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Abstract

Fault induction attacks are a serious concern for design-
ers of secure embedded systems. An ideal solution would
be a generic circuit transformation that would produce cir-
cuits that are robust against fault induction attacks. We
develop a framework for analyzing the security of systems
against single fault attacks and apply it to a recent proposed
method (dual-rail encoding) for generically securing cir-
cuits against single fault attacks. Ultimately, we find that
the method does not hold up under our threat models: n-bit
cryptographic keys can be extracted from the device with
roughly n trials. We conclude that secure designs should
incorporate explicit countermeasures to either directly ad-
dress or attempt to invalidate our threat models.

1 Introduction

Securing embedded systems is exceedingly difficult due
to the fact that potential adversaries have physical access.
In this paper, we focus on fault induction attacks. Recently,
dual-rail logic, a scheme previously used in asynchronous
circuit designs, has been suggested as a countermeasure for
fault induction attacks [2, 3]. In this article, we analyze,
in a variety of threat models, the effectiveness of dual-rail
encoding as a countermeasure against single fault induction
attacks.

1.1 Summary of results

In Section 4, we describe a series of attacks against dual-
rail encoded systems in the presence of adversaries capable
of inducing a variety of types of faults. Each of the attacks
attempts to recover an n-bit secret key from the dual-rail
encoded device. We measure the efficiency of our attacks
by the number of trials required to recover the entire key.
Table 1 summarizes the effectiveness of our attacks in the
various threat models.

Table 1. Summary of our attacks for extracting
an n-bit key from a dual-rail encoded system.

Fault Fault Required Trials
Type Persistence Expected Worst-Case
Set Steady n trials n trials

Reset Steady 1.125n trials 1.5n trials
Flip Steady n trials n trials
Set Transient n trials n trials

Reset Transient (no attack) (no attack)
Flip Transient n trials n trials

As these attacks are so effective, we conclude that de-
signs for secure embedded systems must take these threat
models into account. The system should either be designed
to be robust in our threat models or some other explicit
countermeasures should be incorporated for the purpose of
invalidating our models.

1.2 Overview of sequel

We present the necessary background to understand our
results in Section 2. In Section 3 and Section 4, we construct
the framework in which we analyze the dual-rail encoded
systems and present our attacks against these systems in that
framework.

We conclude and suggest some directions for future re-
search into securing embedded systems against fault induc-
tion attacks in Section 5.

Finally, to justify our threat models and help convince
the reader of the practicality of fault induction attacks, Ap-
pendix A discusses some of the physics behind optical fault
induction and gives an example with the CMOS digital logic
family.



2 Background

2.1 Attacks

Securing embedded systems is complicated by the fact
that an adversary may have unfettered physical access to the
target system. As a result, several types of attacks that are
impractical without physical access have emerged as pri-
mary considerations in the design of secure embedded sys-
tems.

2.1.1 Side-channel attacks

Side-channel attacks are typically passive: an adversary
usually just observes the target system under normal op-
eration. What the attacks exploit is the presence of a side-
channel, an unintentional source of information about the
internal operation of the target system.

Power analysis, the observation of the power consump-
tion of a target system, has emerged as one of the the most
effective, practical, and consequently well-studied type of
side-channel attack. Other types of side-channels have been
successfully exploited, as well; examples include electro-
magnetic emission analysis and timing analysis.

2.1.2 Fault attacks

Unlike side-channel attacks, fault attacks are fundamentally
active: these attacks require the induction of some sort of
fault during the operation of the target system.

Intuitively, it seems like it might be difficult to extract
useful information from a target system by inducing faults.
However, several fault attacks have proved surprisingly ef-
fective and practical, requiring relatively little technical so-
phistication of the attacker [8]. An instructive example is
the fault attack on RSA decryption using the Chinese Re-
mainder Theorem: an attacker can recover the target sys-
tem’s entire key by observing only one faulty computation
[4]. Fault attacks have applied to other systems, including
elliptic curve systems [6] and AES [7].

Skorobogatov and Anderson describe optical fault at-
tacks [1], a precise and practical method for exercising fine-
grained control over digital logic. This suggests that some
very powerful threat models may be realistic, motivating the
consideration of attacks that require much more finesse than
the RSA-CRT attack.

We focus on these types of precision attacks against sys-
tems that employ dual-rail encoding as a defense against
fault induction.

