Strong Invariants for the Efficient Construction of
Machine-Checked Protocol Security Proofs

Simon Meier, Cas Cremers, David Basin
ETH Zurich, Switzerland
Email: {simon.meier, cas.cremers, david.basin}@inf.ethz.ch

Abstract—We embed an operational semantics for security
protocols in the interactive theorem prover Isabelle/HOL
and derive two strong protocol-independent invariants. These
invariants allow us to reason about the possible origin of
messages and justify a local typing assumption for the otherwise
untyped protocol variables. The two rules form the core of a
theory that is well-suited for interactively constructing natural,
human-readable, correctness proofs. Moreover, we develop an
algorithm that automatically generates proof scripts based on
these invariants. Both interactive and automatic proof con-
struction are faster than competing approaches. Moreover, we
have strong correctness guarantees since all proofs, including
those deriving the underlying theory from the semantics, are
machine checked.

Keywords-security protocols, formal methods, theorem prov-
ing, automatic tools.

I. INTRODUCTION

Problem Context: Security protocols are standard com-
ponents of systems that communicate over untrusted net-
works, such as the Internet. Their relatively small size,
combined with their critical role, makes them a suitable
target for formal analysis. During the last twenty years,
many successful symbolic methods have been developed for
analyzing small to medium-sized protocols.

Ideally, when no attacks exist on a protocol, we would like
to have a proof of the protocol’s correctness. This provides
an explanation of why the protocol is correct and makes the
result verifiable for others, e.g. for certification purposes.
Given the complexity of the symbolic models used and the
history of mistakes made in manual protocol proofs, it seems
prudent to require machine-checked proofs.

In his seminal work [1], Paulson proposed the first ap-
proach to constructing machine-checked proofs of proto-
col correctness, using the interactive theorem prover Is-
abelle/HOL [2]. The protocols proved include TLS [3],
Kerberos IV [4], and SET [5]. As reported in [1], the time
required for an expert to model and prove a protocol correct
using Paulson’s approach ranges from several days for small
academic protocols to six weeks for a protocol like TLS [3].

An alternative approach to security protocol verification
is to use automatic tools, such as Athena [6], ProVerif [7],

This work was supported by the Hasler Foundation within the CompoSec
project.

or Scyther [8]. Such tools have two main advantages over
interactive approaches: they require less user expertise and
produce results orders of magnitude faster. However, the
state explosion problem makes these tools unsuitable for
large protocols.

As originally suggested by Song, Berezin, and Perrig [6],
[9], both methods may be combined to verify security proto-
cols. The work by Song et. al. on formalizing the techniques
underlying the Athena tool was never completed [10], but
aimed at combining the benefits of both approaches: proofs
are machine checked, they are generated automatically when
possible, and can be developed interactively, if desired.

Approach Taken: We develop a methodology and tool
set that combines the benefits described above. First, build-
ing on the work by Cremers and Mauw [11], we formalize
an untyped execution model for security protocols as an
operational semantics in Isabelle/HOL. Then, building on
the work by Song et. al., we formally derive two strong
protocol-independent invariants from our semantics. The
first invariant gives rise to an inference rule for establishing
the possible origins of a message. The second invariant
characterizes the messages that may be assigned to the
untyped protocol variables during execution. This second
invariant holds only for a restricted but relevant class of
protocols, which we call weakly atomic. Protocols like
Yahalom, TLS, and Kerberos V all fall in this class. The
benefit of the second invariant is that it allows us to prove
strong authentication properties for protocols making use
of untyped variables such as Kerberos V. We provide a
specialized induction scheme for establishing that a protocol
is weakly atomic.

Together, these two invariants form the basis of a verifica-
tion method for security protocols. We explore two applica-
tions: First, we show how these invariants can be used to
efficiently construct machine-checked protocol-correctness
proofs using interactive theorem proving. Second, by ex-
tending an algorithm that builds on Athena and Scyther with
weak-atomicity reasoning and support for proof-reuse, we
develop a method to automatically generate Isabelle/HOL
proof scripts that can be efficiently machine-checked.

Contributions: First, we develop two strong invariants
for security protocol verification. These invariants lead to
succinct, natural, protocol security proofs.

Second, the invariants, together with a general protocol
theory formalized in Isabelle/HOL, support the interactive
construction of protocol-correctness proofs almost two or-
ders of magnitude faster than when using Paulson’s Inductive
Approach; i.e., hours instead of weeks.

Third, we develop a method to automatically gener-
ate correctness proofs, which can be efficiently machine-
checked by Isabelle/HOL. The time needed to generate and
machine-check proofs is orders of magnitude faster than
the results for the automatic generation of machine-checked
proofs reported in [12], [13]. Moreover, the resulting frame-
work, comprising both our Isabelle/HOL protocol theory
and the proof-generation algorithm, is the first framework
that combines the benefits of manual (machine-checkable)
proof construction with the efficiency of automatic protocol
verification.

Finally, for both interactive and automated proofs, we
have strong correctness guarantees. Our protocol theory and
the invariants are formally derived from the operational
semantics of security protocols in Isabelle/HOL. Hence, we
have machine-checked proofs of their soundness. Further-
more, the protocol proofs themselves are machine checked,
both those interactively constructed and those automatically
generated. Producing machine-checkable proofs is especially
important when using complex (semi-)decision procedures
whose correctness (both algorithmically and of the imple-
mentation) is non-trivial. For example, proof checking in
Isabelle gives us a guarantee independent of any possible
implementation errors in our proof-generation algorithm.

Organization: In Section II, we define the protocol
model underlying our verification theory. We describe the
two invariants and the resulting proof construction method
in Section III. In Section IV, we describe interactive proof
construction and give our algorithm, which automatically
generates machine-checked security proofs. We also report
on experimental results in case studies of both interactive
and automatic proof construction. We discuss related work
in Section V and draw conclusions in Section VI.

II. SECURITY PROTOCOL MODEL

After some notational preliminaries, we define our se-
curity protocol model, which we have formalized in Is-
abelle/HOL. Our model consists of three parts: (1) a protocol
specification language based on role scripts and pattern
matching, (2) an operational semantics defining protocol
execution in the presence of an active intruder, and (3) a set
of predicates for formalizing security properties like secrecy
and authentication.

A. Notational Preliminaries

For a binary relation —, we denote its reflexive transitive
closure by —*. Let f be a function. We write dom(f)
and ran(f) to denote f’s domain and range, respectively.
We write fla — b] to denote f’s update, defined as the

function f’ where f'(x) = b when = a and f'(x) = f(x)
otherwise. We write f : X + Y to denote a partial function
mapping all elements in dom(f) C X to elements from Y
and all elements in X \ dom(f) to the undefined value L
different from all other values.

For any set S, P(S) denotes the power set of S and S*
denotes the set of finite sequences of elements from S. We
write (s1,...,S,) to denote the sequence of elements s;
through s,,. For a sequence s of length |s| and 1 < i < |s],
we write s; to denote the i-th element. We write s™ s’ for the
concatenation of sequences s and s’. Abusing set notation,
we write e € s iff Ji.s; = e. We write x <; y to denote that
x precedes y in the sequence s, i.e., dJab.s =a"bAx €
aAy € b. Note that < is a strict total order on the elements
in s iff s is duplicate-free.

We use standard notation for manipulating terms [14]. For
a term ¢, the free variables of ¢ are denoted by FV(t).

B. Protocol Specification

We model security protocols as sets of roles where each
role is a sequence of role steps. A role step sends or receives
messages matching its message pattern. We first describe the
elements of our specification language and then provide an
illustrative example.

We assume given the pairwise-disjoint sets Const, Fresh,
and Var denoting constants, messages to be freshly generated
(nonces, coin flips, etc.), and variables. We further assume
that the set of variables Var is partitioned into two sets, AVar
and MVar, denoting agent variables and message variables.
Agent variables are placeholders for agent names that are
chosen when creating a new role instance and message
variables are placeholders for messages (these may also
be agent names) received during the execution of a role
instance. We define the set Pat of message patterns as

Pat ::= Const | Fresh | Var | h(Pat)
| (Pat, Pat) | {Pat | K | PR | Sk

The pattern K, ; denotes a long-term symmetric key shared
between a and b, pk, denotes a’s long-term public key, and
sk, denotes a’s long-term private key. We use the single
encryption constructor {- [} to denote public-key encryption
when k& = pk,, signing when k& = sk,, and symmetric
encryption otherwise. Note that we allow for composed
messages to be used as symmetric keys. The constructor
h(-) denotes hashing and (-, -) denotes pairing.

Let Label be a set of labels. We define the set RoleStep
of role steps as

RoleStep ::= Send qp01(Pat) | Recv, pei(Pat) .

