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Abstract

This paper describes a family of factorization-based algorithms that
recover 3D projective structure and motion from multiple uncali-
brated perspective images of 3D points and lines. They can be viewed
as generalizations of the Tomasi-Kanade algorithm from affine to
fully perspective cameras, and from points to lines. They make no
restrictive assumptions about scene or camera geometry, and unlike
most existing reconstruction methods they do not rely on ‘privileged’
points or images. All of the available image data is used, and each fea-
ture in each image is treated uniformly. The key to projective factoriz-
ation is the recovery of a consistent set of projective depths (scale fac-
tors) for the image points: this is done using fundamental matrices and
epipoles estimated from the image data. We compare the performance
of the new techniques with several existing ones, and also describe an
approximate factorization method that gives similar results to SVD-
based factorization, but runs much more quickly for large problems.
Keywords: Multi-image Structure, Projective Reconstruction, Ma-
trix Factorization.

1 Introduction

There has been considerable progress on scene reconstruction
from multiple images in the last few years, aimed at applica-
tions ranging from very precise industrial measurement sys-
tems with several fixed cameras, to approximate structure and
motion from real time video for active robot navigation. One
can usefully begin by ignoring the issues of camera calibra-
tion and metric structure, initially recovering the scene up to an
overall projective transformation and only later adding metric
information if needed [5, 10, 1]. The key result is that projec-
tive reconstruction is the best that can be done without calibra-
tion or metric information about the scene, and that it is pos-
sible from at least two views of point-scenes or three views of
line-scenes [2, 3, 8, 6].

Most current reconstruction methods either work only for
the minimal number of views (typically two), or single out a
few ‘privileged’ views for initialization before bootstrapping
themselves to the multi-view case [5, 10, 9]. For robustness
and accuracy, there is a need for methods that uniformly take
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account of all the data in all the images, without making re-
strictive special assumptions or relying on privileged features
or images for initialization. The orthographic and paraperspec-
tive structure/motion factorization methods of Tomasi, Kanade
and Poelman [17, 11] partially fulfill these requirements, but
they only apply when the camera projections are well approx-
imated by affine mappings. This happens only for cameras
viewing small, distant scenes, which is seldom the case in prac-
tice. Factorization methods for perspective images are needed,
however it has not been clear how to find the unknown projec-
tive scale factors of the image measurements that are required
for this. (In the affine case the scales are constant and can be
eliminated).

As part of the current blossoming of interest in multi-
image reconstruction, Shashua [14] recently extended the well-
known two-image epipolar constraint to a trilinear constraint
between matching points in three images. Hartley [6] showed
that this constraint also applies to lines in three images, and
Faugeras & Mourrain [4] and I [18, 19] completed that cor-
ner of the puzzle by systematically studying the constraints for
lines and points in any number of images. A key aspect of the
viewpoint presented in [18, 19] is that projective reconstruction
is essentially a matter of recovering a coherent set of projec-
tive depths — projective scale factors that represent the depth
information lost during image projection. These are exactly the
missing factorization scales mentioned above. They satisfy a
set of consistency conditions called ‘joint image reconstruction
equations’ [18], that link them together via the corresponding
image point coordinates and the various inter-image matching
tensors.

In the MOVI group, we have recently been developing pro-
jective structure and motion algorithms based on this ‘projec-
tive depth’ picture. Several of these methods use the factoriz-
ation paradigm, and so can be viewed as generalizations of the
Tomasi-Kanade method from affine to fully perspective pro-
jections. However they also require a depth recovery phase
that is not present in the affine case. The basic reconstruction
method for point images was introduced in [15]. The current
paper extends this in several directions, and presents a detailed
assessment of the performance of the new methods in compar-
ison to existing techniques such as Tomasi-Kanade factoriz-
ation and Levenberg-Marquardt nonlinear least squares. Per-
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haps the most significant result in the paper is the extension
of the method to work for lines as well as points, but I will
also show how the factorization can be iteratively ‘polished’
(with results similar to nonlinear least squares iteration), and
how any factorization-based method can be speeded up signif-
icantly for large problems, by using an approximate fixed-rank
factorization technique in place of the Singular Value Decom-
position.