2.2 Dual-rail encoding

Dual-rail encoding is an alternate method for encoding
bits in hardware. In contrast with classical encoding, where

Table 2. Logical values (0,1), metadata values
(quiet, alarm), and their corresponding dual-
rail encodings.

Logical or Metadata Value Dual-rail Encoding
0 (0,1)
1 (1,0)

quiet (0,0)
alarm (1,1)

each wire carries a single bit-value, dual-rail encoded cir-
cuits use two wires to carry each bit. Table 2 summarizes
the encoding.

2.2.1 Notation

Throughout this text, we will use lowercase variables such
as x and y to denote logical values and subscripted low-
ercase variables such as x1, x0, y1, and y0 to denote the
values on the dual-rail lines. For example, when x = 1, its
dual-rail encoding is (x1, x0) = (1, 0).

2.2.2 Asynchronous circuits

Dual-rail encoding seems unnecessarily more complicated
and expensive than classical encoding, but dual-rail circuits
have the advantage of being able to carry the metadata (in
particular the quiet state) necessary to realize asynchronous
circuits. In classical circuits, there is no way to tell when a
wire is carrying valid data, so components have to be coor-
dinated by a common clock: components have an additional
“clock” input that indicates when valid data is present on the
inputs. In dual-rail circuits, on the other hand, it is possible
to tell when inputs contain valid data—when they are no
longer in a quiet (0,0) state—and so the components syn-
chronize automatically.

Asynchronous circuits are attractive since they have
some inherent robustness against side-channel and fault at-
tacks (they can be balanced and they detect single bit er-
rors). For these reasons they have been suggested for use in
secure embedded systems [2, 3].

2.2.3 Generic transformation

We can think of dual-rail logic as a generic transformation
that converts a high-level logical description of a circuit in
terms of AND, OR, and NOT gates into a dual-rail encoded
circuit where each high-level logic gate is realized by a col-
lection of OR gates and C-elements (explained below) that
compute the appropriate logic function in dual-rail encod-
ing. Figure 1 gives an example transformation of a logical
OR gate into its dual-rail implementation.
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Figure 1. A logical OR gate and a dual-rail
implementation.

The dual-rail implementation of a logical AND gate is
similar: one is depicted in Figure 2. While the logical AND
and OR gates have dual-rail implementations that require
several C-elements and OR gates, it is easy to verify that a
logical NOT can be performed on dual-rail encoded bits by
simply crossing the wires: in our notation, if x is encoded
(x1, x0), then x is (x0, x1).

It is instructive to consider the similarities between the
dual-rail implementations of the logical AND and OR gates
in Figure 2. In particular, note that one can easily be ob-
tained from the other by applying DeMorgan’s laws and
crossing the dual-rail wires to implement the NOTs.

2.2.4 C-elements

The gates that look like AND gates with a letter ‘C’ in the
middle are C-elements. Unlike typical logic gates, they
maintain some state: when their output is 0, they act like
AND gates, and when their output is 1, they act like OR
gates. C-elements are used in asynchronous circuits to ad-
dress the problem of unsteady input signals, and we will
leverage their stateful behavior in some of our attacks.

2.2.5 Dual-rail circuit operation

In a typical computation in a dual-rail circuit, all wires start
in a quiet state. When valid inputs are supplied to the
device, the gates start to compute and intermediate wires
driven by these gates go from the quiet state to a valid data
state. Finally, when all inputs are supplied and the data
has had time to propagate, the outputs will be in valid data
states.

If something unexpected happens during the computa-
tion (such as an attacker introducing a fault), the alarm state
might appear in some intermediate value. A secure imple-
mentation will propagate this value to all of the outputs in
order to prevent a possible attacker from learning some par-
tial results of a faulty computation.

Finally, to prepare the circuit for another computation,
the quiet state is again applied to the inputs; this state
should propagate through the device and return all internal
values back to quiet as well.

2.2.6 Robustness against side-channel attacks

Due to their effectiveness and the relative ease with which
they can be mounted, power analysis attacks are a major
motivation for the use of dual-rail encoded systems.

The power consumption of a device using CMOS digital
logic is mostly a function of the number of transitions in the
values on wires and at the inputs and outputs of its gates.
A carefully designed dual-rail circuit (with balanced gate
design and equalized wire-lengths) can minimize the data
dependence of the power consumption during a computa-
tion: just as many transitions are required with a dual-rail
value (0,1) as with (1,0).

