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ABSTRACT

We present a security analysis of the SPREADS1 system, a
distributed storage service based on a centralized peer-to-
peer architecture. We formally modelled the salient behav-
ior of the actual system using ABCD, a high level specifi-
cation language with a coloured Petri net semantics, which
allowed the execution states of the system to be verified. We
verified the behavior of the system in the presence of an ex-
ternal Dolev-Yao attacker, unearthing some replay attacks
in the original system. Furthermore, since the implemen-
tation is also a formal model, we have been able to show
that any execution of the model satisfies certain desirable
security properties once these flaws are repaired.

KEYWORDS: Privacy Protection for Collaborative
Systems, Security for Speecific Collaboration Domains
(P2P), Security in Collaborative Multi-Agent Systems,
Secure Collaborative Agents, Middleware Security.

1. INTRODUCTION

The SPREADS system is designed to provide a distributed
storage service to its users, and functions using a peer-to-
peer (P2P) backbone in which each node can act as both
a client which requests operations – reading data, writing
data, or deleting data – and as a storer which provides these
operations to other nodes. Like other P2P systems, this
functionality can be provided in one of two ways:

1Safe P2P-based REliable Architecture for Data Storage, France, ANR
Telecom 2007. The project is a collaboration between the UbiStorage
company (Amiens), the LACL Lab. of Univ. Paris East, the INRIA/LIP6
REGAL project team (Paris), the INRIA/I3S MASCOTTE project team
(Sophia Antipolis) and the EURECOM NS Team (Sophia Antipolis). See
also http://www.spreads.fr/.

1. A centralized architecture in which the nodes all speak
to a distinguished server, which collects and verifies
the meta data required for the nodes to co-ordinate
their actions.

2. A decentralized architecture in which the needed
meta information storage and verification services are
themselves spread across the nodes.

The analysis in this paper assumes a centralized system,
as that is currently the state of the SPREADS implemen-
tation. Despite the name, the “centralized” system is only
so in the sense that there exists a single server which must
mediate some handshaking between peers, the bulk of net-
work communication in such a system takes place between
the peers themselves. We discuss the implications of con-
ducting similar research on a decentralized system, which
fully distributes the central service, in section 6. In con-
junction with the SPREADS programmers, we identified a
set of desirable properties to which the system should con-
form:

• The termination of the operations, while a part of
their definition, should be guaranteed or at least quan-
tified by modelling.

• The integrity of the data stored on the system should
be preserved in the presence of malicious nodes, i.e.
attackers should not be able to modify data during an
operation.

• The confidentiality of the data should be guaranteed:
only the owner of a file should be able to read it.

• The authentication of peers should be checked, i.e.
each communication should be accompanied by a
proof of the identity of the sender.
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Figure 1. The SPREADS system

• The system’s resistance to denial of service (DoS) at-
tacks must be quantified.

In the current centralized implementation of SPREADS,
some of these properties are more or less trivial to model
and verify. Termination is guaranteed in all but the most
extreme cases of failure, while the system is obviously
susceptible to (DoS) attacks as flooding the central server
would cause a halt in the entire network. In order to
avoid similarly trivializing the pure security properties (in-
tegrity, confidentiality, and authentication), we began our
modelling under the assumption that all communications
between agents are encrypted and signed using a perfect
asymmetric cryptosystem.

Our presentation begins with a description of the central-
ized SPREADS system in section 2, and its modelization
in ABCD in section 3. The latter also describes the usage
of the model checker, namely how a model is defined and
how its execution states are examined. Section 4 presents
two replay attacks found when verifying this initial model,
and the modifications made to it in order to prevent them.
We then proceed to conduct a general analysis of our model
in section 5. This analysis amounts to a proof that no ex-
ecution of the model allows an external attacker to learn
any private data. While fairly tedious, this approach has
the advantage of not being dependent on a static scenario
to which an execution of the model is necessarily bound:
the result applies to all such scenarios. Section 6 concludes
and discusses future work.

2. THE SPREADS SYSTEM

The centralized system comprises a multitude of identical
peers which act as both a client which requests data stor-
age or retrieval operations from the network, and also as a
storer which provides these services to the other peers. In
order to distribute a file across the nodes and to minimize
errors, a data fragmentation and redundancy server using
Reed-Solomon codes [8] takes a given file and returns the
fragments to be stored across the nodes. Finally, the neces-
sary meta information required to co-ordinate the network
operations is kept on a central server with which all the
nodes must communicate. While each node must commu-
nicate with the two distinguished servers during certain op-
erations, they must also conduct exchanges with one an-
other to actually retrieve and store data fragments.