A send role step Send;(pr) denotes sending the message cor-
responding to the pattern pt. A receive role step Recv,(pr)
denotes receiving a message matching the pattern pr. The
labels have no operational meaning: they serve just to
distinguish different send (or receive) steps that contain

the same message pattern. A role is a duplicate-free, finite
sequence R of role steps such that

vV Send;(ptr) € R. Yv € FV(pt) N MVar.
31, pf'. Recvy (pt') <r Send;(pt) Av € FV(p?') .

Hence, in a role, every message variable must be received
before it can be sent. We denote the set of all roles by Role.

A protocol is a set of roles. We denote the set of all
protocols by Protocol. We illustrate protocol specification
with a simple challenge-response protocol.

Example 1 (CR Protocol). Let s € AVar, k € Fresh, and
v € MVar. We define CR = {C, S}, where

C = (Send:({}kl}px,), Recva(h(k)))
S = (Recvi({vlpx,), Senda(h(v))) .

In this protocol, a client, modeled by the C role, chooses
a fresh session key k and sends it encrypted with the public
key of the server with whom he wants to share k. The server,
modeled by the S role, confirms the receipt of k by returning
its hash. We use this protocol as a running example. Hence,
in subsequent examples, the expressions s, k, v, C, S, and
CR refer to the ones defined here.

C. Protocol Execution

During the execution of a protocol P, agents may execute
any number of instances of P’s roles in parallel. We call each
role instance a thread. Threads may generate fresh messages,
send messages to the network, and receive messages from
the network as specified by the role they execute. We assume
that the network is completely controlled by an active Dolev-
Yao style intruder. In particular, the intruder learns every
message sent and can block and insert messages. Moreover,
the intruder also has access to the long-term keys of an
unbounded number of compromised agents.

We provide an operational semantics for protocol execu-
tion in the presence of the intruder, expressed as a state
transition system, along the lines of [11]. The ingredients of
the operational semantics are (1) messages, (2) agent threads,
(3) the system state, (4) the intruder knowledge, and finally
(5) the transition system. We discuss each of these in turn.

1) Messages: We assume an infinite set 7ID of thread
identifiers. We use the thread identifiers to distinguish be-
tween fresh messages generated by different threads. For
a thread identifier #id and a message n € Fresh to be
freshly generated, we write nfitid to denote the actual fresh
message generated by the thread tid for n. We overload
notation and for A a set, we write AfTID to denote the
set {afitid | a € A, tid € TID}.

We assume given a set Agent of agent names disjoint from
Const. We define the set Msg of messages

Msg ::= Const | FreshiTID | Agent | h(Msg)
‘ (MSg,MSg) | {|Msg|}M‘Vg | kMngMSg | pkMsg | SkM-Vg .

A message m is atomic iff m € ConstU FreshiTID UAgent.
We assume the existence of an inverse function on messages,
where k=1 denotes the inverse key of k. We have pk -
sk, and Sk;1 = pk, for every message =, and m~! = m
for all other messages m. Thus, depending on the key k,
the message {/ml}; denotes the result of signing, public-key
encryption, or symmetric encryption.

2) Agent threads: For each thread, the system state stores
the role it executes and the role steps still to be executed.
We model this information as a partial function

th : TID + (Role x RoleStep™) ,

where dom(th) denotes the identifiers of all threads in
the system. We call th a thread pool and define the set
ThreadPool as the set of all thread pools. Furthermore, the
system state contains a variable store o : Var x TID — Msg
storing for each variable v and thread identifier tid the
contents o (v, fid) assigned to v by thread rid. We define
the set of all variable stores as Store = Var x TID — Msg.

Threads execute roles, which are sequences of role steps,
which specify the messages to be sent and received as
message patterns. As we will see later, we abstract from the
process of instantiating variables when receiving messages
by considering all possible assignments of messages to a
thread’s variables. During the execution of a thread tid and
in the context of a variable store o, a message pattern pt
is instantiated to the message inst, q(pt) by replacing all
fresh message patterns with the actual fresh messages and
all variables with the content assigned to them by thread #id.

pt if pt € Const
ptiitid if pt € Fresh
o(pt, tid) if pt € Var
h(insts.ia(z)) if pr = h(z)
inste 4q(pr) &L (instyia(x), insty ha(y)) if pt = (z,y)
{insts ia(x) [} insty wa(eyy — if Pt = {2[}x
kinstm“d(a),instm,[t,(b) if pt =Kap
PKinst, a(a) if pr = pk,
SKinsty a(a) if pr = sk,

3) System state: The system state keeps track of the
thread pool, the variable contents, and a trace recording what
role steps were executed by what thread and what messages
were learned by the intruder. We use this trace both to keep
track of the intruder knowledge in a system state as well as
to specify the security properties of a protocol. A trace is a
sequence of basic events.

BasicEvent ::= St(TID, RoleStep) | Ln(P(Msg))

The basic step event St(rid, s) denotes that the thread rid
executed the role step s. The basic learn event Ln(M)
denotes that the intruder learned the messages M. We define

th(tid) = (R, (Send;(pt)) " todo)

S
(ir,th, 0) — (ir { St(rid, Send, (pr)), Ln(newMsgs, (instyza(pt)))), thitid — (R, todo)], o) ~
th(tid) = (R, (Recv,(pt)) " todo) insty 4q(pt) € knows(tr) R
ECV
(tr,th,o) — (tr " (St(rid, Recv,(pt))), th]tid — (R, todo)], o) ¢
x,y € knows(tr) (z,y) ¢ knows(tr) m € knows(tr) h(m) ¢ knows(tr) °
ASH

(trythy,o) — (er™ {Ln({(z,y)})), th, o)

m, k € knows(tr) {Imf}x ¢ knows(tr)
(lh th, U) - (trA < Ln({{|m|}k}) >7 th, U)

Figure 1.

the set of all traces as Trace = BasicEvent". Finally, a system
state is a triple (tr,th, o) € Trace x ThreadPool x Store.

4) Intruder knowledge: We assume that there exists a
subset Compr C Agent of compromised agents whose long-
term keys are known to the intruder. Thus, the intruder can
impersonate any agent Fve € Compr and act as a legitimate
participant of a protocol. The initial intruder knowledge IK,
is therefore defined as

1Ky £ Const U Agent U

K, ,sk k k .
UaGAgent,EveGCompr{p a’ Bve; Ra, Eve; Eve,a}

Given a trace tr, we define the associated intruder knowl-
edge knows(tr) as the set of messages that the intruder learns
from the basic learn events in tr.

knows(tr) = U

Our execution model ensures that the intruder always
learns the initial intruder knowledge as the first basic event
in a trace. Furthermore, whenever the intruder knows a
tuple (x,y), then he also knows the messages x and y. To
formalize this invariant, we define the function split : Msg —
P(Msg) such that split(m) denotes the set of all messages
that can be obtained from m using projection.

split(m) £ { }:{ U split(z) U split(y)

Intuitively, the intruder can learn a message only once. We
use newMsgs,,(m) to denote the new messages learned when
seeing a message m in the context of a trace tr.

Ln(M)etr

if m = (z,y)

otherwise

newMsgs,.(m) = split(m) \ knows(tr)

Example 2 (System state of the CR protocol). Assume some
agent a € Agent executes the C role in thread ¢ € TID and
has sent his first message {|kfi[}pk, to establish the fresh
session key kffi with an agent b € Agent. Also, assume that
agent b executed the Recv, ({{v[}pk) step of the S role in the

(tr,thyo) — (tr~ {Ln({h(m)})), th, o)

{Im[y € knows(tr) k™' € knows(tr)
DECR

(tr,th,o) — (tr~ { Ln(newMsgs,.(m))), th, o)

Transition rules of the execution model.

thread j € TID and received the first message that thread ¢
sent. If ¢ and j are the only threads running, then the system
state is of the form (tr,th, o), for some o’ € Store and

th “ {Z = (C, <C2>)v .] = (S7 <S2>)}

def

o =0'[(s,i) — b, (5,5) — b, (v,) — kii]
tr £ (Ln(IKo), St(i, C1), Ln({{Iktil}pk, }), St(j. 51)) -

5) Transition system: For a protocol P, the state tran-
sition relation — is defined by the transition rules in
Figure 1. We explain each rule in turn.

A SEND transition is enabled whenever the next step of a
thread rid is Send;(pr) for some label | and some message
pattern pt. The trace tr is extended with two basic events.
The basic event St(rid, Send;(pr)) records that this send step
has happened. The basic event Ln(newMsgs,,(inst, 1ia(pt)))
records that the intruder learns all new messages accessible
from the sent message inst, 4(pt) using projection.

A RECV transition is enabled whenever the next step of a
thread 7id is Recv,(pt) for some label I and some message
pattern pt and the intruder knows a message matching pt
under the variable store o. The trace tr is extended with the
basic event St(zid, Recv,(pt)), recording that this receive
step has happened.

A PAIR, HASH, or ENCR transition models the intruder
learning respectively a pair, a hash, or an encryption by
construction. Because the intruder knowledge is closed under
split, no projection transition is needed.