On the other hand, at least one empirical test suggests
that electromagnetic profiles of computation in dual-rail cir-
cuits may be more highly correlated to data than in clocked
circuits. This surprising result is possibly due to the absence
of noise from clock lines [3].

2.2.7 Robustness against fault attacks

Dual-rail encoding is an instance of m-of-n encoding. In
particular, “dual-rail logic” is another name for 1-of-2 en-
coding. In m-of-n coding, valid data (as opposed to meta-
data) codewords have exactly m 1’s. Such codes are called
immutable: flipping any single bit in a valid data codeword
results in invalid data [2].

In the case of dual-rail logic, changing one bit of a valid
data encoding (either (0,1) or (1,0)) results in one of the
metadata states: quiet (0,0) or alarm (1,1). Thus single
faults are detected. The device can halt with an error in-
dication instead of giving the attacker an erroneous output
that might leak secret information.

On the other hand, an error indication may be all an at-
tacker needs. As we will show, it is apparently important
whether errors are corrected or just detected. If an attacker
can observe whether carefully induced faults result in valid
or erroneous computations, he can deduce some informa-
tion on internal values (e.g., cryptographic key bits).

3 Models

In this section, we discuss both our models for the sys-
tems being analyzed and the classes of induced faults we
will be considering.



3.1 Target systems

The target systems we consider are the dual-rail imple-
mentations of logical circuits consisting of AND, OR, and
NOT gates. In particular, they consist of the dual-rail gates
depicted in Figure 2 along with the simple wire-swap for
logical NOTs.

3.1.1 Assumed behavior of dual-rail encoded systems

We assume that the dual-rail systems perform a computa-
tion on some given input and output the result if no error is
detected. In the case of an error, whether it is the result of
the presence of an alarm (1,1) state or a deadlock condition
(quiet (0, 0) after some timeout), the only output is an error
indicator. A system that indicated the type of error would
only make our attacks easier.

We assume that the timing of the computation is deter-
ministic and known to the adversary. While randomized
timing may complicate some of our attacks, its effective-
ness as a countermeasure is highly implementation-specific.
It is also possible that an adversary could use a side-channel
such as power consumption or electromagnetic radiation to
determine the computation timing in real-time.

3.1.2 The secret

We assume that the systems we consider contain some sort
of secret key that is used in computation. The motivating
situation is where the secret is a key to a block cipher: the
device takes the plaintext as input, performs encryption us-
ing the secret key, and outputs the resulting ciphertext. An
attacker would like to extract the key from the device.

Typically, a key is hard-coded in the circuitry or stored
in program memory. While attacks on the stored key can
be quite devastating [5], we prefer a more general approach
and make no assumptions about how the key is stored in the
device. Our attacks focus instead on the initial computa-
tions involving the secret bits.

Finally, we assume that each bit of the secret is used in
every computation, as is usual with a block cipher key.

3.2 Threat models

We are concerned with the behavior of systems when
subjected to single arbitrary faults. In practice, these faults
are induced in the transistors at the physical level, but we
model them as occurring in the OR and C-element gates of
the dual-rail implementations of the logical AND and OR
gates of the original circuit. In Appendix A, we discuss how
faults induced in transistors motivate our threat models.

For our purposes here, we do not consider fault attacks
on the bus to external RAM or to the instruction memory.

3.2.1 Effectiveness of attacks

The canonical task of the attacker is to extract a fixed n-
bit secret from a device by repeatedly using the device to
compute on known inputs and optionally inducing single
faults during each computation. Our primary measure of the
efficiency of an attack is the number of iterations required
to deduce the target system’s secret as a function of n.

3.2.2 Faults and assumptions

We think of an induced fault in a circuit as a possible de-
viation in the value at the output or input of a single OR or
C-element gate in the dual-rail implementations of the AND
or OR logic gates.1

We allow exactly one fault per computation and we as-
sume the adversary has complete control over the absolute
timing of the fault and the location (i.e., which gate) of the
fault. We assume the adversary has complete knowledge
of the layout and operation of the system (with the obvious
exception of the value of the secret, however it is stored).
These assumptions are admittedly strong, but recent results
in fault induction indicate that at least the precision assump-
tions are not outlandish [1].