This section presents the primary communication ex-
changes undertaken by the agents during the three client
operations. For clarity, we eschew many of the details of
the information passed in the actual implementation of the
system and focus solely on those relevant to the abstrac-
tions we used when modelling it, as well as details that are
relevant to the security properties discussed in later sec-
tions. Throughout the description, we use the naming con-
ventions in Figure 1 to refer to the agents: the client process
C, the storer processes S, the meta information server MI ,
and the Reed-Solomon server RS.

We begin with the data storage operation PUT. This takes as
input the data D which a client wishes to store. A success-
ful execution of the protocol, initiated by the client wishing
to store the data on the network, proceeds as follows:

PUT(D)
1 : C −→ RS : D
2 : RS −→ C : [frag1(D), . . . , fragn(D)]
3 : C −→ MI : GET NEW KEY

4 : MI −→ C : K
5 : C −→ MI : GET STORERS, len(D)
6 : MI −→ C : [S1, . . . , Sn]
7 : C −→ Si : K, fragi(D)
8 : Si −→ C : FRAG STORED

9 : C −→ MI : K, [S1, . . . , Sn]
10 : MI −→ C : META STORED

The client first sends its data to the Reed-Solomon server,
which returns n fragments to be stored. The nature of this
fragmentation includes some redundancy so that some sub-
set of them is all that is required to again reconstruct the
file, but the exact details of how this is done and the param-
eterization of just how many fragments are returned is irrel-
evant to the discussion at hand. For simplicity, our model
assumes n = len(D). Notice also that the RS server is in



practice duplicated onto each node in order to avoid net-
work communication. Once it obtains the fragmented data,
the client requests a key from the central server. This is not
a cryptographic key but merely an identifier associated to
the data block that is to be stored (essentially a file identi-
fier). In step 5 the client requests a list of storers from the
MI server, quantified by the length of the data block D.
The server therefore returns the names of enough storers in
which the client may store the fragments it obtained in step
2.

At this point, the parallel behavior of the protocol begins
in earnest: the client must send each fragment to its corre-
sponding server along with the key K to which that frag-
ment is associated, and await an acknowledgement. So,
steps 7 and 8 are executed for 1 ≤ i ≤ n in parallel. Upon
successfully receiving the fragment, each server associates
it to the provided key in its local database and sends the
client a confirmation that the operation was carried out suc-
cessfully. The entire PUT operation is only successful if
“enough” such acknowledgements are received, with the
desired threshold determined by the redundancy parame-
ters required by the system operator. In our model, we sim-
ply assume that the operation is successful if all of the stor-
age requests were successful, one branch in the state graph
is created for each possibility.

Finally, if sufficiently many fragments are stored, the client
proceeds (in step 9) to send the MI server the list of storers
in which the fragments associated with K now reside. The
latter stores this information, acknowledges having done
so, and the operation terminates.

The data retrieval operation, GET, is considerably simpler.
Being a read-only operation, it does not require any upkeep
of meta information. A successful run of the protocol is
described by the following:

GET(K)
1 : C −→ MI : GET STORERS,K
2 : MI −→ C : [S1, . . . , Sn]
3 : C −→ Si : K
4 : Si −→ C : fragi(D)

The requesting client asks for the list of storers associated
with the file identifier K that the client would like to re-
trieve, the client then sends this identifier to each of the
storers in the returned list, each of which in turn returns the
fragment they’ve stored for that particular key. So, steps 3
and 4 are executed for 1 ≤ i ≤ n in parallel. As long as
sufficiently many fragments are returned to the client, the
original datablock D can be reconstructed. In principle, the
deletion operation FREE could be implemented in a simi-
lar fashion. However, the following protocol holds some

advantages over this design:

FREE(K)
1 : C −→ MI : FREE,K
2 : MI −→ C : KEY MARKED

1 : Si −→ MI : FREE POLL

2 : MI −→ Si : [K1, . . . ,Km]

When a client wishes to delete a file K, he informs the
central server of this. At this point the server marks the
file as deleted without actually deleting the data. In the
mean time, each storer periodically polls the central server
asking if there have been any deleted keys associated to
them. If so, the server sends a list of such keys and the
fragments associated to them are physically deleted by the
storer. This design implements a delay between the dele-
tion request and the actual deletion of the data, allowing
the network operator to potentially undo a deletion in the
interim if the client requires it.