The factorization paradigm has two key attractions that are
only enhanced by moving from the affine to the projective case:
(i) All of the data in all of the images is treated uniformly —
there is no need to single out ‘privileged’ features or images
for special treatment; (ii) No initialization is required and con-
vergence is virtually guaranteed by the nature of the numerical
methods used. Factorization also has some well known disad-
vantages:

1) Every primitive must be visible in every image. This is un-
realistic in practice given occlusion and extraction and tracking
failures.

2) It is not possible to incorporate a full statistical error model
for the image data, although some sort of implicit least-squares
trade-off is made.

3) It is not clear how to incorporate additional points or im-
ages incrementally: the whole calculation must be redone.

4) SVD-based factorization is slow for large problems.

Only the speed problem will be considered here. SVD is
slow because it was designed for general, full rank matrices.
For matrices of fixed low rank r (as here, where the rank is 3
for the affine method or 4 for the projective one), approximate
factorizations can be computed in time O(mnr), i.e. directly
proportional to the size of the input data.

The Tomasi-Kanade ‘hallucination’ process can be used to
work around missing data [17], as in the affine case. How-
ever this greatly complicates the method and dilutes some of
its principal benefits. There is no obvious solution to the error
modelling problem, beyond using the factorization to initialize
a nonlinear least squares routine (as is done in some of the ex-
periments below). It would probably be possible to develop in-
cremental factorization update methods, although there do not
seem to be any in the standard numerical algebra literature.

The rest of the paper outlines the theory of projective fac-
torization for points and lines, describes the final algorithms
and implementation, reports on experimental results using syn-
thetic and real data, and concludes with a discussion. The
full theory of projective depth recovery applies equally to two,
three and four image matching tensors, but throughout this pa-
per I will concentrate on the two-image (fundamental matrix)
case for simplicity. The underlying theory for the higher va-
lency cases can be found in [18].

2 Point Reconstruction

We need to recover 3D structure (point locations) and mo-
tion (camera calibrations and locations) from m uncalibrated
perspective images of a scene containing n 3D points. With-
out further information it is only possible to reconstruct the
scene up to an overall projective transformation [2, 8], so we
will work in homogeneouscoordinates with respect to arbitrary
projective coordinate frames. LetXp (p = 1; : : : ; n) be the un-
known homogeneous 3D point vectors, Pi (i = 1; : : : ;m) the
unknown 3�4 image projections, andxip the measured homo-
geneous image point vectors. Modulo some scale factors �ip,
the image points are projected from the world points: �ip xip =PiXp. Each object is defined only up to rescaling. The �’s
‘cancel out’ the arbitrary scales of the image points, but there
is still the freedom to: (i) arbitrarily rescale each world pointXp and each projectionPi; (ii) apply an arbitrary nonsingular4� 4 projective deformationT: Xp ! TXp, Pi ! PiT�1.
Modulo changes of the �ip, the image projections are invariant
under both of these transformations.

The scale factors �ip will be called projective depths. With
correctly normalized points and projections they become true
optical depths, i.e. orthogonal distances from the focal planes
of the cameras. (NB: this is not the same as Shashua’s ‘projec-
tive depth’ [13]). In general, m+ n� 1 projective depths can
be set arbitrarily by choosing appropriate scales for theXp andPi. However, once this is done the remaining (m� 1)(n� 1)
degrees of freedom contain real information that can be used
for 3D reconstruction: taken as a whole the projective depths
have a strong internal coherence. In fact, [18, 19] argues that
just as the key to calibrated stereo reconstruction is the recov-
ery of Euclidean depth, the essence of projective reconstruc-
tion is precisely the recovery of a coherent set of projective
depths modulo overall projection and world point rescalings.
Once this is done, reconstruction reduces to choosing a projec-
tive basis for a certain abstract three dimensional ‘joint image’
subspace, and reading off point coordinates with respect to it.