Our classification of faults is partially motivated by a
similar one used by Blömer and Seifert in their fault-attack
analysis of AES [7]. We classify faults using two parame-
ters: the type of fault and the persistence of the fault.

3.2.3 Fault type

The type of fault indicates what kind of deviation the fault
induces at its target. We consider three types: set and reset
faults set the target value to 1 or 0, respectively, while a flip
fault toggles the target value.

3.2.4 Fault persistence

The persistence of a fault models the duration of the effect
of a fault as well as the level of control the attacker has
over when the effect occurs. We consider two levels of fault
persistence:

• A transient fault affects its target in an erratic man-
ner, causing it to swing between the fault and natural
states. We assume only that fault state does occur at
least once.

• A steady fault forces the target to assume the fault state
for the entire interval during which the attacker applies
the steady fault.

1Except where fanout is concerned, this is similar to fault models where
there is a possible change in the value carried on a single wire. Physical
considerations suggest deviations at inputs and outputs of gates as the most
reasonable fault model, at least with CMOS.



4 Attacks on dual-rail encoded systems

We describe how to efficiently extract secret bits in our
various threat models.

In all cases, the attacker learns a particular secret bit by
deducing an internal value in the dual-rail implementation
of the first logical gate that takes that secret bit as an in-
put. Inducing a fault in a well-chosen OR or C-element
gate reveals something about the bit in question. The same
approach is repeated for each of the n bits.

Figure 2 shows the encoding-level implementation of
both an AND and an OR gate for dual-rail logic and in-
dicates the sites relevant to our attacks.

4.1 Set and flip faults

We show how an attacker who can induce set or flip
faults can recover the secret. The trick is to cause data-
dependent activation of the C-elements intended for prop-
agating alarm signals, ultimately revealing a logical input
value in whether or not the circuit terminates in error. Due
to the stateful, sticky nature of the C-elements, steady and
transient flip- and set-faults can be employed in the same
way to reveal the secret bit.

We first describe the attack in the steady set-fault threat
model, then argue that this attack works in the other threat
models.

4.1.1 Steady set faults

Suppose the attacker wants to learn bit i of the secret. She
will focus her attack on the first gate that takes bit i as an
input. In particular, if bit i is the a input to the gate, she will
induce a fault at the C-element input marked Sa in Figure 2
for that type of gate, while for a b input she would induce a
fault at Sb.

Suppose the attacker is interested in the a input of a dual-
rail logical AND gate (the b and OR gates are similar), and
that both the a and b inputs contain valid data: each is in
either a logical 0 (dual-rail encoded (0, 1)) or a logical 1
(dual-rail encoded (1, 0)) state.2 In this case, the suggested
attack is to set to 1 the Sa input to the C-element, as indi-
cated in Figure 2.

Let us consider the resulting output of the dual-rail AND
gate. There are two possibilities, depending on the logical
value of a:

• Case 1: The a input has logical value 1. Then
(a1, a0) = (1, 0).

2Our fault models require that at most one fault happens per computa-
tion, and since we have not introduced a fault yet, both inputs will contain
valid data, so our assumption is reasonable.

Table 3. Summary of the steady set-fault at-
tack.

Before set-fault at Sa After set-fault at Sa
a b (a1, a0) (b1, b0) C-elt In (r1, r0) Result
0 0 (0,1) (0,1) (1,1) (1,1) error
0 1 (0,1) (1,0) (1,1) (1,1) error
1 0 (1,0) (0,1) (1,0) (0,1) no error
1 1 (1,0) (1,0) (1,0) (1,0) no error

Since a1 is already 1, setting the Sa input to 1 has no
effect, and the entire computation terminates normally
with a valid output.

• Case 2: The a input has a logical value 0. Then
(a1, a0) = (0, 1).

Since a0 is 1, the output value r0 is 1 regardless of the
b input’s logical value. Furthermore, we have set to
1 the C-element input marked Sa. The other input to
that C-element is a0. Thus, that C-element will have
output 1, driving the output r1 = 1. At this point, the
output of this dual-rail AND gate is the (1, 1) alarm
state, which propagates, and the computation finishes
in an error state.

The cases are also summarized in Table 3. Notice that
the computation halts with an error if and only if the logical
value of a was originally 0, so the value of a (and bit i)
is revealed. Repeating this attack once for each secret bit
allows the attacker to learn the entire n-bit secret with n
iterations.