A DECR transition models decryption of a message with
the decryption key and learning all new messages accessible
from the encrypted message using projection.

There is no explicit transition rule for creating new
threads. Instead we consider all possible sets of new threads
in the set of initial states Qo(P) of our system.

Qo(P) = { ({Ln(IKy)), th, o)
| (Vv € AVar, tid € TID. o(v, tid) € Agent) A
(Vrid € dom(th). 3R € P. th(tid) = (R, R))}

For each initial state (tr,th,o) € Qo(P), the variable store
o is defined such that every agent variable is instantiated
with an agent name and message variables are instantiated
with some arbitrary message; i.e., we overapproximate the
set of possible executions by instantiating all variables non-
deterministically at the beginning of a thread. The thread
pool th is defined such that every thread tid € dom(th)
instantiates a role of P and has not executed any step yet.

For a protocol P, we define the set of all reachable states

reachable(P) = {q | g0 € Qo(P). g0 —" q} .

Using the above definition, we can formalize trace-based
security properties that are expressible as invariants over the
set of reachable states of a security protocol.

D. Security Properties

We focus on security properties expressible as a security
predicate ¢ that must hold for every state (tr,th,o) €
reachable(P). Many security properties from literature fit
this pattern, for example, all the authentication properties
from [15], [16] or secrecy as in [11].

To formalize and reason about security properties, we
introduce the notion of an event, which is either a learn
event m denoting that the intruder learned the message m
or a step event (tid, s) denoting that thread rid has executed
the role step s. We define

Event = Msg U (TID x RoleStep)

as the set of all events. The difference between events
and basic events is that a basic learn event denotes the
learning of a set of messages, while a learn event denotes
the learning of a single message. We make this distinction,
as the use of basic learn events simplifies our semantics,
while the restriction to learning single messages simplifies
the inference rules that we use to reason about protocols.

The previously defined function knows can be used to
project a trace tr to the set of all learn events occurring in
tr. The projection of a trace #r to the set of all step events
occurring in tr is denoted by steps(tr).

steps(tr) = {(tid, s) | St(tid, s) € tr}

The event order relation (<) C Event x Event denotes the
order of events induced by the basic events in the trace tr.

T =<4y o dtry tro. tr = try " tra A
(x € knows(tr) V x € steps(tr1)) A
(y € knows(tra) V y € steps(tra))

Our semantics guarantees that <, is a strict partial order on
Event. We define =<,, as the reflexive closure of <,,.

The explicit representation of the order between executed
steps and messages known by the intruder is a key difference
between our work and Paulson’s Inductive Approach [1]. It
allows us, for example, to represent the statement “both the

encryption {ml}) and the inverse key k~! must have been
known before the intruder learned m” as the proposition

{mf}x <»m A El <, m.

We will make extensive use of such propositions in our
security proofs.

We also define the partial function roley, : TID + Role,
where roley(tid) = R denotes that thread tid executes an
instance of role R.

o | B if th(tid) = (R, tod.
role,h(tid):{ if th(tid) = (R, todo)

L if th(tid) = L

G

Security predicates are formalized as logical formulas
built using the previously defined functions and relations.
We illustrate this in the following example.

Example 3 (Security properties of the CR protocol). For a
client who completes its role with an uncompromised server,
the CR protocol guarantees (1) the secrecy of the session key
k and (2) non-injective synchronization [16] (a strengthened
variant of non-injective agreement [15]) with a server. We
formalize property (1) as the security predicate @gec.

def

Gsec(tr, th, o) = Vi € TID.
roley (i) = C N o(s,i) ¢ Compr = kii ¢ knows(tr)

Recall that C, s, and &, as well as S and v, have been defined
in Example 1. Intuitively, property (2) states that whenever a
client thread ¢ communicates with an uncompromised server
and receives its last message, then there exists a server thread
who received the first message from client ¢ and whose
second message was received by client . We formalize this
as the predicate @,um-

def

Gaun(try th, o) = Vi € TID.
roleg, (i) = C N o(s,i) ¢ Compr A (i, Ca) € steps(tr)
= (3j € TID. roley(5) = S A
o(s,i) =o(s,7) Nkt = a(v,j) A
(1, C1) =i (4, 81) A (4, S2) =i (4, C2))

Recall that a role is a sequence of role steps. Hence, Co
denotes the second step of the C role.

III. SECURITY PROOFS BASED ON DECRYPTION CHAINS

In the last section, we described the embedding of our
operational semantics in higher-order logic. This is some-
times called a shallow embedding [17] in the verification
community as the operational semantics is given by a
(conservative) definitional extension of higher-order logic.
From the semantics, we derive inference rules that directly
encode reasoning principles for constructing protocol secu-
rity proofs. This derivation is carried out in Isabelle/HOL,
thereby giving us a machine-checked proof of the soundness
of our rules with respect to the operational semantics.

(m1,m2) € knows(tr) (m1,m2) € knows(tr)

KNy
my € knows(tr) meo € knows(tr)
m <y e (tid, s) < €
———————— KNOWN _ EXEC
m € knows(tr) (tid, s) € steps(tr)
roley(tid) = R s <gp s (tid, s) € steps(tr)

ROLE

(tid, s") <, (tid, s)

(tid, Recv,(pr)) € steps(tr)

(m1,ma) <y e (ma1,mg) <4 €

ORD1 ORD2
my <y € mo <y €
€<y e €1 < €2 €2 <y €3
TRANS
false e1 <y €3
m € knows(tr)
CHAIN

(m S IK()) V

(3z. m=h(z) Az =<,h(z))V
(Fz k. m={al}x ANz <p{zle ANk <u{zr)V
Bxy. m=(x,y) ANx =<y (z,y) Ny <y (,y))V
(

; ; INPUT
insty 4q(pt) <. (tid, Recv;(pr)) dR € P. 3Send;(pt) € R. 3rid. roley(tid) = R A
chain, ({(tid, Send,;(pt)) }, insty 4a(pt), m))
Figure 2. Core inference rules of the decryption-chain reasoning technique.
chain,(E, m', m) = (m'=m ANMe€Ee<,m))V
Bz k. m' = {lz[lr A (Ve €E. e <y {xf}r) A chain,({{z]r, k'), z, m))V

(Fzy. m' = (z,y)

Figure 3.

We present our inference rules in two parts. First, in
Section III-A, we present the core inference rules. We
illustrate their usage on the CR protocol. Second, in Section
III-B, we show why these rules are insufficient for reasoning
about the content of variables due to the untyped model that
we are using. We then provide a solution to this problem
for a practically relevant class of protocols.

A. Core Inference Rules

The core inference rules are given in Figure 2. We derive
all of these rules from our semantic embedding under the
assumption that (¢r,th, o) € reachable(P).

The rules KNy, and KN2 express that if the intruder knows
a pair of messages (my,ms), then he also knows m; and
mo. Similarly, the rules OrRD; and ORD. express that if a
pair of messages (mq,ms) was learned before the event e
happened, then both m; and ms were also learned before e
happened. These four rules allow us to reduce statements
about the knowledge of tuples to the knowledge of the
contained nonces, hashes, and encryptions. Intuitively, these
rules are sound because our semantics ensures that the
intruder knowledge is closed under split.

The rules KNowN and ExEc follow trivially from the
definition of <., knows, and steps.

The rules IRR and TRANS express that <, is a strict partial
order. Intuitively, they are sound because roles are duplicate-
free and our execution model therefore guarantees that all
executed steps are unique and the intruder never learns the

A (chaing,(E, x, m) V chain,(E, y, m)))

Definition of the chain predicate using recursion over the message m’ in the second argument.

same message twice.

The rule ROLE expresses that if a thread tid that is an
instance of role IR has executed role step s, then all the role
steps s’ <g s have been executed before s by the thread rid.
Intuitively, this rule is sound because both the SEND and the
RECV transitions successively execute role steps in the order
specified by the roles.

The rule INPUT expresses that if a thread fid has executed
a receive step Recv;(pr), then the instantiated pattern pr has
been learned before Recv;(pr) was executed by the thread
tid. Intuitively, this rule is sound because the RECV transition
ensures that the intruder knows the received message.

The rule CHAIN expresses that there are precisely five
ways that an intruder can learn a message m.

1) He knew m from the start.

2) m is a hash h(z) of the known message x and the
intruder built h(x) himself.

3) m is an encryption {|z}; of a known message x with
a known key k and the intruder built {jz[}; himself.

4) m is a pair (z,y) of two known messages = and y
and the intruder built (z,y) himself.

5) There was some send step Send;(pt) executed by
some thread tid such that the intruder learned the sent
message inst, ;;(pt) and from this message he learned
m using zero or more decryptions and projections.