2.1 Factorization

Gather the point projections into a single 3m�n matrix equa-
tion:W � 0BBB@ �11 x11 �12 x12 � � � �1n x1n�21 x21 �22 x22 � � � �2n x2n

...
...

. . .
...�m1 xm1 �m2 xm2 � � � �mn xmn 1CCCA= 0BBB@ P1P2

...Pm 1CCCA� X1 X2 � � � Xn �
Hence, with a consistent set of projective depths the rescaled
measurement matrixW has rank at most 4. Any rank 4 ma-
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trix can be factorized into some 3m�4 matrix of ‘projections’
multiplying a 4� n matrix of ‘points’ as shown, and any such
factorization corresponds to a valid projective reconstruction:
the freedom in factorization is exactly a 4� 4 nonsingular lin-
ear transformationP! PT�1, X! TX, which can be re-
garded as a projective transformation of the reconstructed 3D
space.

One practical method of factorizingW is the Singular Value
Decomposition [12]. This decomposes an arbitrary k � l ma-
trixWk�l of rank r into a productWk�l = Uk�rDr�rV>l�r,
where the columns of Vl�r and Uk�r are orthonormal bases
for the input (co-kernel) and output (range) spaces of Wk�l,
andDr�r is a diagonal matrix of positive decreasing ‘singular
values’. The decomposition is unique when the singular values
are distinct, and can be computed stably and reliably in timeO(klmin(k; l)). The matrix D of singular values can be ab-
sorbed into either U orV to give a decomposition of the pro-
jection/point form PX. (I absorb it intoV to formX).

The SVD has been used by Tomasi, Kanade and Poel-
man [17, 11] for their affine (orthographic and paraperspec-
tive) reconstruction techniques. The current application can be
viewed as a generalization of these methods to projective re-
construction. The projective case leads to slightly larger ma-
trices (3m � n rank 4 as opposed to 2m � n rank 3), but is
actually simpler than the affine case as there is no need to sub-
tract translation terms or apply nonlinear constraints to guaran-
tee the orthogonality of the projection matrices.

Ideally, one would like to find reconstructions in timeO(mn) (the size of the input data). SVD is a factor ofO(min(3m;n)) slower than this, which can be significant if
there are many points and images. Although SVD is proba-
bly near-optimal for full-rank matrices, rank r matrices can be
factorized in ‘output sensitive’ time O(mnr). I have experi-
mented with one such ‘fixed rank’ method, and find it to be al-
most as accurate as SVD and significantly faster for large prob-
lems. The method repeatedly sweeps the matrix, at each sweep
guessing and subtracting a column-vector that ‘explains’ as
much as possible of the residual error in the matrix columns.
A rank r matrix is factorized in r sweeps. When the matrix is
not exactly of rank r the guesses are not quite optimal and it is
useful to include further sweeps (say 2r in total) and then SVD
the matrix of extracted columns to estimate the best r combi-
nations of them.

2.2 Projective Depth Recovery

The above factorization techniques can only be used if a self-
consistent set of projective depths �ip can be found. The key
technical advance that makes this work possible is a practical
method for estimating these using fundamental matrices and
epipoles obtained from the image data. The full theory can be
found in [18], which also describes how to use trivalent and
quadrivalent matching tensors for depth recovery. Here we
briefly sketch the fundamental matrix case. The image projec-

tions �ip xip = PiXp imply that the 6� 5 matrix� Pi �ip xipPj �jp xjp � = � PiPj �� I4�4 Xp �
has rank at most 4, so all of its 5� 5 minors vanish. Expand-
ing by cofactors in the last column gives homogeneous linear
equations in the components of �ip xip and �jp xjp, with coef-
ficients that are 4� 4 determinants of projection matrix rows.
These turn out to be the expressions for the fundamental matrixFij and epipole eji of camera j in image i in terms of projection
matrix components [19, 4]. The result is the projective depth
recovery equation:(Fij xjp) �jp = (eji ^ xip)�ip (1)

This says two things: (i) The epipolar line of xjp in image i is
the same as the line through the corresponding point xip and
epipole eji (as is well known); (ii) With the correct projective
depths and scalings for Fij and eji, the two terms have exactly
the same size. The equality is exact, not just up to scale. This is
the new result that allows us to recover projective depths using
fundamental matrices and epipoles. Analogous results based
on higher order matching tensors can be found in [18].

