This CVPR2014 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Beyond Comparing Image Pairs: Setwise Active Learning for Relative Aributes

Lucy Liang and Kristen Grauman
University of Texas at Austin

Abstract L - b
= j
It is useful to automatically compare images based on = '

Which is more open? vs. Order this set according to openness.

their visual properties—to predict which image is brighter
more feminine, more blurry, etc. However, comparative Figure 1. To learn relative attribute ranking functions, we propose
models are inherently more costly to train than their classi an efficient active selection criterion that asks annotators to par-
fication counterparts. Manually labeling all pairwise com- tially order a set of diverse yet informative images. Whereas a
parisons is intractable, so which pairs should a human su- Pairwise approach (left) gets just one bit of information, the set-
pervisor compare? We explore active learning strategies fo wise approach (right) amortizes annotator effort by getting (im-

training relative attribute ranking functions, with the @o plicitly) all mutual comparisons.

of requesting human comparisons only where they are most

informative. We introduce a novel criterion that requests a
partial ordering for a set of examples that minimizes the to-
tal rank margin in attribute space, subject to a visual diver

sity constraint. The setwise criterion helps amortizereffo . . . .
training a ranking function requires ground trutbmpar-

by identifying mutually informative comparisons, and the . that relat inst " th A
diversity requirement safeguards against requests a human>onsthat refate one instance to another (e.0., person A is

viewer will find ambiguous. We develop an efficient strategy §m|l|ngYmoret:§1n p?rson IB; |mggetx moretrelivanthan ti
to search for sets that meet this criterion. On three chajten |magtt=3 t'), andthus ?r t?|n y modest amounts of comparative
ing datasets and experiments with “live” online annotators annotations are avaliabie.

the proposed method outperforms both traditional passive oW to best collect comparative image labels is not
learning as well as existing active rank learning methods. Straightforward, in part due to immediate scaling issues. T
make the problem concrete, suppose we hig@00 im-

ages to label. At 1 cent per image on Mechanical Turk, it
would cost just $150 to label them all by category. In con-
trast, naively posting all pairs of comparisons on that same

each instance to a category, and there are many existing
category-labeled datasets and tools that make labeling effi
cient (e.g., ImageNet, Hollywood videos, etc.). In cortiras

1. Introduction

While vision research has long focused ocategoriz- data would cost over 1 million dollars! Besides, intuitiyel
ing visual entities (e.g., recognizing objects in images, or €xhaustive pairwise comparispns should not be necessary to
activities in video), there is increasing interestgom-  learn the concept, as some will be redundant.

paring them. For example, whereas the presence or ab- Our goal is to leverage human supervision only where
sence of an attribute in an image may not be clear-cut,it is needed most when training relative attributes, such as
whether one image exhibits the attribute more or less thanmore/less brightmore/less feminineetc. To this end, we
another may be more informative [27]. Similarly, while explore active learning for ranking functions. Active lear
a user doing image search may have difficulty declaring ing empowers the system to select those examples a human
certain images as entirely irrelevant, he may more easilyshould label in order to most expedite learning. While its
decide whether one image is more or less relevant thanuse for classification is fairly mature in both the learning
another [[18[ 311,_14]. Recent work continues to discover and vision communities, it is much less studied for ranking.
new benefits of representing comparative visual proper- Active rank learning presents three distinct technical
ties [19/32( 8, 21, 24, 17, 80, 2]. challenges. First, hard comparisons for the system can also
In such settings, methods to learn ranking functions are abe hard for a human labeler due to their visual similarity.
natural fit. However, their training requirements take us in ~ Second, restricting labeling tasks to solely paired compar
new territory, compared to familiar data collection. Train isons can be wasteful; the human labeler spends time inter-
ing a classifier requires ground trudtbelsthat hard-assign  preting the attributes in two images, yet the system gefs onl



one bit of information in return (that is, which image has the Collecting comparative image data Our active learning
property more than the other). Third, the quadratic number method asks annotators to order sets of images according
of possible comparisons poses a scalability challenge forto an attribute. At a high level, this relates to other inter-
any but the most simplistic criteria, since active selaettio faces requiring annotators to compare or contrast images.
typically entails scanning through all yet-unlabeled data  Researchers developing attribute lexicons ask humans to
select the optimal request. describe differences between sets of images to elicit plau-
sible attributes[[25, 28]. The “crowd kernel” method[32]

. . : L builds a similarity matrix from crowdsourced data, and se-
creasingly complex active selection criteria for learniog lects maximally i¥1formative triples of things for annoteto

rank. We start with a pairwise margin-based criterion for X . .
b g to compare. It yields a fixed, human-created matrix captur-

ranking functions that selects pairs with high uncertainty . . : . . .
g P 9 y ng some (possibly non-describable) notion of visual sim-

Then, we consider a setwise extension [37] that requests é|1arit and it does not generalize to new data. In contrast
partial order on multiple examples at once. Finally, we in- Y, 9 . '

troduce a novel setwise criterion that both amortizes humanWe actively select comparisons on a describable property, s

perceptual effort and promotes diversity among selected im as t_o efficiently 'e"?“” a predic_tive function that can estena
ages, thereby avoiding uninformative comparisons that may"jlttrlbute strength in any new image.

be too close for even humans to reliably distinguish. See
Figure[d. In particular, our formulation seeks a set of ex-
amples that minimizes the mutual rank margin in attribute
space, subject to a visual diversity constraint in the ogbi
image feature space. We show how to efficiently search for
batches that meet this criterion.