This then was the starting point of our modelization. The
next section introduces our modelling language, the ab-
stractions and assumptions taken in our work, and the at-
tacker model.

3. THE ABCD MODEL

ABCD (Asynchronous Box Calculus with Data, [13]) is a
specification language that allows its users to express the
behavior of concurrent systems at a high level. A specifi-
cation is translated into colored Petri nets, which can then
be model checked. An ABCD compiler is packaged with
the distribution of SNAKES [12, 11] so we directly used
SNAKES as a model checker also (although it is more ded-
icated to quick prototyping and provides low performance
on state space computations).

In particular, the ABCD meta syntax allows its users to de-
fine complex processes in an algebra that allows:

• Sequential composition P ;Q

• Non-deterministic choice P +Q

• Iteration P ∗Q ≡ Q+ (P ;Q) + (P ;P ;Q) + . . .

• Parallel composition P |Q

Processes are built on top of atoms comprising either
named sub-processes, or (atomic) actions, i.e. conditional
accesses to typed buffers. Actions may produce to a buffer,
consume from a buffer, or test for the presence of a value
in a buffer, and are only executed if the given condition is
met. The semantics of an action is a single transition in a



Petri net which appropriately produces or consumes tokens
to or from places implementing buffers.

For a description of the syntax and semantics of ABCD,
as well as an illustrative example, please consult [13,
sec. 3.3]. As a very basic example, consider the following
producer/consumer example:

buffer shared : int = ()
buffer count : int = (1)

[count-(n),count+(n+1),shared+(n)]

* [False] |
[shared-(n) if n % 2 == 0]

*[False]

The two first lines define two buffers, allowing to store in-
teger values; the first one is initially empty while the sec-
ond one holds the single value 1. Then, a composition
of four actions (each enclosed in square brackets) defines
the process part of the specification. The [False] ac-
tion is one which can never be executed. Others include
accesses to buffers and an optional guard. The ‘-’ opera-
tion on a buffer attempts to consume a value from it and
bind it to the given variable, scoped to the current action.
The language also supplies a read-only version ‘?’, thus
count?(n) will read a value from count into variable
n without removing it from the buffer. Similarly, the ‘+’
operation attempts to write a value to the buffer, and there
are also flush (>>) and fill (<<) operations which perform
writes into and reads from sets respectively. The first com-
ponent of the parallel composition above therefore continu-
ously populates the buffer named shared with increasing
integers. The second sub-process just pulls the even ones
out of the shared buffer. The language also allows its
users to name valid processes into a net declaration and
instantiate them repeatedly.

In order to model check a system specified in ABCD, a di-
rected graph is constructed in which each node represents
a marking of the Petri net generated by the specification,
and each edge represents the execution of a single transi-
tion in the Petri net. This graph can therefore be searched
for the presence or absence of a bad marking, i.e. one that
invalidates a desired property of the system. Note that for
the example shown above this process would not terminate
because the state graph is infinite, therefore such explicit
state graph can be used only for system with finitely many
markings. Otherwise, solutions exist to handle symboli-
cally infinite state graphs, usually through approximations
or abstractions (e.g., [10, 7, 14]).
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Figure 2. Our ABCD model of SPREADS. The central
server (MI), storers (S), clients performing PUT (P),

GET (G), or FREE (F) operations, and the attacker are
modeled as separate agents communicating through a

distinguished global buffer place NW.

3.1. Structure of the Model

Our model of SPREADS consist of approximately 450
lines of ABCD code and just over 600 lines of code in
Python which defines various types and support functions
used in the model. (Indeed, SNAKES’ implementation of
ABCD actually works with Python-coloured Petri nets.)
The ABCD specification defines a number of agents (i.e.
nets) which emulate the functional behavior of the sys-
tem:

• Each of the operations PUT, GET, and FREE is imple-
mented as its own net which plays the client side of
the protocol.