It is straightforward to recover projective depths using (1).
Each instance of it linearly relates the depths of a single 3D
point in two images. By estimating a sufficient number of fun-
damental matrices and epipoles, we can amass a system of ho-
mogeneous linear equations that allows the complete set of
depths for a given point to be found, up to an arbitrary over-
all scale factor. At a minimum, this can be done by selecting
any set of m� 1 equations that link the m images into a single
connected graph. With such a non-redundant set of equations
the depths for each point p can be found trivially by chaining
together the solutions for each image, starting from some arbi-
trary initial value such as �1p = 1. Solving the depth recovery
equation in least squares gives a simple recursion relation for�ip in terms of �jp :�ip := (eji ^ xip) � (Fij xjp)keji ^ xipk2 �jp
If additional depth recovery equations are used, this simple re-
cursion must be replaced by a redundant (and hence potentially
more robust) homogeneous linear system. However, care is
needed. The depth recovery equations are sensitive to the scale
factors chosen for the F’s and e’s, and these can not be recov-
ered directly from the image data. This is irrelevant when a sin-
gle chain of equations is used, as rescalings of F and e affect
all points equally and hence amount to rescalings of the corre-
sponding projection matrices. However with redundant equa-
tions it is essential to choose a mutually self-consistent set of
scales for theF’s and e’s. I will not describe this process here,
except to note that the consistency condition is the Grassmann
identity Fkjeij = eik ^ ejk [18].

It is still unclear what the best trade-off between economy
and robustness is for depth recovery. This paper considers only
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two simple non-redundant choices: either the images are taken
pairwise in sequence,F21;F32; : : : ;Fmm�1, or all subsequent
images are scaled in parallel from the first,F21;F31; : : : ;Fm1.
It might seem that long chains of rescalings would prove nu-
merically unstable, but in practice depth recovery is surpris-
ingly well conditioned. Both serial and parallel chains work
very well despite their non-redundancy and chain length or re-
liance on a ‘key’ image. The two methods give similar results
except when there are many (>40) images, when the shorter
chains of the parallel system become more robust. Both are sta-
ble even when epipolar point transfer is ill-conditioned (e.g. for
a camera moving in a straight line, when the epipolar lines of
different images coincide): the image observations act as sta-
ble ‘anchors’ for the transfer process.

Balancing: A further point is that with arbitrary choices of
scale for the fundamental matrices and epipoles, the average
size of the recovered depths might tend to increase or decrease
exponentially during the solution-chaining process. Theoret-
ically this is not a problem as the overall scales are arbitrary,
but it could easily make the factorization phase numerically ill-
conditioned. To counter this the recovered matrix of projec-
tive depths must be balanced after it has been built, by judi-
cious overall row and column rescalings. The process is very
simple. The image points are normalized on input, so ideally
all of the scale factors �ip should have roughly the same or-
der of magnitude,O(1) say. For each point the depths are esti-
mated as above, and then: (i) each row (image) of the estimated
depth matrix is rescaled to have length

pn; (ii) each column
(point) of the resulting matrix is rescaled to length

pm. This
process is repeated until it roughly converges, which happens
very quickly (within 2–3 iterations).

3 Line Reconstruction

3D lines can also be reconstructed using the above techniques.
A line L can be represented by any two 3D points lying on it,
sayY and Z. In image i, L projects to some image line li andY and Z project to image points yi and zi lying on li. The
points fyiji = 1; : : : ;mg are in epipolar correspondence, so
they can be used in the depth recovery equation (1) to recon-
structY, and similarly forZ. The representativesY andZ can
be fixed implicitly by choosingy1 and z1 arbitrarily on l1 in the
first image, and using the epipolar constraint to transfer these
to the corresponding points in the remaining images: yi lies on
both li and the epipolar line of y1, so is located at their inter-
section.