The key insight for Case (5), called the decryption chain
case, is that the intruder can only learn a message by
decrypting an encryption that ke did not build himself. Anal-

ogously, the intruder can only learn a message by projecting
a pair that he did not build himself. Thus, whenever the
intruder learns a message m by decrypting an encryption
{lz [}, then he must have learned {|z[}) from a send step or
by decrypting an encryption or projecting a pair containing
{lz[}x. As every message is of finite size, any such chain of
repeated decryptions and projections is of finite length.

We formalize the notion of decryption chains using the
chain predicate defined in Figure 3. For a set E C Event,
the expression chain,(E, m’, m) formalizes that the intruder
learned the message m using zero or more decryptions
and projections after he learned some message in split(m’),
which he learned after the events in E happened. The
definition of chain distinguishes between three cases.

1) m’ is equal to the message m and the intruder has
learned m’ after the events in E, or

2) m/ is an encryption { [}, and the intruder has learned
m after he used the inverse key k! to decrypt m’ =
{|z[} &, which he learned after the events in E, or

3) m' is a tuple (x,y) and the intruder has learned m
from a chain starting from x or from a chain starting
from y. The set E is unchanged in this case because
in our protocol semantics, the messages x and y are
learned at the same time or earlier than the tuple (x, y).

We illustrate the usage of our inference system by giving
a formal proof of session-key secrecy for the C role of the
CR protocol from Example 1.

Example 4 (Proof of session-key secrecy). We prove that
Vq € reachable(CR). ¢sec(q) for ¢ from Example 3.

Proof: Suppose the secrecy predicate ¢, does not hold
for some state (tr,th,o) € reachable(CR). Then there is
a thread ¢ such that roley(i) = C, o(s,i) ¢ Compr, and
kfi € knows(tr). Hence, the intruder must have learned kfi.

We show that each possible way that the intruder could
learn kfii leads to a contradiction. We determine the possible
ways by applying the CHAIN rule to kffi € knows(tr). This
results in the following conclusion, whose disjuncts we have
numbered.

M (ki € IKo) V

2 (Fz. ki=h(x) Az =<, h(z))V

3 (Gxk. ki={zltx Az <4 {zlte Ak <4 {zlte) V
V

(
@ (Gry. ki=(z,9) Az <y (2,9) Ay <0 (2,9))
(5) (3R € CR. 3Send,(pr) € R. 3tid. roley(tid) = R A
chain, ({(tid, Send; (pt))}, inst, 1ia(pt), kii))

Cases (1-4) are false due to the definition of /Ky and
syntactic inequality. This corresponds to the intuition that
kfii is a fresh session key.

Case (5) unfolds after renaming fid to j as follows.
5.1 (37 € TID. roley,(j) = S A
chain,({(j,S2)}, h(a(v, 7)), kii))
(52) V (3j €TID. roley,(j) = CA
chain, ({(j, C1)}, {ktjlok,,, , - kii))

Unfolding the chain predicate in Case (5.1) results in a
single conjunct containing h(o (v, j)) = kffé, which is false.
Unfolding the chain predicate in Case (5.2) results in

o (s,5)

G2 ((G.C) <o (Ko, A KT Do, = KD
622V ((J,C1) <u {kjltok,, ;) <o k2T A

SKo(s,5) =i ki A kj = ki) .
Case (5.2.1) is false due to {|kijltok, , , # Kfii.

Case (5.2.2) implies that kffij = kfi, which implies j = i
due to the injectivity of the message constructor f. From
SKo(s,5) <ur kffi and j =4, we conclude SK(, ;) € knows(tr)
using the KNOwN rule. Applying the CHAIN rule and re-
moving trivial cases results in the conclusion sk, ;) € IKo.
This corresponds to the intuition that, for the CR protocol,
the only long-term private keys known to the intruder are
the ones he initially knows. By unfolding the definition
of IKy, we have o(s,i) € Compr, which contradicts our

assumptions.
Thus, we conclude that ¢ holds for all reachable states
of the CR protocol. []

The previous example shows how to prove a secrecy
property using decryption-chain reasoning. The general ap-
proach for secrecy proofs is to use the CHAIN rule both
for the message m to be proven secret as well as for the
keys that must be secret if m is not to be decrypted. To
prove authentication properties, we use the CHAIN rule on
the received message m to justify why its receipt implies
the existence of a partner thread that sent m. Furthermore,
if a message is authentic because it contains a secret n
that only the partner knows, then the authentication proof
depends on the secrecy proof of n. An example of such an
authentication proof can be found in Appendix A. We can
make such dependencies among proofs explicit and reuse
previously proven security properties by instantiating their
corresponding lemmas instead of reproving them each time
they are needed. We will explain this in more detail in
Section IV-B3.

B. Reasoning about Variable Contents
During the verification of most protocols, we will en-
counter expressions of the form

Chail’l;r(E, U(Uaj)7 m) ’

where v € Var, j € TID, E C Event, and m € Msg.
These expressions arise from an application of the CHAIN
rule and unfolding the definition of the chain predicate as

v € AVar chain,(E, o(v, tid), m)

AGENTVAR
E=0

Figure 4.

far as possible. Obviously, the core inference rules do not
suffice for dealing with these expressions.

In this section, we present two additional inference rules,
one for agent variables and one for message variables, that
allow us to reduce these expressions to ones that can again
be handled by the core inference rules.

1) Agent Variables: If v is an agent variable, then
o(v,j) must be an agent name. Agent names are part
of IKy and thus learned by the intruder at the beginning
of every trace before any other event happens. Therefore,
chain,(E, o(v,j), m) implies E = () because otherwise we
could derive o(v,j) <4 o(v,j), which is a contradiction.
The rule AGENTVAR in Figure 4 captures this argument.

2) Message Variables: If v is a message variable, then
we need a more elaborate argument than for agent variables
because o(v,j) may be any message.

The argument used by many security protocol verification
methods is to simply assume that variables are of a fixed
type. If we were to do the same, then we could replace
o (v, j) by an arbitrary message corresponding to the type of
v, and finish unfolding the definition of the chain predicate.

The soundness such a typing assumption may in some
cases be justified by results such as [18]-[20]. However,
these results restrict both the protocols (tagging is required)
and the properties (the soundness of the typing assumption
is proven per property) that can be verified. Moreover, it is
unclear how to extend these results to equational theories.

In our approach, we do not make any typing assumptions.'
Instead, we prove for each protocol that it satisfies a typing
invariant that specifies all possible instantiations for every
message variable that occurs in an executed step. This
approach allows us to construct machine-checked security
proofs that are sound with respect to an untyped model
without explicitly formalizing results like [18]-[20].

We focus on protocols where, in every execution, the
message variables are instantiated with an atomic message
or a message known to the intruder. We call such protocols
weakly atomic. Many protocols in literature are weakly
atomic. Note that weak atomicity does not rule out forward-
ing encrypted tickets as plaintext (e.g., Kerberos V uses such
a construction) because these tickets will always be known
to the intruder. An example of a protocol that is not weakly
atomic is Kerberos IV, as it requires the use of an encrypted
ticket inside an encryption. In general, protocols in literature

'We do restrict agent variables to contain agent names only. However,
agent variables are used only to parametrize roles. Message variables, which
are untyped, are used to receive agent names.

wa-state(tr, th, o) Jde € E. (tid, s) =y €
v € FV(s) N MVar chain, (E, o(v, tid), m)

ATOMIC
(Ve € E. e <, o(v,tid)) A o(v,tid) =m

Inference rules for reasoning about variable contents. They are derived from our semantics under the assumption (tr,th, o) € reachable(P).

that are not weakly atomic are protocols that require an agent
to receive a composed message in a message variable inside
an encryption.

In the rest of this section, we first define weak atomicity.
Then, we show how to prove that a protocol is weakly
atomic. Finally, we show how to exploit weak atomicity to
reduce the expression chain,.(E, o(v, j), m) to one that can
be handled again using the core inference rules.

Formalizing Weak Atomicity: We generalize the notion
of free variables to role steps such that FV(s) denotes the
free variables of the message pattern of the role step s.

FV(s) & FV(pt) if s = Send;(p?)
Y7 v if s = Recv(pr)

A state (tr, th, o) is weakly atomic iff every message variable
v mentioned in some executed step (fid,s) is instantiated
with either a fresh message or a message known to the
intruder before (rid, s) was executed.

wa-state(tr, th, o) =

V(tid, s) € steps(tr). Vv € FV(s).
o(v,tid) € FreshTID V o (v, tid) <, (tid, s)

The above definition differs in two ways from the informal
definition of weak atomicity given above. These differences
do not exclude any protocols, but simplify exploiting weak
atomicity. The differences are the following. (1) We restrict
o (v, tid) not only to atomic messages, but to fresh messages
or some message known to the intruder. This does not
exclude any protocols, as the other two types of atomic
messages, global constants and agent names, are always
known to the intruder. (2) Instead of only requiring that
o (v, tid) is known to the intruder, we require that it is learned
before any step of the thread tid mentioning v. This also
does not exclude any protocols, as the first step (s, fid) that
mentions v is always a receive step. Hence, everything that
the intruder knows when (s, tid) is executed must have been
learned before (s, tid) happened.