4.1.2 Transient set, steady and transient flip faults

We will argue that inducing a steady flip, transient flip, or
transient set fault at the same target site as in the steady
set-fault attack above also allows the attacker to deduce the
logical input value.

Suppose, as above, that bit i of the secret is first used as
input a to an AND gate. Referring again to Figure 2, we
would like to induce a fault at the Sa site that will result
in either a valid computation or halting in an error state de-
pending on the value of the C-element’s other input, a0. Of
course, once a0 is determined, the logic value of a follows.

It is easy to see that the above attack works with a steady
flip fault:

• If a = 1, then (a1, a0) = (1, 0) and the target C-
element has output 0. Flipping the input at Sa makes
both C-element inputs 0, and the output remains 0. The
expected, error-free, computation follows.

• If a = 0, then (a1, a0) = (0, 1) and the target C-
element has output 0. Flipping the input at Sa makes
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both C-element inputs 1, and the output also goes to
1, also driving the r1 output to 1. Since a0 = 1, we
already have r0 = 1. Thus, this AND gate has a (1, 1)
alarm state output, and the computation results in an
error.

As for the transient set and transient flip fault models,
we need only point out that the only case where the fault
must effect a change in the output value of the C-element
is when a = 0 (and (a1, a0) = (0, 1)). With a0 = 1, any
brief setting of a1 to 1 will cause the C-element to give a
1 output, and it will remain 1 even after a1 drops back to 0
as long as a0 remains at 1. This effect occurs in both the
transient flip and transient set threat models, and is depicted
in Figure 3.

4.1.3 Steady flip model and power consumption

In general, the difficulty with a single steady flip is that it
will always induce one of the two types of error states, quiet

or alarm. Casual observation of the device will not reveal
which error state resulted from the induced fault, but an at-
tacker that also observes power consumption may well be
able to distinguish quiet and alarm states, and thereby de-
termine the target logic value.

4.1.4 Summary of attack in set and flip models

The attack is quite efficient: each experiment yields a bit of
the secret. Thus, an attacker can recover an n-bit secret by
observing and inducing faults in just n computations. We
see that with our assumptions, dual-rail logic is not secure
against steady or transient set- and flip-faults.

4.2 Steady reset fault model

As we saw in Section 4.1, an attacker who can cause
value to change from 0 to 1 can leverage the alarm propaga-
tion aspects of the dual-rail gate design to cause the system
to divulge the logical values of gate inputs.

In the reset fault models, however, the induced faults can
only change a 1 to a 0, and this presents the attacker with
a slightly trickier problem. The reason for this problem is
that the proposed dual-rail gates are monotonic: once there
is an input present that causes an output to be 1, setting other
inputs to 1 will never cause the output to go to 0. Likewise,
clearing input bits of a gate that is producing a 0 output will
not cause that output to become 1. Thus, the attacker can
only hope to alter a computation by having it result in a
deadlock ((0, 0) quiet state) error.3 The trick is to produce

3This limitation is mostly an artifact of our chosen model. Physical



Table 4. Outputs from Figure 2, minterms, and
implications.

Active Output Active Minterm Logical Implication
R0 a0b0 a = b = 0
R1 a0b1 (a = 0) ∧ (b = 1)
R2 a1b0 (a = 1) ∧ (b = 0)
R3 a1b1 a = b = 1

these errors in a data dependent way that allows the attacker
to deduce internal logical values.

Suppose the attacker wishes to learn bit i of the secret,
which is fed as an input to a dual-rail AND gate, as depicted
in Figure 2. The attacker will attempt to learn the logic
values of the input by clearing the output of one of the four
C-elements with outputs labeled R0, R1, R2, or R3. Notice
that when both the a and b inputs contain valid dual-rail data
values ((0, 1) or (1, 0)), exactly one of these C-elements
will be producing a 1 output. This is because each of the
C-elements is responsible for detecting one minterm. As
summarized in Table 4, knowing which of the R0, . . . , R3

outputs is 1, and therefore which minterm is active, reveals
the logic values of the a and b inputs.

Suppose the attacker guesses which of the the
R0, . . . , R3 outputs is 1 and then clears that output. If he
guesses incorrectly, the fault will have no effect because that
bit is already fixed at 0. If he guesses correctly, however, he
will change the operation of the circuit: what would have
been a 1 is now replaced by a 0. This will cause the dual-rail
AND gate to output (0, 0), indicating no data present and
ultimately causing the computation to deadlock, confirming
his guess. Therefore, by clearing each of the Ri sites across
several computations and observing whether each compu-
tation deadlocks or not, the attacker can learn the logical
values carried on both inputs to any logical dual-rail gate.