In fact, epipolar transfer and depth recovery can be done in
one step. Let yi stand for the rescaled via pointsPiY. Substi-
tute these into equation (1), cross-product with li, expand, and
simplify using li � yi = 0:li ^ (Fij yj) = li ^ (eji ^ yi)= � (li � eji)yi + (li � yi) eji= � (li � eji)yi (2)

Up to a factor of li � eji, the intersection li ^ (Fij yj) of li
with the epipolar line ofyj automatically gives the correct pro-
jective depth for reconstruction. Hence, factorization-based
line reconstruction can be implemented by choosing a suitable
(widely spaced) pair of via-points on each line in the first im-
age, and then chaining together instances of equation (2) to
find the corresponding, correctly scaled via-points in the other
images. The required fundamental matrices can not be found
directly from line matches, but they can be estimated from
point matches, or from the trilinear line matching constraints
(trivalent tensor) [6, 14, 4, 19, 18]. Alternatively, the triva-
lent tensor can be used directly: in tensorial notation [18], the
trivalent via-point transfer equation is lBk GCjAiBk yCj =(lBk eBkj )yAi .

As with points, redundant equations may be included if and
only if a self-consistent normalization is chosen for the funda-
mental matrices and epipoles. For numerical stability, it is es-
sential to balance the resulting via-points (i.e. depth estimates).
This works with the 3m � 2nlines ‘W’ matrix of via-points,
iteratively rescaling all coordinates of each image (triple of
rows) and all coordinates of each line (pair of columns) until
an approximate equilibrium is reached, where the overall mean
square size of each coordinate is O(1) in each case. To ensure
that the via-points representing each line are on average well
separated, I also orthonormalize the two 3m-component col-
umn vectors for each line with respect to one another. The via-
point equations (2) are linear and hence invariant with respect
to this, but it does of course change the 3D representativesY
and Z recovered for each line.

4 Implementation

This section summarizes the complete algorithm
for factorization-based 3D projective reconstruction from im-
age points and lines, and discusses a few important implemen-
tation details and variants. The algorithm goes as follows:
0) Extract and match points and lines across all images.
1) Standardize all image coordinates (see below).

2) Estimate a set of fundamental matrices and epipoles suffi-
cient to chain all the images together (e.g. using point matches).
3) For each point, estimate the projective depths using equa-
tion (1). Build and balance the depth matrix �ip, and use it to
build the rescaled point measurement matrixW.

4) For each line choose two via-points and transfer them to the
other images using the transfer equations (2). Build and bal-
ance the rescaled line via-point matrix.
5) Combine the line and point measurement matrices into a3m� (npoints +2nlines) data matrix and factorize it using either
SVD or the fixed-rank method. Recover 3D projective struc-
ture (point and via-point coordinates) and motion (projection
matrices) from the factorization.
6) Un-standardize the projection matrices (see below).
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Complexity: The algorithm is dominated by
the O(mnmin (3m;n)) SVD step if this is used, while if an
approximate factorization is used it is proportional to the input
data size O(mn).

Standardization: To get acceptable results from the above
algorithm, it is absolutely essential to work in a well-adapted
image coordinate system. The basic idea is to choose work-
ing coordinates that reflect the least squares trade-offs implicit
in the factorization algorithm. This is standard practice in nu-
merical analysis, but it does not seem to have been widely
known in vision until Hartley [7] pointed out its importance for
fundamental matrix estimation. The exact scheme used is not
critical, provided that the homogeneous working coordinates
are all of the same order of magnitude. I currently prefer to
scale the image into the unit square [�1; 1]� [�1; 1], homoge-
nize, and then normalize the resulting homogeneous 3-vectors
to unit length x2 + y2 + z2 = 1. This simple scheme works
very well in practice. The normalization applies to line vec-
tors as well as point ones, and behaves well even for points
(e.g. epipoles) near the line at infinity. After reconstruction, the
camera projections need to be un-standardized by multiplying
by the inverse transformation.