We define a protocol P to be weakly atomic iff all its
reachable states are weakly atomic.

Proving Weak Atomicity: We prove that a protocol

P is weakly atomic by proving for all message variables
occurring in a role of P that, at the time of their first receipt,
their content is either already known by the intruder or it is
a fresh message.

Theorem 1 (Weak Atomicity). Let P be a protocol. If, for
every (tr,th,o) € reachable(P), v € MVar, tid € dom(th),

R € P, Recv,(pt) € R, and sequences of role steps done
and todo, the assumptions

o insty ia(pt) € knows(tr)

o th(tid) = (R, (Recv;(pt)) "todo)

o R = done " (Recv,(pt)) ~todo

o v € FV(pt) \ U, caome FV(5)

o wa-state(tr, th, o)
imply

o(v,tid) € knows(tr) V o (v, tid) € FreshiTID ,

then the protocol P is weakly atomic.

The proof obligations resulting from an application of the
above theorem are proven using decryption-chain reasoning
starting from the premise inst, q(pt) € knows(tr).

Exploiting Weak Atomicity: For a weakly atomic state
(tr,th,o), we use the following argument, captured by the
Atowmic rule in Figure 4, to reduce expressions of the form
chain,(E, o(v,j), m) for v € MVar to expressions that can
be handled again by the core inference rules.

First, note that such a chain expression must stem from
the conclusion of an application of the CHAIN rule. Hence,
there will always be an event e € E and an executed step
(j,8) € steps(tr) with v € FV(s) such that (j,s) =<, e.
Exploiting weak atomicity, we have that o(v,j) is either
(1) a fresh message or (2) a message known to the intruder
before (j, s) was executed.

In case (1), we can just unfold chain, (E, o(v, j), m) to

(Vee€ E.e <, o(v,j)) ANo(v,j) =m .
In case (2), we have
Je € E.0(v,7) <u (4,8) =i € A chain,(E, o(v,j), m) ,

which contradicts the irreflexivity of <.

Discussion of Weak Atomicity: The rules AGENTVAR
and Arowmic together with Theorem 1 obviate the need for
a typed protocol model. Together with the core inference
rules, they give rise to a reasoning technique, which we
call decryption-chain reasoning. Decryption-chain reasoning
suffices for verifying many weakly atomic protocols; we give
examples in our case studies in Section IV-B3.

An example of an (artificial) weakly atomic protocol
where decryption-chain reasoning fails is

{(Send,({n}, ,)), (Recvi({lvlk, ,), Sends ({fvltk, ,))} »

I R

for n € Fresh, v € MVar, and a,b € AVar. Here, the contents
of variable v in role R are obviously secret, provided both
a and b are uncompromised. However, we cannot prove this
using decryption-chain reasoning. Whenever, we determine,
using the CHAIN rule, the possible sources of the message
m that a thread executing the R role receives in its first
step, we are left with a case stating that m was sent in the

Isabelle/HOL K
Security protocol

Proof script verification theory

Securiy proos

r
trusted Property definition Model definition

I core
: Protocol definition Isabelle/HOL core

uses

[Nyp——]

Figure 5. Machine-checked security proofs in Isabelle/HOL: elements and
trusted core

second step of some other thread also executing the R role.
Put differently: decryption-chain reasoning fails to capture
the argument that there must be a first occurrence of the
role step R; with uncompromised a and b that must have
received its corresponding message from a thread executing
the I role.

Decryption-chain reasoning, as we defined it here, is
tailored towards arguments relying on the first time the
intruder knows a certain message. To formalize arguments
relying on the first occurrence of a more general situation
(e.g., the first execution of a certain role step), we must resort
to induction over the reachable states and use decryption-
chain reasoning in the individual induction steps.

However, even this will not work for all protocols due
to the following reason. The undecidability proofs [21] for
the secrecy problem with unbounded nonces also apply to
weakly atomic protocols. Moreover, for a secrecy predicate,
both counter-examples (attacks) as well as proofs based on
decryption-chain reasoning are recursively enumerable. As
decryption-chain reasoning is sound, it cannot be complete.

In order to verify protocols that are not weakly atomic, the
construction underlying weak atomicity can be generalized
by stating for each protocol variable what the message
structure (the “type”) of its content must be, if the intruder
does not know the content. A generalization of Theorem 1
can then be proven that provides a specialized induction
scheme for “type checking” a protocol’s message variables.

IV. MACHINE-CHECKED SECURITY PROOFS

We formalized our protocol model and derived the infer-
ence rules in Isabelle/HOL [2]. This allows us to construct
machine-checkable security proofs in the form of Isabelle
proof scripts as depicted in Figure 5. If Isabelle successfully
checks such a proof script, then this constitutes a security
proof whose correctness only depends on the trusted core
shown in Figure 5. In particular, no further trust assumptions
are required: both the inference rules and concrete protocol
proofs are machine-checked with respect to the trusted core.

We implemented two approaches for constructing such
machine-checked proof scripts. The first approach consists
of interactively constructing the proof script using Isabelle.
The second approach uses an automatic proof-generation
algorithm. We discuss both approaches below.

A. Interactive Proof Construction

In order to simplify the interactive construction of security
proofs, we extended Isabelle’s proof language [22] with
a proof method called “sources”, which automates single
applications of the CHAIN rule. A call “sources m” applies
the CHAIN rule to m € knows(tr), converts the resulting
conclusion into disjunctive normal form, and discharges all
cases that trivially follow from the definition of /K, or
syntactic inequality. The remaining cases are named and
presented to the user for further input. As we can see in the
following example and in the proofs of our case studies [23],
this mechanization of decryption-chain reasoning allows for
succinct, machine-checkable security proofs.

Example 5. The session-key secrecy proof given in Exam-
ple 4 corresponds to the following proof script, which is
checked by Isabelle in 0.5 seconds. Note that we have taken
minor liberties in pretty-printing to improve readability.
lemma (in CR-state) client-k-secrecy:

1:

2: assumes

3: “roley, (tid) = C”

4 “o(AV(’"s"), tid) ¢ Compr”

5: “LN("k", tid) € knows(tr)”

6: shows “False”

7. proof(sources “LN("k’, tid)”)

8: case C;-k thus “False”

9. proof(sources “SK (a(AV('’s""), tid))”)
10: case ikO thus “False” by auto
1: qed

12: qed

Line 1 begins the lemma, named “client-k-secrecy”. The
statement “(in CR-state)” expresses that this lemma is
proven under the assumption that (¢r,th, o) is a reachable
state of the CR protocol. Lines 2—6 state the secrecy property.
The constructor “LN” marks an actual fresh message, while
the constructor “AV” marks an agent variable.

Lines 7-12 give the proof, which has the same structure as
the pen-and-paper proof from Example 4. Line 7 applies the
CHAIN rule to determine the possible sources of kfitid. Line
8 selects the non-trivial case named “C;-k” corresponding
to Case (5.2.2) of Example 4 and claims that it is contra-
dictory. Line 9 applies the CHAIN rule again. Line 10 uses
Isabelle’s built-in tactic “auto” to show that the case “ik0” is
contradictory because it contains contradictory assumptions
about whether agents are compromised.

To asses the effectiveness of decryption-chain reasoning,
we interactively constructed security proofs for several pro-
tocols. All of these proofs are available at [23]. These in-
clude security proofs for the Yahalom [24], Kerberos V [25],
and TLS [3] protocols based on the models developed using
the Inductive Approach [1]. Modeling the protocol took
under an hour per protocol. Proving the security properties
took 1.5 hours for Yahalom, 2 hours for Kerberos V, and 2.5
hours for TLS. These times represent roughly a two orders

of magnitude improvement over the Inductive Approach, as
we will see in Section V.

B. Automatic Proof Generation

We describe an algorithm for automatically generating
machine-checkable proof scripts. The input of the algorithm
is a protocol P € Protocol and a security property ¢. If the
algorithm succeeds in proving ¢, then it outputs an Isabelle
proof script containing the protocol specification of P and
a lemma stating ¢ together with its proof.

We present our algorithm in three steps. First, we describe
the basic proof generation algorithm. Second, we extend it
to prove weak atomicity. Third, we describe two extensions
that greatly increase its efficiency and the readability of
the generated proofs. Afterwards, we present experimental
results for case studies.

1) Basic Algorithm: The algorithm handles security prop-
erties that are representable as closed formulas of the form

Y(tr,th,o) € reachable(P).
Vitid, . . . tid;. (/\AGF A) = 3tidyyy .. tidy. (\ _ B)

where 0 <[<n and I', A are sets of atoms of the form:

BeA

tid = tid m =m' roley(tid) = R
e <y € (tid,s) € steps(tr) m € knows(tr)
false o(a,tid) € Compr o(a,tid) ¢ Compr

We denote such a security property by a judgment I -p A,
where all thread identifier variables in I' are universally
quantified and all thread identifier variables in A that do
not occur in I' are existentially quantified.