Now all that is left is for the attacker to decide in what or-
der to attack the four output sites. The most effective choice
of the order for attacking the output sites depends on what
the attacker knows about the inputs.

In the case that the logical value of one of the inputs is
known (as when a gate is mixing a key bit with a known
plaintext bit), he can narrow the candidate active outputs
down to two (e.g., if he knows b = 1, he need only deter-
mine whether R1 or R3 is 1), and only one trial is necessary
to determine which is active.

On the other hand, if both inputs are unknown, the at-
tacker may be unlucky and run up to three computations
before discovering the active output site and deducing the
inputs’ logic values. As a consolation prize, he learns both

and implementation considerations suggest that the ability to induce reset
faults implies the ability to induce set faults. Appendix A provides a more
detailed discussion.

input bits simultaneously. This immediately suggests that in
the worst case, an adversary has to run at most 3

2n compu-
tations to discover n bits. However, if the attacker attacks
gates with two unknown inputs by randomly selecting the
order of attack on the R0, . . . , R3 sites, he can expect to run
fewer tests. Let Xi stand for the event that the active site is
known after i trials, and we compute:

E[trials to deduce two bits] =
3∑

i=1

i · Pr[Xi]

= 1 · 1
4

+ 2 · 3
4
· 1
3

+ 3 · 1
2

= 2
1
4
.

Thus, even if none of the secret bits are taken as inputs
to gates along with known bits (where the attacks can learn
the secret bit in 1 trial), the attacker can expect to run only
about 1 1

8 trials per secret bit.4

4.2.1 Reset fault model summary

We have shown that dual-rail logic is not secure against
steady reset faults. It takes only about 1.125n trials to learn
n secret key bits. For some circuit configurations, the num-
ber of trials can be reduced to n.

We are unable to find any workable attack in our transient
reset fault model.

5 Conclusion and Recommendations

We have proposed some threat models and analyzed the
efficacy of dual-rail logic as a countermeasure against a va-
riety of types of induced faults. Since we have found ef-
ficient attacks against dual-rail encoded systems, we must
conclude that dual-rail encoding is not a sufficient counter-
measure against single fault attacks under the assumptions
of our models.

5.1 Recommendations within our models

Our attacks utilize induced faults to effectively probe in-
ternal logic values, and their success depends on the de-
terministic nature of the target systems. This observation
immediately suggests that randomization, a commonly sug-
gested defense against probing attacks, may perhaps be em-
ployed to defend against our fault attacks.

Alternatively, one may note that dual-rail logic is effec-
tively computing with an error-detecting code. This allows
dual-rail logic to detect errors and halt in an error state

4Here was assume that all unknown bits are interesting (i.e., only the n
secret bits are unknown). If uninteresting unknown bits are present, it may
take twice as many trials for the adversary to learn all secret bits.



rather than divulging an incorrect output that might give the
attacker enormous information [8]. Unfortunately, our at-
tacks and others [9] successful exploit this error state bit.
With this in mind, one could consider representing logic
values with an error-correcting code (ECC) rather than with
an error detecting code. If logic values were represented in
an ECC with a minimum distance of at least 3, single fault
errors in a logic value’s representation could be corrected
rather than just detected. Thus, single induced faults could
reliably result in valid computations rather than the data-
dependent behavior of possibly ending in an error state,
and this could thwart our attacks. Unfortunately, comput-
ing with an ECC would certainly be more expensive than
using dual-rail logic: an ECC would require at least 3 wires
to carry each bit, and even more wires would be necessary
to guarantee balanced power consumption.

5.2 Recommendations beyond our models

Perhaps our threat models are too strong. Due to uncer-
tainty about the target system and limitations of equipment,
attackers may not be able to cause precise single bit errors.
If we could develop models that accurately captured these
limitations, we should be able to argue rigorously that ap-
proaches like dual-rail encoding are secure. These results
would allow us to trust these designs as long as the attacker
limitation assumptions seemed realistic with respect to the
current state of technology.
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A Physical motivation for attack models

The powerful yet surprisingly practical optical fault in-
duction attacks of Skorobogatov and Anderson [1] provide
the major motivation for our threat models. While previous
work will convince the reader that fault induction is defi-
nitely a problem worth considering in the design of secure
embedded systems, we wish to go a little further into the
physics behind optical attacks.