• The storer process is implemented as it’s own net
which can respond to the client read and write re-
quests, but can also at any time poll the central server.

• The central meta-information server is implemented
as a net which responds to requests for keys, lists
of storers, polls from storer processes, or meta data
updates from PUT and FREE agents

• An attacker process which observes all communica-
tions, stores any information it has learned into a lo-
cal knowledge buffer, and attempts to replay any valid
packets it learns. This agent will be further detailed
below.

Communication between agents is handled through a dis-
tinguished buffer place nw in the Petri net representing the
network (Figure 2), and is assumed to be signed and en-
crypted using a perfect asymmetric cryptosystem. The en-
cryption is symbolic, and it is assumed that every agent A
knows its own private key Priv(A), and knows the pub-
lic keys Pub(−) of all agents. Therefore, when agent A



wants to send a message D to agent B, he simply adds the
following tuple to the nw buffer:

(A,B, {{D}Priv(A)}Pub(B))

This is “received” by B, who is listening for packets with
his name as a target and encrypted with his own public key.
The attacker may only learn the contents of an encrypted
packet if it first learns the component of the key required to
decrypt it.

Additionally, the following elements of the actual system
are abstracted in the model in order to simplify the imple-
mentation and to stay within the constraints of what ABCD
allows:

• The Reed-Solomon fragmentation is not modelled.
Instead, when a client attempts to write a data block
D, the MI server just returns a list of len(D) storers.

• The parallelism inherent in steps 7 and 8 of the PUT
protocol, and steps 3 and 4 of the GET protocol is
modelled iteratively. ABCD does not directly support
the dynamic creation of parallel processes, therefore
clever agent identifiers and a loop are used to model
communications between clients and storers. Specifi-
cally, the clients iterate through the list of storers and
place their outgoing packets onto the nw buffer one
by one before again retrieving the responses from the
same buffer iteratively.

Our design then allows the user to specify a static scenario
to be model checked. For example, the user may use our
pre-defined nets to construct (following the naming con-
ventions in Figure 2) a process such as:

P(“DAT”) | S1 | S2 | S3 |MI | Attacker

Which will model the scenario in which a client attempts to
do a PUT of the string “DAT” into three storers. The user
only needs to make sure that a few coherency conditions
are met, for example that at least three storers are available
in his scenario if a client attempts to write data of length
3. The process is then compiled into a Petri net by the
ABCD compiler, and the corresponding state graph can be
searched using the SNAKES library for a bad marking –
say for example one in which one of the agent’s private
keys appear in the attacker’s knowledge buffer.

3.2. The Attacker

The final agent definable in our model is the attacker, which
continually observes the communications on the network.
As shown in Figure 2, the attacker has three components:
a buffer named knowledge which is essentially a set of

the information that the attacker currently “knows”, a set
of initial knowledge, and a learning engine with which it
uses to glean new knowledge from what it observes on the
network. Intuitively, the attacker performs the following
operations:

1. It intercepts each message that appears on nw and adds
it to its knowledge

2. It passes each message along with its current knowl-
edge to the learning engine and adds any new knowl-
edge learned to it’s current knowledge

3. It then may either do nothing, or take any message that
is a valid message in the protocol that is contained in
its knowledge and put it back on nw

In ABCD, these actions are expressed by the following
term:

[nw-(m), knowledge>>(k),
knowledge<<(learn(m,k))];

([True] + [knowledge?(x), nw+(x)
if message(x)])

The two first lines implement steps 1 and 2: a message m
is removed from the network, and this message is passed
to a method learn() along with the contents of the cur-
rent knowledge. The return value of this method is filled
back into the knowledge buffer. The next lines imple-
ments step 3: the process can either choose to do the empty
action [True], or to replay any element of its knowledge
that satisfies the message() predicate – which checks if
x is a valid protocol message – back on the network. Note
that a branch is created in the state graph for each mes-
sage that can be intercepted in the first line, another for the
choice in the second line, and another for each valid mes-
sage in the knowledge. This is why the attacker is the most
computationally intensive component of our modelling.