Example 6. The secrecy property ¢s. from Example 3 is
represented by the judgment

roley, (i) = C, o(s,i) ¢ Compr, ki € knows(tr) Fcg false.

The authentication property ¢, from the same example is
represented by the judgment

roley (i) = C, o(s,i) ¢ Compr, (i,Cs) € steps(tr)
CR

roley(j) = S, o(s, i) = o(s,), ki = (v, j),

(ia Cl) =<t (jasl)a (.]7 S2) <t (Zv C2))

The basic proof-generation algorithm PRFGEN is given in
Figure 6. It takes a judgment I -p A and attempts to prove
its validity as follows.

First, the equations in I' are viewed as rewrite rules and
normalized such that (i) left-hand sides are of the form
tid, o (v, tid), or roley(tid), (ii) right-hand sides cannot be
rewritten any further, and (iii) rules of the form tid = tid'
and o (v, tid) = o(v', tid") are oriented according to a fixed
term order. The normalized rules are then used to rewrite all
other atoms in I -p A. As a final step, equality atoms of the
form x = x are removed from A. Moreover, if normalization
is not possible due to an equality equating syntactically

1: procedure PRFGEN(I' Fp A)

2 normalize " -p A with respect to equalities in T"
3 saturate I' under all rules except CHAIN

4: if ' -p A is trivially valid then

5: print “by auto”

6 else

7 select new (m € knows(tr)) € T’

8 print “proof(sources m)”

9: J < apply CHAIN to m € knows(tr)

10: for each J € J do

11 print “case nameOf(J) thus ?thesis”
12: PRFGEN(J)

13: end for

14: print “qed”

15: end if

16: end procedure

Figure 6. The basic proof generation algorithm PRFGEN.

different message constructors, false is added to the premises
T". Second, the premises I' are saturated by extending them
with all atoms derivable using inference rules other than
the CHAIN rule. Third, the resulting judgment T" Fp A is
checked for trivial validity; i.e., whether one of the following
holds:

1) false € T,

2) e<peeT,

3) (x € Compr) €T and (z ¢ Compr) €T, or

4) there exists a substitution 7 of the existentially quan-
tified thread identifiers in A such that 7(A) CT'.

If this is the case, then Isabelle will be able to prove the
validity of J using its built-in tactic “auto”. Otherwise, a
simple heuristic is used to select an atom (m € knows(tr)) €
T" that has not yet been selected. If no such atom exists,
proof-generation fails. Otherwise the CHAIN rule is applied
to the selected atom, which results in a case distinction on
how the intruder learned m. Each case is represented again
as a judgment J, of the form ' UX Fp A where X are the
new assumptions introduced by the case that J represents.
For each case, we output the information necessary for
Isabelle to know which case is being proven and generate the
corresponding proof script by recursively calling PRFGEN.

Although protocol security is undecidable [21], [26], the
PRFGEN algorithm terminates for many practical protocols
(e.g., all the case studies from Table I). Furthermore, similar
to the algorithms underlying Athena [6] and Scyther [8],
the failure to generate a proof may indicate an attack. The
basic idea is that each case arising from an application of
the CHAIN rule to an atom m € knows(tr) corresponds to
an explanation of how the intruder could have learned m.
Moreover, for most security properties, the only premises
that are non-trivially satisfiable are assertions about the
intruder knowledge. Hence, if the algorithm terminates but

fails to generate a proof, then there is an explanation for all
messages the intruder is required to know. Therefore, these
explanations indicate how to construct an attack.

2) Weak-Atomicity: To allow the PRFGEN algorithm to
prove that a protocol is weakly atomic, we also allow
judgments of the form

I' Fp o(v, tid) € knows(tr) V o(v, tid) € FreshiTID ,

where I is a set of atoms as before. We also redefine trivial
validity accordingly. Hence, we can represent the conclusion
of an application of Theorem 1 as a set of judgments and
prove their validity using PRFGEN.

3) Efficiency Improvements: The time required by Is-
abelle for checking a security proof based on decryption-
chain reasoning is roughly proportional to the size of the
protocol and the number of CHAIN rule applications. In order
to reduce this time, we extended the PRFGEN algorithm to
use a branch-and-bound strategy to search for the proof with
the least number of CHAIN rule applications. The benefit
of searching for small proofs is particularly pronounced for
more complex protocols such as Paulson’s model of TLS,
where we measured an improvement in checking time by a
factor 10. However, this comes at the cost of a factor 20
increase in generation time.

To reduce the generation time, we exploit the observation
made in the discussion of Example 4: proofs of security
properties may reuse already proven properties. In the proofs
generated by PRFGEN, opportunities for reuse manifest
themselves as subproofs that are equal up to the renaming of
thread identifiers. We did not tackle the difficult problem of
automatically extracting reusable security properties from a
generated proof. Instead, we rely on a heuristic and, as a last
resort, the user to suggest candidate reusable security proper-
ties. The heuristic is simple: given the protocol description,
it generates secrecy properties for all long-term keys and
all nonces sent and received encrypted. Additionally, for
all nonces sent as plaintext, it generates a first origination
property stating that these nonces must have been sent before
the intruder learns them.

Technically, we extend the PRFGEN algorithm with the
ability to reuse security properties by defining resolution for
judgments. Assume we have proven a lemma I'y Fp A with
no existentially quantified thread identifiers. When proving
a judgment of the form I'y UT's Fp II, we can reuse this
lemma using the following resolution rule.

Tibp A AU U HpIl
LUl Fp Il

The thread identifier variables in I'; Fp A may need to be
renamed for this rule to apply, which can be done as these
variables are all universally quantified. Note that resolution
is especially useful if A = false (e.g., secrecy properties
have this form) because then no additional subproof apart
from the existing proof of the lemma I'; p false is needed.

Protocol generation checking

1 Amended NS 2.42s 90s

2 Yahalom (Paulson’s variant) 0.17s 28s

3 Andrew Secure RPC 0.03s 12s

4 Bilateral-Key Exchange 0.03s 14s

5 Denning-Sacco 0.39s 56s

6 NSL 0.03s 12s

7 TLS (simplified) 0.14s 15s

8 Wide Mouthed Frog 0.06s 15s

9 TLS (Paulson’s Model) 0.33s 76s

10 Kerberos V 33.76s 146s
11 Kerberos V’ (manual props.) 2.93s 135s

Table T
TIMES FOR AUTOMATIC PROOF GENERATION AND CHECKING.

In our experiments, we found that reusing security prop-
erties and generating smallest proofs significantly improves
both proof generation as well as proof checking time. For
example, for Paulson’s TLS model, the generation time
improved by a factor of 3.3 and the checking time improved
by a factor of 47 compared to using the basic algorithm.
Moreover, the smallest proofs tend to be really short; on
average 2.3 applications of the CHAIN rule are required
to prove a property of a protocol in our case studies.
Hence, these proofs are well-suited for human inspection
and understanding.

Experimental Results: Table I shows the experimen-
tal results we obtained using our implementation of the
PRFGEN algorithm and its extensions. The source code used
to generate these results can be downloaded from [23]. The
times for proof generation and checking were measured
using Isabelle2009-1 on an Intel Core 2 Duo 2.20GHz laptop
with 2GB RAM.

For protocols 1-8, we prove non-injective agreement [15]
of all shared data for the initiator and responder where
possible and secrecy for the session-key and payload, if
they are present. For protocols 9-11, we additionally prove
non-injective synchronization [16] (a strengthened variant of
non-injective agreement).

Note that protocols 1-8 and the secrecy properties of
protocol 10 were previously verified using other approaches
for the automatic generation of machine-checked security
proofs and we make comparisons in Section V. In contrast,
protocol 9 and the authentication properties of protocols 10-
11 have not been verified previously using other automatic
approaches. They show how our method works for more
complex protocols and properties.

The comparatively high generation time for Kerberos V
is due to several unnecessary security properties being
suggested by the heuristic for reuse. By manually selecting
only the necessary properties (represented as Protocol 11
in the table), we reduced the generation time by an order
of magnitude, while still proving the same properties of
interest.

V. RELATED WORK

We discuss related work from four areas: interactive
methods for machine-checked proofs, automatic proof meth-
ods, related proof methods where proofs are not machine-
checked, and work related to our proof-generation algorithm.