In exploring a variety of fault types, we try to cover a suf-
ficiently large spectrum of potential fault induction methods
against a variety of digital logic families. In this section, we
attempt to give some of the background required to under-
stand how optical fault induction works and, as an example,
to justify that at least one of our threat models captures the
effect of optical faults against CMOS digital logic.

A.1 MOSFET basics

Enhancement-mode MOSFETs (Metal Oxide Semicon-
ductor Field Effect Transistors) are the basic components
of CMOS (Complementary MOSFET) digital logic. Ide-
ally, a MOSFET behaves like a voltage-controlled switch:
the potential difference between the the electrically-isolated
metal5 gate and the bulk determines whether or not the de-
vice will allow charge to flow between the source and drain.

Enhancement-mode MOSFETs come in two basic vari-
eties, n-channel and p-channel, depending on the type of
majority charge carrier (negative or positive) that is active
when the device is conducting. The two types behave in
a complementary manner: n-channel enhancement-mode
MOSFETs conduct when the gate voltage is positive rela-
tive to the bulk, while the p-channel variety conducts when
the gate voltage is negative relative to the bulk. Figure 4
gives commonly-used schematic representations of MOS-
FETs.

5Modern devices frequently have a non-metal polysilicon gate, and are
alternatively referred to as IGFETs (Isolated Gate Field Effect Transistors).
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Figure 4. Common schematic representa-
tions of MOSFETs. G = Gate, S = Source,
and D = Drain.

In each type of MOSFET, the source terminal is con-
nected to the supply of charge carriers: n-channel devices
have their source connected to the more negative input and
p-channel devices have their source connected to the posi-
tive input.

A.1.1 Mechanism

The behavior of semiconductors is a product of the inter-
play between the two types of semiconductor material: n-
type and p-type. These types of semiconductor material are
created by doping a relatively pure nonconductive crystal
(e.g., a crystal of silicon or germanium atoms) with different
atoms (e.g., phosphorus, arsenic, aluminum, or gallium).
The doped material has a surplus of charge carriers: n-type
material has an abundance of electrons that are not bound
in its crystal structure while p-type material has a dearth
of electrons—an abundance of holes in its crystal structure.
Each type of doped material will conduct charge.

The most interesting and useful behavior occurs when
the different types of material are joined in various configu-
rations. The basic effect utilized by semiconducting devices
is that, under normal conditions, current will flow across a
p-n junction (a junction between p-type and n-type mate-
rials) only when the n-type material is negatively charged
relative to the p-material. For example, a diode, which per-
mits current flow in only one direction, is nothing more than
a p-n junction.

A.1.2 MOSFET configuration

An enhancement-mode MOSFET has one type of semicon-
ductor material at each of the source and drain terminals,
and a bulk (or substrate) of the other type of material sepa-
rating these regions. For example, an n-channel MOSFET
has n-type material at the source and drain inputs and a bulk
composed of p-type material. Figure 5 depicts an n-channel
enhancement-mode MOSFET.

This configuration would normally not allow current to
flow between the source and drain. To force the device in
Figure 5 to conduct, a positive charge is loaded onto the
gate. Although the gate is electrically isolated from the bulk
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Figure 5. An n-channel enhancement-mode
MOSFET in normal operation.

by a layer of nonconducting oxide, the charge on the gate
induces an electric field that permeates the the p-type mate-
rial below. This electric charge attracts electrons (negative
charge carriers) to the region in the p-type material near the
gate. If enough charge is present on the gate to induce a
sufficiently strong electric field, so many electrons will be
present in the affected region of the p-type material as to
make it behave as if it were n-type material. Thus a chan-
nel is created between the n-type regions at the source and
drain and current can flow, with electrons being the majority
charge carrier.

The situation is similar in a p-channel MOSFET, ex-
cept the type of materials and charge carriers are reversed.
When a negative charge is present on the gate of a p-channel
device, electrons in the underlying n-type material are re-
pulsed, resulting in an abundance of holes. The affected re-
gion behaves like p-type material and a channel is formed.