4.1 Generalizations & Variants

I have implemented and experimented with a number of vari-
ants of the above algorithm, the more promising of which are
featured in the experiments described below.
Iterative Factorization: The projective depths depend on the
3D structure, which in turn derives from the depths. The re-
construction can be iteratively improved by reprojecting to re-
fine the depth estimates and then re-factorizing. For points one
finds the component of the reprojected 3D point vector along
each image vector, while for lines the reprojected via-point
is perturbed orthogonally to lie on the measured image line.
With SVD-based factorization and standardized image coor-
dinates the iteration turns out to be extremely stable, and al-
ways improves the recovered structure slightly (often signifi-
cantly for lines). For points, one can even start with arbitrary
initial depths (say the affine ones �ip = 1) and iterate to con-
vergence. This requires no fundamental matrices or depth re-
covery equations and converges reliably in practice, although
it can be rather slow if started far from the true solution.
Nonlinear Least Squares: The ‘linear’ factorization-based
projective reconstruction methods described above are a suit-
able starting point for more refined nonlinear least-squares es-
timation. This can take account of image point error mod-
els, camera calibrations, or Euclidean constraints, as in the
work of Szeliski and Kang [16], Hartley [5] and Mohr, Bo-
ufama and Brand [10]. The standard workhorse for such prob-
lems is Levenberg-Marquardt iteration [12], so for comparison
with the linear methods I have implemented simple L-M based
projective reconstruction algorithms. These can be initialized
from either fixed-rank or SVD-based factorizations. For lines

the recovered structure is often improved significantly, while
for points the improvement over the linear methods is usually
small.
Affine Factorization: To illustrate the advantages of projec-
tive factorization over the original Tomasi-Kanade-Poelman
work [17, 11], I have also implemented affine SVD-based point
reconstruction. This gives rather poor results in the below ex-
periments because the perspective distortions are quite large.

5 Experiments

To quantify the performance of the various algorithms, I have
run a large number of simulations using synthetic data, and also
tested the algorithms on manually matched primitives derived
from real images. There is only space for a very brief summary
here, more details can be found in [20].

The simulations are based on trial scenes consisting of ran-
dom 3D points and lines in the unit cube [�1; 1] � [�1; 1] �[�1; 1], perturbed by uniform noise and viewed by identical
perspective cameras in various arrangements. In the graphs
shown here, the cameras are spaced uniformly along a 90 de-
gree arc of radius 2 in the equatorial plane of the scene, and are
directed towards the scene centre (i.e. there is a large baseline
and significant perspective distortion). Reconstruction error is
measured over 50 trials, after least-squares projective align-
ment with the true 3D structure. Mean errors are reported for
points, while for lines there are always outliers so median er-
rors are used1.

Fundamental matrices and epipoles are estimated using
the linear least squares method with all the available point
matches, followed by a supplementary SVD to project the
fundamental matrices to rank 2 and find the epipoles. In
standardized coordinates this method performs very well [7],
and it has not proved necessary to refine the results with
a nonlinear method. Unless otherwise noted, the projec-
tive depths of points are recovered by chaining sequentially
through the images: F12;F23; : : : ;Fm�1 m. A parallel chainF12;F13; : : : ;F1 m usually gives similar results. For lines in
more than a few images, the parallel chain is superior and is
used by default.

Fig. 1 shows the sensitivity of various point and line re-
construction methods to image noise, number of views, and
number of scene primitives (points or lines). The methods
shown are: points: fundamental matrix depth recovery with
SVD and fixed-rank factorization, iterated SVD and nonlinear
least-squares initialized from SVD; lines: fundamental matrix
and trilinear parallel and serial via-point transfer followed by
SVD, iterated SVD, and SVD plus nonlinear least-squares.1The image of a line passing near the optical centre of a camera is extremely
sensitive to small 3D perturbations. Also, if the camera centres lie in a plane
(as here), all lines in that plane have the same image, so such lines can not be
uniquely reconstructed (c.f. axial points for cameras lying in a line; in this case,
only lines skew with the axis can be reconstructed).
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Figure 1: Mean 3D reconstruction error for points and lines, vs. noise, number of views and number of primitives. Defaults: �1 pixel noise;
10 views; 50 primitives.
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Figure 2: Reconstruction error vs. image standardization.