Interactive Methods for Machine-Checked Proofs:
The Inductive Approach is one of the most successful
approaches for interactively constructing machine-checked
security proofs. It was initially developed by Paulson [1]
and later extended by Bella [25] and Blanqui [27]. It defines
protocols indirectly as an inductively-defined set of traces
denoting their execution in the context of an active adversary.
Security properties are verified by formulating correspond-
ing (possibly strengthened) protocol-specific invariants and
proving them by induction. Formulating and proving these
invariants constitutes the main effort when applying this
approach. In contrast, our protocol-independent invariants
suffice for verifying protocols in all our case studies: we
never needed to prove additional protocol-specific invariants
using induction. This is the main reason for the reduction in
proof construction time of almost two orders of magnitude
in our case studies. Paulson reports that several days were
needed for each of the three protocols analyzed in [1] and
the analysis of TLS took six weeks [3]. Note that these
six weeks also include building the formal model. However,
even if we assume the actual verification took only half this
time, then our approach still reduces verification time by
almost two orders of magnitude.

Two other approaches for interactive proof construction
were developed using the PVS theorem prover. The first
approach was developed by Evans and Schneider [28]. It
is based on a formalization of rank-functions [29]. Our
improvement in proof construction time also applies to
their work, as they state that their approach requires more
interaction than Paulson’s inductive approach. The second
approach was developed by Jacobs and Hasuo [30]. It is
based a formalization of a variant of strand spaces [31]
and authentication tests [32]. They do not give any proof
construction times.

Automatic Generation of Machine-Checked Proofs:
There are two existing approaches for automatically gen-
erating machine-checked protocol security proofs. The first
approach is by Goubault-Larrecq [13], [33]. He models a
protocol and its properties as a set .S of Horn-clauses whose
consistency implies that the protocol satisfies its properties.
A finite model finder is then used to find a certificate (i.e.,
a model) for S’s consistency. This certificate is machine-
checked using a model checker embedded in Coq.

The secrecy properties of protocols 1, 2, 10, and 11 from
Table I were also analyzed by Goubault-Larrecq. The times
reported in [33] are in the same range as ours. Similar to our
method, proof checking takes about a minute. The approach
can be used directly with equational theories, but currently

cannot handle the strong authentication properties consid-
ered in our work. It also requires trusting the soundness
of the (non-trivial) abstractions required to model security
protocols using Horn-clauses. In contrast, our method uses
a single stateful execution model, from which we formally
derive all verification rules.

A recent approach by Brucker and Mddersheim for auto-
matic generation of machine-checkable proofs is described
in [12]. They use the OFMC model checker [34] to compute
a fixpoint of an abstraction of the transition relation of the
protocol P of interest. This fixpoint overapproximates the set
of reachable states of the protocol P. It is then translated to
an Isabelle proof script certifying both that this fixpoint (and
hence the protocol P) does not contain an attack and that
the abstraction is sound with respect to an automatically
generated trace-based reference model of P formalized in
the style of the Inductive Approach.

Protocols 3-8 from Table I were also investigated by
Brucker and Modersheim. Comparing timings, we see that
the times for proof generation are similar. However, our
times for proof checking are orders of magnitude faster
(ranging from 10 times for NSL and to about 1700 times
for the simplified TLS variant). Currently, their approach
assumes a typed model and a non-standard intruder who
can only send messages matching patterns of the protocol.

Related Proof Methods: The Protocol Composition
Logic (PCL) proposed by Datta et. al. [35] is a methodology
based on giving a set of axioms and inference rules, which
allow for the manual construction of security proofs from
simple invariants. These manually-specified invariants can
be checked automatically using Prolog. However, no method
has been proposed yet for machine-checking full PCL proofs
nor the soundness of the axioms and inference rules.

Related Algorithms: Our proof-generation algorithm
can be viewed as a significant extension of the Scyther
algorithm [8], which in turn is a descendant of the Athena
algorithm [6]. Our algorithm extends the Scyther algorithm
by allowing a larger range of security properties, automatic
generation of weak-atomicity proofs, and enabling the algo-
rithm to reuse already proven properties.

VI. CONCLUSIONS

We formally derived a verification theory for security
protocols from an operational protocol semantics. Based
on this theory, we developed an algorithm for the auto-
matic generation of machine-checked security proofs. Using
our tool-supported methodology, machine-checked security
proofs can be built either interactively or automatically. In
both cases, the resulting construction time is faster than
competing approaches.

An interesting application area for our work is the cer-
tification of security protocols, which is currently being
pursued in some countries, such as Japan [36] and France
[13]. Our tool-supported methodology allows non-experts to

provide machine-checked protocol security proofs. More-
over, as the underlying foundations were formally derived
from a straightforward operational semantics, we have strong
correctness guarantees for the resulting verification.

As future work, we plan to extend our approach with a
richer protocol execution model, e.g., with non-linear role
scripts and support for equational theories. We would also
like to integrate additional reasoning techniques, such as
abstraction-based overapproximations as used by ProVerif
[7]1 and OFMC [34], authentication tests [37], and general-
ized typing invariants (for verifying protocols that are not
weakly atomic). Having a machine-checked formalization
simplifies deriving additional inference rules to improve the
performance of the proof-generation algorithm. Conversely,
our implementation enables us to efficiently construct and
examine proof scripts for large sets of protocols.

REFERENCES

[1] L. C. Paulson, “The inductive approach to verifying crypto-
graphic protocols,” Journal of Computer Security, vol. 6, pp.
85-128, 1998.

[2] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, ser. Lecture Notes in
Computer Science. Springer, 2002, vol. 2283.

[3] L. C. Paulson, “Inductive analysis of the internet protocol
TLS,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 3, pp. 332—
351, 1999.

[4] G. Bella and L. C. Paulson, “Kerberos version 4: Inductive
analysis of the secrecy goals,” in ESORICS, ser. Lecture
Notes in Computer Science, J.-J. Quisquater, Y. Deswarte,
C. Meadows, and D. Gollmann, Eds., vol. 1485. Springer,
1998, pp. 361-375.

[5] G. Bella, F. Massacci, and L. C. Paulson, “Verifying the SET
purchase protocols,” J. Autom. Reasoning, vol. 36, pp. 5-37,
2006.

[6] D. Song, S. Berezin, and A. Perrig, “Athena: A novel
approach to efficient automatic security protocol analysis,”
Journal of Computer Security, vol. 9, pp. 47-74, 2001.

[7] B. Blanchet, “Automatic verification of correspondences for
security protocols,” Journal of Computer Security, vol. 17,
no. 4, pp. 363-434, 2009.

[8] C. Cremers, “Unbounded verification, falsification, and char-
acterization of security protocols by pattern refinement,”
in CCS ’08: Proceedings of the 15th ACM conference on
Computer and communications security. New York, NY,

USA: ACM, 2008, pp. 119-128.

[9] S. Berezin, “Model checking and theorem proving: a unified
framework,” Ph.D. dissertation, Carnegie Mellon University,
Jan. 2002.

[10] ——, “Extensions to Athena: Constraint satisfiability
problem and new pruning theorems based on type system
extensions for messages,” 2001, unpublished manuscript.
[Online]. Available: http://www.sergeyberezin.com/papers/
athena-extensions.ps

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

C. Cremers and S. Mauw, “Operational semantics of security
protocols,” in Scenarios: Models, Transformations and Tools,
International Workshop, Dagstuhl Castle, Germany, Septem-
ber 7-12, 2003, Revised Selected Papers, ser. Lecture Notes
in Computer Science, S. Leue and T. Systi, Eds., vol. 3466.
Springer, 2005.

A. Brucker and S. Modersheim, “Integrating automated and
interactive protocol verification,” in Workshop on Formal
Aspects in Security and Trust (FAST 2009), P. Degano and
J. Guttman, Eds., 2009.

J. Goubault-Larrecq, “Towards producing formally checkable
security proofs, automatically,” in CSF. IEEE Computer
Society, 2008, pp. 224-238.

F. Baader and T. Nipkow, Term rewriting and all that. New
York, NY, USA: Cambridge University Press, 1998.

G. Lowe, “A hierarchy of authentication specifications,” in
CSFW. IEEE Computer Society, 1997, pp. 31-44.

C. Cremers, S. Mauw, and E. de Vink, “Injective synchroni-
sation: An extension of the authentication hierarchy,” Theor.
Comput. Sci., vol. 367, pp. 139-161, 2006.

M. J. C. Gordon, “Mechanizing programming logics in higher
order logic,” pp. 387439, 1989.

J. Heather, G. Lowe, and S. Schneider, “How to prevent type
flaw attacks on security protocols,” in CSFW, 2000, pp. 255—
268.

Y. Li, W. Yang, and C.-W. Huang, “On preventing type
flaw attacks on security protocols with a simplified tagging
scheme,” J. Inf. Sci. Eng., vol. 21, no. 1, pp. 59-84, 2005.

M. Arapinis and M. Duflot, “Bounding messages for free
in security protocols,” in FSTTCS, ser. Lecture Notes in
Computer Science, V. Arvind and S. Prasad, Eds., vol. 4855.
Springer, 2007, pp. 376-387.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Unde-
cidability of bounded security protocols,” in Proceedings of
the Workshop on Formal Methods and Security Protocols —
FMSP, Trento, Italy, N. Heintze and E. Clarke, Eds., 1999.