A.2 Optically induced failure in n-channel MOS-
FETs

Loading the gate with a positive charge to induce an elec-
tric field is not the only way to create a channel of majority
charge carrier electrons in the p-type material.

A.2.1 Electrons and photons

When electrons move through a crystal lattice, they pop in
and out of the covalent bonds that bind the atoms in the crys-
tal structure. An electron that is part of a bond has lower
potential energy than a free electron, so a free electron that
joins a covalent bond loses some energy. Where does this
energy go? It is released as a photon, a unit or quantum of
electromagnetic radiation. The wavelength of the emitted
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Figure 6. The logical schematic of our target
circuit.

photon is determined by the amount of energy lost by the
electron: the more energy lost, the smaller the wavelength.
This phenomenon, known as the photoelectric effect, is uti-
lized in LEDs (Light Emitting Diodes), where the semicon-
ductor materials are specifically chosen so that the emitted
photons have desired wavelength of light.

What is important for us, however, is the opposite effect:
if an electron in a covalent bond of a crystal structure ab-
sorbs a photon with sufficient energy, it will jump out of the
bond and briefly become a free electron. When illuminated
by a sufficiently intense source of light (e.g., a laser), even
p-type material will have a large number of free electrons
due to photon absorption. Illuminating an n-channel MOS-
FET with light of the appropriate frequency and intensity to
penetrate the gate and oxide insulator can induce a channel
of electron majority charge carriers between the source and
drain, causing the device to conduct regardless of the charge
on the gate.

Thus, a clever adversary may use a well-aimed laser with
the proper intensity to affect the switching behavior of n-
channel MOSFETs in the target device.

A.3 An optically induced fault in CMOS

How does the induction of faults in the transistors af-
fect the digital logic gates realized by these transistors? We
consider the case of CMOS, one of the most common digi-
tal logic families. CMOS uses electric potential to indicate
logic values: typically, positive voltage represents a logical
1 and 0V represents a logical 0.

Skorobogatov and Anderson have successfully used light
to set the value of bits in SRAM memory (memory based
on CMOS digital logic) [1]. For our example, however, we
would like to use the same technique to influence the output
of the circuit depicted in Figure 6.

In Figure 6, only one of the inputs to the C-element is
1, so the C-element has a 0 output. Suppose we wish to
change that output to a steady 1. All that we really need to
do is cause the lower OR gate driving the second input of
the C-element to go from 0 to 1, even if only for a short time
(once the C-element has a 1 output, it will not drop back to
a 0 output until both of its inputs drop to 0). With that in
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Figure 7. The CMOS schematic of the target
OR gate. The n-channel MOSFET indicated
by the arrow and circle is the target of our
optical attack.

mind, we concentrate our efforts on the lower OR gate in
Figure 6.

Figure 7 gives the transistor-level schematic for the target
OR gate. The left four transistors constitute a CMOS NOR
gate, while the two rightmost transistors form a CMOS in-
verter. The target transistor, the n-channel MOSFET indi-
cated in Figure 7, is the last transistor of the NOR half of
the circuit. If it were to conduct, it would cause the out-
put voltage of the NOR half to drop sufficiently to cause the
output of the inverter half (and hence the whole OR gate) to
go high.

By illuminating this transistor with a flash of light of
the appropriate frequency and intensity, we may cause it
to briefly drop the voltage of the line going into the inverter
half of the circuit, thus creating a brief high-voltage spike
from the output of the OR gate to the second input of the C-
element (see Figure 6), ultimately causing the target circuit
to output 1.

A.4 Practical considerations

In order to optically flip bits of SRAM, Skorobogatov
and Anderson had to depackage (expose) the digital logic
in the target device, an older MicroChip PIC16F84, suffi-
ciently for their light to be able to affect the transistors [1].
It would probably be significantly more difficult to accom-
plish the same thing in the logic (rather than RAM) part of
a more modern (especially multilayered) design. Further-
more, in a dual-rail design that incorporated phototransistor
tripwires as suggested by Skorobogatov and Anderson [1],
depackaging could cause the circuit to always halt in the
alarm state unless the adversary is able to circumvent this
countermeasure.

Our example in the previous section demonstrates some-
thing close to our transient clear fault model, but it is not
obvious whether the other fault models, the steady and flip
varieties, are applicable to CMOS. On the other hand, a de-
sign that is secure in all of our fault models would be safe
against single faults in a CMOS implementation.