It remains to discuss the actions of the learn() opera-
tion. This function takes as input a message m and a set k.
From this input it increases the size of the set k by applying
the following operations:

1. it adds m to k if it did not already exist

2. if m is an encrypted datum {m′}K and the pub-
lic/private counterpart to K allowing it’s decryption is
in k, and m′ is not in k, then it adds learn(m′, k)
to k

3. if m is a tuple (m1, . . . ,mn) and mi is not in k, then
it adds learn(mi, k) to k for each such mi

4. it augments k with all tuple combinations con-
structible from the contents of k, as well as the en-
cryption of these with any keys k. It then adds
learn(m′, k) to k for each message m′ so added.



Once each of these steps are completed, the learn()
method returns the final k. This description is essentially
an inductive definition of the Dolev-Yao spy process de-
fined in [6]. However, note that step 4 is infinite: for in-
stance any element can simply be repeated in a tuple of
arbitrary size. For this reason, in our implementation, we
add the additional restriction that any elements added to k
must be valid fragments of messages in the SPREADS pro-
tocol model. We formally define a slight abstraction of this
method in section 5.

One of the advantages of this design is that the attacker
model is partially parameterized by the knowledge it is ini-
tially given. By giving it only public information (agent
identifiers, public keys, etc.), it behaves as a malicious
agent external to the system. We can also model the at-
tacker as one of the nodes themselves by simply giving it
the private information it requires to identify itself as one,
or more specifically everything it needs to “play” as a legit-
imate agent in some execution trace in the state graph. We
similarly model compromised keys, file identifiers, or any
other private information.

4. SECURITY FLAWS DETECTED

Despite the relatively simple structure of the model, and the
fact that all the communications are encrypted and signed,
it turns out that an external attacker can still exploit certain
replay attacks on the system. This section discusses three
such attacks that we found during the development and ver-
ification of our model. We also discuss the changes (if any)
that needed to be made to the model in order to prevent
these attacks.

4.1. Intra-Session Attacks

The first type of error occurs when a client confuses one
type of data with another within a single operational ses-
sion. For instance, consider the first two steps of the PUT
protocol (omitting the interaction with the Reed-Solomon
server because it is not modelled):

1 : C −→ MI : GET NEW KEY

2 : MI −→ C : K

This second message can be intercepted and replayed by
the attacker posing as the meta information server. It can
do so after the client request for a list of storers:

3 : C −→ MI : GET STORERS, len(D)
4 : A(MI) −→ C : K

This message has the exact same structure as the returned
list of storers, and since the modelization is symbolic, the
client has no way to tell that the data it received was in

fact a list. In the real system, this situation can occur since
the message is just a string of bits interpreted by the client.
Since the string may not actually represent a list, it may
lead to a failure of a legitimate PUT session due to a replay
by an external attacker. This is actually how we discovered
this attack: during the computation of the state space of a
simple scenario, a run-time error was raised by SNAKES
because it attempted to iterate over a key instead of a list.

This exploit can be prevented by giving every message sent
in the steps of the three protocols a distinguished type: in
the particular example above, simply an identifier stating
that K is indeed a file ID in step 2, and that the returned
message in step 4 is a list of storers. This will allow the
client to check if the data he is receiving is indeed of the ex-
pected type. Some of the messages in the protocols already
have these types (e.g. GET NEW KEY), it suffices simply to
augment each “arrow” in the protocol with a unique type.
To illustrate, the GET protocol becomes:

GET(K)
1 : C −→ MI : GET GET STORERS,K
2 : MI −→ C : GET RET STORERS, [S1, .., Sn]
3 : C −→ Si : READ FRAG,K
4 : Si −→ C : RET FRAG, fragi(D)

The prefix GET in the types of the first two messages serve
to distinguish them from the corresponding messages in the
PUT protocol, preventing a similar error from occurring be-
tween multiple sessions.

4.2. Inter-Session Attacks

Once the protocol is fully typed, the attacker can still replay
packets from earlier sessions in order to create inconsisten-
cies. For example consider the typed key return message in
the PUT protocol:

1 : C −→ MI : PUT GET NEW KEY

2 : MI −→ C : PUT RET NEW KEY,K

The second message can be replayed in a later PUT session,
leading the client to mistakenly re-use an old file identifier
and therefore overwrite existing data. This problem has
been discovered by analysing a scenario with two PUT op-
erations that did not yield a consistent distribution of the
initially sent data onto the storers. One way to solve this
particular problem is to simply disallow overwrites on the
storers (SPREADS in fact does this). While this resolves
the serious integrity issue displayed above, it does noth-
ing about the general problem that messages from earlier
sessions replayed by the attacker will be accepted by legit-
imate agents. For example, replaying storer lists or storer
acknowledgements can easily lead to externally caused er-
rors.