All of the point methods are very stable. Their errors vary
linearly with noise and decrease as more points or views are
added. There is not much difference in precision, but generally
the fixed-rank method is slightly less accurate (but significantly
faster) than SVD. Iterating the SVD makes a small improve-
ment, and nonlinear least-squares is slightly more accurate
again. Serial depth recovery chains become ill-conditioned
when more than 30-40 images are chained: beyond this par-
allel chaining is advised.

Line reconstruction is less stable. Only the least-squares
methods consistently give reconstruction errors commensurate
with the input noise. Parallel F-matrix transfer plus factoriz-
ation is a factor of 2 or more worse than this, and serial trans-
fer is worse again. Iterative factorization helps a little, but the
use of a nonlinear least-squares routine is still advisable. Any
of these methods are accurate enough for reliable initialization
of the least-squares iteration. If my implementation is correct,
trilinear transfer based reconstruction is too sensitive to noise
to be useful (this requires confirmation). For all of the above
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Figure 3: Projective and affine reconstruction vs. scene distance.

methods, there are outliers corresponding to lines that either
can not be reconstructed uniquely, or are very sensitive to small
3D perturbations.

The importance of standardization is illustrated in fig. 2,
where the image coordinates are standardized to O(scale)
rather than O(1) before reconstruction. Pixel coordinates cor-
respond to a scale of 256 and give errors hundreds of times
worse than well-standardized coordinates. The rapid increase
in error at scales below 0.1 is caused by floating-point trunca-
tion error.

Fig. 3 illustrates the advantages of using perspective rather
than affine reconstruction, for a camera driving in a 90 degree
arc around a scene at various distances. Clearly, the affine ap-
proximation introduces a considerable amount of systematic
error even for quite distant scenes. Projective factorization is
stable and accurate even for distant scenes: even in these cases,
the only real advantage of affine factorization is the fact that it
is 2-3 times faster.

I have also run the point-based algorithms on several data se-
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quences extracted from real images. Without the ground truth
it is hard to be precise, but the final aligned reconstructions
seem qualitatively accurate and in good agreement with the re-
sults obtained using synthetic data.

6 Discussion & Conclusions

Within the limitations of the factoriz-
ation paradigm, factorization-based projective reconstruction
seems quite successful. For points, the methods studied have
proved simple, stable, and surprisingly accurate. For lines the
situation is less clear: the methods work, but least-squares re-
finement often improves the results significantly. As with any
line reconstruction, there are always outliers, especially when
the cameras are collinear or coplanar.

Fixed-rank factorization works well, although (as might be
expected) SVD always produces slightly more accurate results.
The savings in run time over SVD probably only become sig-
nificant for quite large problems (say more than 40 images and
100 points), but in these cases they can become very substan-
tial.

This paper presents only the first few members of a large
family of reconstruction techniques, based on the recovery of
projective depths or scale factors. Future work will expand on
this. There are analogous factorization methods using higher
matching tensors, and also methods that reconstruct the pro-
jection matrices directly from matching tensors without factor-
ization (and hence do not require tokens to be tracked through
every image). All of these allow various trade-offs between re-
dundancy, computation and implementation effort. I am also
investigating numerical factorization methods that can handle
missing data and incremental updates gracefully, and alterna-
tives to Levenberg-Marquardt refinement (which I feel is not
well suited to nonlinear least-squares reconstruction).

Summary: Projective structure and motion can be recov-
ered from multiple perspective images of a scene consisting
of points and lines, by estimating fundamental matrices and
epipoles from the image data, using these to rescale the image
measurements, and then factorizing the resulting rescaled mea-
surement matrix using either SVD or a fast approximate factor-
ization algorithm.
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