particularly darker ones
[1]. Thus we cannot use maximum range measurements for
freespace computation without incorrectly using faulty re-
turns. This is not detrimental for ground-based applications,
since Velodyne lasers are angled downward to the ground.
Applications where objects have no geometry behind them
for the lidar to perceive (e.g., flying objects) are an issue.

Our pipeline works well in scenarios with consistent
motion (e.g., no traffic slow-downs). Fig. [§] is a collage of
real data examples, showing 22 different dynamic objects.

Our pipeline struggles with occluded objects (row 3, col.
6), which is also reflected in our simulated benchmark.
The pipeline also struggles with inaccurate surface normal
computations, causing incomplete region growth (col. 1 and
2), or excessive growth to static points (col. 4). Row 2, col.
6 shows a barely visible vehicle due to many faulty returns.
On a laptop with an Intel Core i7-6820HQ CPU, we
currently process lidar scans at 3 Hz on average on a single
thread, slower than the Velodyne scan rate (10 Hzﬂ

V. CONCLUSIONS AND FUTURE WORK

This paper presents an online detection method for la-
beling 3D lidar points as dynamic (moving) or static
(stationary). Motion distortion is explicitly compensated,
which existing methods do not consider. We only rely
on the latest scans of lidar data (i.e., no maps or train-
ing data). Another trait that makes our method unique
is environment isotropy. Thus our detection method is
model-free and setting-independent, applicable to a wide
variety of applications. We also establish and make pub-
lic a benchmark with simulated motion-distorted lidar
data with point-level groundtruth on dynamic objects
(http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html).

Future work involves resolving the issue of detecting
objects without geometry behind them (e.g., flying objects),
which is currently an issue because of the inability to
distinguish between maximum range and faulty returns.

ACKNOWLEDGMENT

This work was supported financially by Applanix Corpora-
tion, the Natural Sciences and Engineering Research Council
(NSERC), and the Ontario Graduate Scholarship (OGS). We
thank General Motors (GM) for the vehicle donation and
Defence Research and Development Canada (DRDC) for the
Velodyne HDL-64E loan.

'We intend to achieve a 10 Hz implementation before the final submis-
sion. Many individual measurement operations can be parallelized.

http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html

[1]

[2]

[4]

[5]

[6]

[8]

[9]

[10]

REFERENCES

A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Autonomous Robots, vol. 26,
no. 2-3, pp. 123-139, 2009.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object
detection network for autonomous driving,” in Computer Vision and
Pattern Recognition, 2017.

M. Hebel, M. Arens, and U. Stilla, “Change detection in urban areas
by direct comparison of multi-view and multi-temporal ALS data,” in
Photogrammetric Image Analysis. Springer, 2011, pp. 185-196.

J. P. Underwood, D. Gillsjo, T. Bailey, and V. Vlaskine, “Explicit
3D change detection using ray-tracing in spherical coordinates,” in
International Conference on Robotics and Automation (ICRA), 2013,
pp. 4735-4741.

F. Pomerleau, P. Kriisi, F. Colas, P. Furgale, and R. Siegwart, “Long-
term 3D map maintenance in dynamic environments,” in International
Conference on Robotics and Automation (ICRA), 2014, pp. 3712—
3719.

A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard, “Motion-based
detection and tracking in 3D lidar scans,” in International Conference
on Robotics and Automation (ICRA), 2016, pp. 4508-4513.

——, “Rigid scene flow for 3D lidar scans,” in Intelligent Robots and
Systems (IROS), 2016, pp. 1765-1770.

F. Moosmann and C. Stiller, “Joint self-localization and tracking of
generic objects in 3D range data,” in International Conference on
Robotics and Automation (ICRA), 2013, pp. 1146-1152.

A. K. Ushani, R. W. Wolcott, J. M. Walls, and R. M. Eustice, “A
learning approach for real-time temporal scene flow estimation from
lidar data,” in International Conference on Robotics and Automation
(ICRA), 2017, pp. 5666-5673.

A. Dewan, G. L. Oliveira, and W. Burgard, “Deep semantic classifi-
cation for 3D lidar data,” in Intelligent Robots and Systems (IROS),
2017, pp. 3544-3549.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1-16.

T. Y. Tang, D. J. Yoon, F. Pomerleau, and T. D. Barfoot, “Learning a
bias correction for lidar-only motion estimation,” in Computer Robot
and Vision (CRV), 2018.

P. McGarey, D. Yoon, T. Tang, F. Pomerleau, and T. Barfoot, “Field
deployment of the tethered robotic eXplorer to map extremely steep
terrain,” in Field and Service Robotics (FSR), 2018, pp. 303-317.

A. Azim and O. Aycard, “Detection, classification and tracking of
moving objects in a 3D environment,” in Intelligent Vehicles Sympo-
sium (IV), 2012, pp. 802-807.

G. Postica, A. Romanoni, and M. Matteucci, “Robust moving objects
detection in lidar data exploiting visual cues,” in Intelligent Robots
and Systems (IROS), 2016, pp. 1093-1098.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” International Journal of Robotics Research
(IJRR), vol. 32, no. 11, pp. 1231-1237, 2013.

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse
Gaussian process regression for batch continuous-time trajectory es-
timation on SE(3),” in Intelligent Robots and Systems (IROS), 2015,
pp. 157-164.

K. Klassing, D. Wollherr, and M. Buss, “A clustering method for
efficient segmentation of 3D laser data,” in International Conference
on Robotics and Automation (ICRA), 2008, pp. 4043-4048.

F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3D lidar data
in non-flat urban environments using a local convexity criterion,” in
Intelligent Vehicle Symposium (1V), 2009, pp. 215-220.

X. Roynard, J. Deschaud, and F. Goulette, “Paris-Lille-3D: A large
and high-quality ground-truth urban point cloud dataset for automatic
segmentation and classification,” International Journal of Robotics
Research (IJRR), vol. 37, no. 6, pp. 545-557, 2018.

	I INTRODUCTION
	II RELATED WORK
	III METHODOLOGY
	III-A Odometry
	III-B Pointcloud Comparison
	III-C Freespace Check
	III-D Box Filter
	III-E Region Growth

	IV RESULTS
	IV-A Simulated Lidar Benchmark (CARLA)
	IV-B Benchmark Results
	IV-C Experiments on Real Data

	V CONCLUSIONS AND FUTURE WORK
	References