The correct solution is to require each protocol initiator –
thus clients attempting to do a PUT, GET, or FREE, as well
as a storer attempting to poll the central server – to generate
a fresh session identifier at the beginning of each operation.
This identifier must then be passed with all the messages in
that session in order to avoid confusing them with messages
from earlier runs.

4.3. Internal Attacks

The final attack type we discovered is one that applies even
after session identifiers and types are added to the proto-
col. Namely, by having the attacker play as a client in the
system, it becomes evident that there isn’t anything that ac-
tually connects a file identifier to a user. For instance, sup-
pose Alice does a PUT of her private information, which
gets stored in the network under key K. If K becomes
compromised, any other client can retrieve this data by do-
ing an ordinary GET. This is fairly obvious by simply ex-
amining the GET protocol, but was actually discovered by
providing the attacker enough initial knowledge to play the
exchange himself in addition to K.

The solution adopted by SPREADS to counter this prob-
lem is to use file identifiers that are not easy to generate
randomly (to prevent them from being guessed by other
peers). This therefore requires no modification to our mod-
elling, since we handle all data symbolically.

However, if a malicious node stores data, it knows all the
file identifiers it has learnt during storage requests. So it
may retrieve all the associated data. In the current central-
ized implementation, this problem can be solved by asso-
ciating on the server each file identifier to the identifier of
the node that owns the data. Since every communication is
authenticated, the server can detect an invalid request in the
first message of a GET.

5. THEORETICAL ANALYSIS

We now detail a more general analysis of the model. In par-
ticular, we show that no scenario executed in our model will
lead to an unencrypted data fragment appearing in the at-
tacker’s knowledge. Note that this result is about the model
only, and not about the system itself – i.e. it comes with all
the usual caveats about abstractions and modelling errors
that come with usual model checking results. In fact it is
only possible because of the severe restrictions placed on
communications in SPREADS, and the fact that our ABCD
specification is not only the front-end of a model-checker,
but also a formal model.

Recall from section 3 that each communication by an
agent in our model is done by placing a tuple of the form

(A,B, {D}) on the central network place, where where A
and B are agent identifiers and {D} is a signed and en-
crypted data block of the form {{X}Priv(A)}Pub(B). This
formally means that the Petri net semantics of our agents
only have output arcs to the network buffer that contain
such tuples, and this fact can simply be established by ex-
amining the code. The only other arc that enters the net-
work place is that from the attacker’s knowledge buffer,
but that arc is also guarded by a conditional requiring that
the only packets that are valid protocol messages (and thus
tuples of this form) may fire the transition leading to it.
Therefore we can combine these properties to deduce the
following:

Fact 1. In any execution of our SPREADS model, the net-
work place nw will only contain tuples of the above form
in any reachable marking.

In order to prove a result about the contents of the knowl-
edge buffer, we in fact need to know a bit more about the
structure of valid protocol fragments. Luckily, by simply
examining all of the arcs entering nw from valid agents in
the model’s code, we can also assert the following:

Fact 2. For any valid SPREADS model communication
tuple (A,B, {D}), the unencrypted contents of the payload
{D}:

(a) does not contain any agent identifiers

(b) does not itself contain any further encrypted data

We now define a coherency condition on the contents of
the knowledge buffer: showing that this condition is an in-
variant through any execution of the learning engine is the
central idea of our argument.

Definition 1. A knowledge set K is called SPREADS safe
if it contains only valid SPREADS protocol packets, agent
identifiers, public keys of agent identifiers, and encrypted
elements {D} of the form defined by facts 1 and 2 above.
In addition, K must satisfy the following closure proper-
ties:

1. if an agent identifier A is in K, then so is Pub(A)

2. if agent identifiers A1, . . . , An, and payload {D} are
in K, then so are all tuples of the form (Ai, Aj , {D})