M. Wenzel, L. C. Paulson, and T. Nipkow, “The Isabelle
framework,” in TPHOLs, ser. Lecture Notes in Computer
Science, O. A. Mohamed, C. Muiioz, and S. Tahar, Eds., vol.
5170. Springer, 2008, pp. 33-38.

“Source code of the Isabelle/HOL formalization and the
automatic proof generation tool presented in this paper,”
April 2010. [Online]. Available: https://www.infsec.ethz.ch/
research/Software

L. C. Paulson, “Relations between secrets: Two formal analy-
ses of the Yahalom protocol,” Journal of Computer Security,
vol. 9, no. 3, pp. 197-216, 2001.

G. Bella, Formal Correctness of Security Protocols (Infor-
mation Security and Cryptography). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

[26] H. Comon and V. Cortier, “Tree automata with one memory
set constraints and cryptographic protocols,” Theor. Comput.
Sci., vol. 331, no. 1, pp. 143-214, 2005.

[27] F. Blanqui, “An Isabelle formalization of protocol-
independent secrecy with an application to e-commerce,”
CoRR, vol. abs/cs/0610069, 2006.

[28] N. Evans and S. A. Schneider, “Verifying security protocols
with PVS: widening the rank function approach,” J. Log.
Algebr. Program., vol. 64, no. 2, pp. 253-284, 2005.

[29] S. Schneider, “Verifying authentication protocols with CSP,”
in CSFW, 1997, pp. 3-17.

[30] B. Jacobs and I. Hasuo, “Semantics and logic for security
protocols,” J. Comput. Secur., no. 6, pp. 909-944, 2009.

[31] E. J. Thayer, J. C. Herzog, and J. D. Guttman, “Strand spaces:
Proving security protocols correct,” Journal of Computer
Security, vol. 7, no. 1, 1999.

[32] J. D. Guttman, “Authentication tests and disjoint encryption:
A design method for security protocols,” Journal of Computer
Security, vol. 12, pp. 409-433, 2004.

[33] J. Goubault-Larrecq, “Finite models for formal security
proofs,” Journal of Computer Security, 2010, to appear.

[34] S. Modersheim and L. Vigano, “The Open-source Fixed-point
Model Checker for symbolic analysis of security protocols,”
in FOSAD, ser. Lecture Notes in Computer Science, A. Al-
dini, G. Barthe, and R. Gorrieri, Eds., vol. 5705. Springer,
2009, pp. 166-194.

[35] “Protocol Composition Logic (PCL),” http://crypto.stanford.
edu/protocols/.

[36] S. Matsuo, K. Miyazaki, A. Otsuka, and D. Basin, “How
to evaluate the security of real-life cryptographic protocols?
the cases of ISO/IEC 29128 and CRYPTREC,” in Financial
Cryptography, 2010, to appear.

[37] S. F. Doghmi, J. D. Guttman, and F. J. Thayer, “Searching
for shapes in cryptographic protocols,” in TACAS, ser. Lecture
Notes in Computer Science, O. Grumberg and M. Huth, Eds.,
vol. 4424. Springer, 2007, pp. 523-537.

APPENDIX

A. Example of an Authentication Proof

The following proof demonstrates how to prove an au-
thentication property using decryption-chain reasoning. Fur-
thermore, it also shows an example of reusing a previously
proven secrecy property. As we explain in the discussion of
Example 4, reusing security properties plays an important
role in the speedup (compared to existing approaches) we
achieved both for automatic as well as interactive proof
construction of machine-checked security proofs.

Example 7 (Proof of non-injective synchronization). We
prove that Vg € reachable(CR). ¢aum(q), where dpum is
defined in Example 3.

Proof: 'We must show that for every state (1r,th, o) €
reachable(CR) and every thread ¢ such that roley (i) = C,
o(s,i) ¢ Compr, and (i, Co) € steps(tr), there is a thread j
such that syncWith(j) holds.

syncWith(j) = roley,(5) = S A
o(s,1) = (s, J) A Kt = (v, 1) A
(7;? Cl) = (.]a Sl) A (]7S2) = (Z7 CQ))

We prove this by applying the CHAIN rule to the received
messages.

From (i,C3) € tr, we have that h(kf#i) <, (i, C2) using
rule INPUT and h(kf#i) € knows(tr) using rule KNOWN.
Applying the CHAIN rule and removing trivial cases yields

M (ki <, h(ki))
(2) V(35 € TID. roley(j) = S A (j,S2) < h(a(v, 7))
Ah(o(v,7)) = h(kgi)) .

Case (1) is where the intruder builds the received mes-
sage by himself. Using rule KNowN, we have that kffi €
knows(tr), which contradicts the secrecy property we proved
in Example 4.

Case (2) implies that there is a server thread j, roley () =
S, that sent the message that the client thread 7 received. We
show that client ¢ synchronizes with the server j.

From h(kfi) = h(o(v,j)) and the injectivity of h(-), it
follows that kfti = o(v, j).

From (j,52) < h(o(v.j)). h(o(v,5) = h(kti), and
h(k#i) <, (i, C2), it follows that (j,S2) <y (¢, C3).

To establish syncWith(j), it remains to be shown that the
first message of client ¢ was received in the first step of
server j; i.e., o(s,i) = o(s,) and (i,Cy1) <, (J,S1).

From (j,S2) < (4, C2), we have (4,81) < (4,S2) using
rules EXEC and RoLE. Hence, {|kfilbpk, - <w (j,51) using
rules EXEcC and INPUT and the fact ki = o(v, j). Using rule
KNOwN, we have {[kfiltpk, , € knows(tr). Applying the
CHAIN rule and removing trivial cases yields

(2‘1) (kﬁl '<tr {|kﬁ7;|}pk(r(v,j) AN pka’(S,j) '<tr {|kﬁi‘}Pka(x‘j))
@2) V(3. roley(i') = CA (', C1) < (K81 Yok, .,
A {|khi/|}pkg(.r,i/) = {Ikﬁi|}pk0(.¥=j)) :

Case (2.1) states that the intruder fakes the message, which
again contradicts the secrecy property proven in Example 4
due to ki < {|kftiltpk,, ,, and rule KNOWN.

Case (2.2) implies ¢" = 1 since kffe’ = kffi. Hence, we have

(4, C1) <ur {Ktilrpk, ., = (Kt ok

which imply o(s,i) = o(s,j) and (i, C1) <4 (4,51). This
concludes the proof. [|

<t (]7 Sl)

o (s,5)

As for the secrecy proof in Example 4, our mechanization
of decryption-chain reasoning allows for a succinct represen-
tation of the above proof highlighting its core.

Example 8. The statement and the proof of the non-

injective synchronization property ¢au from Example 3 are

formalized in Isabelle/HOL by the following proof script.
1: lemma (in CR-state) client-nisynch:

2. assumes

3 “(tid, Cy) € steps(tr)”

4 “roley (tid) = C”

s “o(AV("’s”), tid) ¢ Compr”

6. shows

7 “d j. rolep(G) = S A

8 o(AV("’s"), tid) = o(AV(’s”), j) A

9: LN("k", tid) = oMV('V"),) A

10: St(tid, Cy) < St(, Sy) A

11 St(, S2) < St(tid, Cy)”

12: proof(sources “inst, i¢(C2-pt)”)

13: case fake thus ?thesis

14: by (auto dest!: client-k-secrecy|OF known])

15: next

16: case (Sp-hash j) thus ?thesis

17. proof(sources “inst,;(S;-pt)”)

18: case fake thus ?thesis

19: by (auto dest!: client-k-secrecy|OF known])
20: next

21 case (C;-enc i) thus ?thesis by auto

22: qed

23 qed

Lines 2—11 are a direct translation of the security predicate
¢aum- Note that Isabelle stores the conclusion stated in lines
7—-11 under the name “?thesis” for later reference.

The proof begins in line 12 by applying the CHAIN rule
to the message received in the second step of the client
role C. We denote this message by the instantiation of the
pattern of the role step Cs, which is available under the name
“Cy-pt”. The “fake” case in Line 13 corresponds to Case (1)
from Example 7. We discharge this case by calling Isabelle’s
built-in tactic “auto” instructing it to use the previously
proven secrecy lemma “client-k-secrecy” and the KNOWN
rule. The “S;-hash” case in Line 16 corresponds to Case
(2) and denotes that some server role “j” sent the hash we
were looking for. In Line 17, as in the pen-and-paper proof,
we apply the CHAIN rule to the message received by the
first message of server “”. The necessary applications of the
INPUT and ROLE rules are handled automatically. The “fake”
case in Line 18 corresponds to Case (2.1) and is dealt with as
before. The case “C;-enc” in Line 21 corresponds to Case
(2.2) and denotes that some client “i” sent the encryption
received by the server “j”. In this case, the premises directly
imply the conclusion, which corresponds to syncWith(j).
Hence, calling “auto” solves this case.