We are now ready to discuss the main analysis. We know
that the only inputs into the attacker’s knowledge come
from nw, the initial knowledge, and the input from learn.
The input from nw contains only valid protocol packets by
fact 1, the input from the initial knowledge is static and
will contain only the identities of all the agents in the sce-
nario and their public keys (as we are modelling an external



learn(msg,K)
1: K ⊕ {msg}
2: if (can decrypt(msg,K)) then
3: K ⊕ learn(decrypt(msg),K)
4: if (is tuple(msg)) then
5: foreach m in msg do
6: K ⊕ learn(m,K)
7: K ⊕ fragments(K)
8: foreach m in fragments(K) \K do
9: K ⊕ learn(m,K)

10: return K

Figure 3. Pseudo-code for our implementation of the
the learning engine. The S1 ⊕ S2 operation signifies

updating the contents of set S1 with the elements of set
S2 (i.e. a union and an assignment)

attacker). We must therefore reason about the learning al-
gorithm, which is presented in Figure 3.

The function takes a message and a knowledge set and
produces an updated knowledge set. Step 1 simply adds
the message to the set. Steps 2-3 determines if the mes-
sage can be decrypted given the current knowledge, the
can decrypt() predicate is true if msg is an encrypted dat-
ablock {m}k and the key required to decrypt it is in K.
If true the algorithm recurses on the decrypted contents m
and updates the knowledge with the results. Steps 4-6 simi-
larly determines if msg is a tuple, and if so recurses on each
component of the tuple, updating K with each one. Steps
7-9 are the most complex: fragments(K) is the set of
all combinations and encryptions of elements of K which
are valid fragments of protocol messages. The encryptions
are only allowed using keys that are contained in the cur-
rent knowledge, which is then updated with the contents of
this set. The algorithm then recurses on each new element
found using this procedure. The final K is then returned in
the last step.

The keystone to our result is showing that, given a valid
SPREADS message msg, and a SPREADS safe K, this
algorithm returns a SPREADS safe set:

Theorem 1. If msg is a SPREADS communication tu-
ple (A,B, {D}) with {D} defined as above, and K is
SPREADS safe and contains all agent identifiers, then
learn(msg,K) is also SPREADS safe.

Consider a packet (A,B, {D}), and suppose in the worst
case that it is not already contained in K. This packet is
added to K in the first step.Furthermore, the packet is a
tuple therefore the algorithm simply decomposes it and re-
curses on each of its components in turn. The first such re-
cursion is on A, which by assumption is already contained

in K, can’t be decrypted, and isn’t a tuple. Also, no new
elements are added through recomposition, this is because:

• No elements can be encrypted to obtain fragments be-
cause by definition and fact 2(b) only public key en-
cryptions of private key encryptions are valid frag-
ments. Since K is SPREADS safe, it contains no pri-
vate keys nor elements who’s outermost encryption is
done with a private key, therefore no valid fragments
can be constructed by encryption.

• Since A was already in K at call time, all fragments
of the form (Ai, Aj , {D}) containing A as source or
target in K are already present by SPREADS safety.

• By facts 2(a) and (b), no other tuples composed of
agent identifiers or encryptions can form valid frag-
ments as these cannot appear inside the encrypted por-
tion of a valid packet.

An identical argument occurs for the recursion on B. This
leaves only the recursion on {D}. At worst case this
is added to K in the first step, but cannot be decrypted
because K cannot contain private keys by safety, nor is
it a tuple and thus can’t be decomposed. Now, since
{D} was not in K, we know that all tuples of the form
(Ai, Aj , {D}) are valid fragments in fragments(K) \K,
and thus are added to K (note that this now makes K once
again SPREADS safe). The recursion on each of these el-
ements does not learn any data because we just established
that all (Ai, Aj , {D}), and {D} itself, have already been
added to K and thus we can simply repeat the argument to
conclude that none of the recursions in step 9 of the subre-
cursion on {D} add anything to K. Finally, the argument
in this last step can be repeated to conclude that the re-
composition step in the outermost call to learn also learns
nothing, and therefore the SPREADS safe knowledge com-
puted in step 6 is the one that is returned by the function,
completing the proof.

Recall that the initial knowledge when modelling an exter-
nal attacker contains only the identifiers of all the agents in
the scenario, as well as their public keys. Therefore the ini-
tial knowledge is SPREADS safe. Furthermore, the learn
function is only called by the attacker on a message taken
from the network (nw) and thus is a valid SPREADS packet
by fact 1. These two observations lead to the following di-
rect corollary to the above theorem:

Corollary 1. During the execution of any SPREADS sce-
nario modelled with an external attacker, there exists no
marking in which the attacker’s knowledge contains an un-
encrypted data fragment or a private key.

This follows immediately from the definition of SPREADS
safety and the implementation of the model.



6. RELATED AND FUTURE WORK

We’ve described the modeling of a P2P system in ABCD,
and have used this model in two very different ways to both
find security flaws in, and establish security properties of
the system. In the first case, we actually generated a state
graph using the Petri net semantics of our specification and
discovered a number replay and internal attacks against the
system. In the second case, we used the restrictions placed
on communications in the system to show that no execution
of our model on a valid scenario modelling the system will
result in a state violating certain security properties.

While the types of analysis we’ve been able to conduct
vary starkly in style, they both have pros and cons, and
both bring different value to the system developers. Model
checking by execution is able to discover attacks exploited
by replaying and by internal attackers, both of which the
general approach would have considerably more difficul-
ties with as the interactions between the system agents be-
come far more complex and the corresponding proofs im-
measurably more difficult. On the other hand, the general
analysis yields results that are independent of a particular
scenario and therefore have considerable value in giving as-
surances to SPREADS’ users that the system satisfies cer-
tain information security properties that they would expect.

At the heart of both of these approaches is the actual ABCD
specification, which was used as both an executable pro-
gram and a formal object. In fact, we envision using these
specifications in later iterations of SPREADS’ design to
play more roles:

1. Simulation. Our ABCD specifications can be them-
selves provided as input to a simulation engine (rather
than simulating the actual system). The idea is that
executing Petri net traces would allow us to monitor
the behavior of SPREADS with very large numbers of
peers, allowing some quantitative analysis of the sys-
tem’s behavior with respect to variables like high rates
of churn.

2. Design. While ABCD is useful in establishing the
desired properties of the live centralized SPREADS
system, it can also be used to model the behavior of
the fully distributed system based on the current de-
sign ideas of the developers. Such modelization work
could potentially influence the future system’s design
and implementation, and we plan very much to per-
form a similar analysis on the fully distributed system.

If successful, we will have a system that was designed,
model checked, simulated, and formally analyzed around
the exact same specification, strengthening the ties between

many aspects of the software development process that are
often at odds.

6.1. Related Work

Our approach can in some ways be seen as straddling be-
tween more temporal logical approaches such as CTLK [5]
and pure process algebras such as the asynchronous π-
calculus [9]. ABCD offered the “best of both worlds” for
our particular problem: its process algebra syntax allows
models to be easily defined (compared to temporal log-
ics) and their properties to be checked directly via mark-
ing graphs. On the other hand, the structured nature of its
Petri net semantics allowed us to verify systems with non-
deterministic choice and iteration – both essential to con-
structing an accurate model of SPREADS – which often
lead to intractable (or worse) model checking problems in
pure process algebras.

Similar works include the specification and analysis of sim-
pler security protocols using a Petri net semantics of the Se-
curity Protocol Language (SPL [4]): [3, 2]. SPL is not suit-
able to model SPREADS’ protocol because it lacks features
that turned out to be crucial for our modelling: in particu-
lar, the ability to model loops and choices in conjunction
with the annotation of the model with complex data types
and associated functions. (Remember that our model com-
prises more than 600 lines of Python code.) A similar com-
parison could be drawn with approaches like AVISPA [1]:
on the one hand, the symbolic approach allows for more
efficient verification than our explicit approach; but on the
other hand, the control flow in these tools is generally lim-
ited to parallel and sequential compositions. Furthermore,
it is often not possible to introduce user-defined data types
and the functions into such tools.

We believe that rich control flow and an extensible data do-
main are two crucial features to model complex protocols.
In particular:

• protocols or scenarios that involve complex agent be-
haviours require more than sequential and parallel
compositions. For instance, branching protocols (like
optimistic fair contract signing schemes) are awkward
if not impossible to model without a choice; similarly,
a form of repetition (loop or recursion) is required to
model behaviours like communicating with a dynam-
ically created list of agents;

• by finding the right mixture of modelling and im-
plementation, one can generally achieve a satisfac-
tory abstraction that leads to a reduced state space,
overcoming the inherent limitations of explicit model-
checking.
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