In light of these challenges, we explore a series of in-

Active learning for recognition and retrieval Active
learning for recognition helps train a classifier with fewer
labeled images (e.gl, [116,135,138]), and can also incorpo-
rate attributes[[3, 18,12]. In image retrieval, active learn
ing can identify images that should receive binary releganc
feedback to reduce uncertainty [83] 29]. All of these meth-
We apply the methods to three challenging datasets. Weods request labels from users; none actively request visual
demonstrate that with an active approach, a system can leareomparisons. As discussed above, the challenges in active
accurate relative attribute models with less human supervi ranker learning are distinct from active classifier leagnin
sion. This in itself is a contribution, as no prior work ex- and much less studied.
amines active training of comparative visual models. Fur-
thermore, we show that the proposed setwise strategy conDiversity in active learning The need to inject “diver-
sistently outperforms the existing strategies, suppgiar sity” into active label selection criteria has been consde
main novel technical contribution. We run results both in in classification work[[4..36.29], to help ensure all parts of
the standard offline setting, as well as in a “live” setting, the feature space are explored. We propose a novel diversity
where our approach pushes its active requests to Mechanbias for activeranklearning. In contrast to prior work, here
ical Turk workers and iteratively updates its model. The diversity also serves to avoid focusing only on comparisons
practical impact is significant: we reduce annotation costs that would be ambiguous to a human viewer.

by 39% compared to the status quo passive approach. ) _
Learning to rank The learning to rank problem has re-

ceived much attention in the information retrieval and ma-
2 Related Work chine learning communities (e.gl. [6.115,[7] 22]). Many
methods take a pairwise approach, in which constraints
on a learning objective require satisfying comparisons for
pairs of examples [6, 15]. Alternatively, a listwise ap-
proach defines a loss function in terms of ordered lists of
instances[[[7]. We use a pairwise objective for training, and
resents how images compare along some property (e_g_,map senNi§e supervision into pairwise constraints. Most
smoothey less boxy, and can be trained in a “learning rank_ Iegrnmg work addre_sses document_retrleval, though
to rank’ framework [27[ B 21]. Given a model for rela- applications to image retrieval are emergihg! [13, 31, 14].

tive visual properties, new tasks become possible. In ob-" either case, their goql is_to_ raljk ex.a.mples rellev_ant toa
ject recognition, category models can be trained with fewer user most highly, Wh'Ch is similar in spirit to cIassﬁymtl;. a
examples (“He looks like Joe, behubbier’), via trans- relevant dgta gonfldently. In contrast, we want to a}ctlvely
fer [27] or semi-supervised learning [30]. In image search, learn relative visual propgrtlgs, and the 90‘?" Is to germral .
relevance feedback can explicitly refer to properties impo to compare any novel palr._L|ke rank I_earnlng, some metric
tant to a user (“These shoes &ess formalthan the ones | leaming methods_use relative comparisons fgr trairiing [12
want”) [L7]. Whereas all prior work uses passive learning and could potentially also bengflt from our ideas to_focus
to train attribute models, we propose to actively learn them human effort on useful comparisons. However, metrics are

Relative attributes Attributes are human-understandable
properties reflecting texturesgotted, geometric proper-
ties (oxy), or parts has-leg$ [11],[20,[10]. By relaxing
attributes to take on ordinal values, a relative attribefe r



less suited for attributes than rankers, since they can only
report distances, not more/less decisions.

Active learning to rank Only a few prior methods exist

for active rank learning, and none have been applied to vi-
sual data to our knowledge. Margin-based selection caiteri
seek pairs of instances whose estimated ranks are nearest
under the current modell[5, B7], while others seek exam-
ples expected to most influence the ranking function [9] or Figure 2. Here, two candidate vectous, andw- rank four points.
minimize expected los§ [23]. We explore the suitability of w1 iS the better candidate according to EQh[21[15], because it
margin-based criteria for attribute training, and we pEO yields the largest rank margin for the closest-ranked training pair.
a new formulation that accounts for diversity.

Rank margin for w, Rank margin for w,

solution is [15[217]:
3. Approach

. 1

We use active learning to efficiently gather comparative ~ M'NMIz€ <2||w|3 +C (Z &+ 73]’)) @
labeled data to train visual attribute models. We first de- T .
scribe the “learning to rank” approach we use to build the st w (@ —@5) 2 1= &390, ) € O
relative attribute models (Sec. B.1). Then we overview the lw” (i — x5)| < 7ij;V(i,5) € S
three active strategies we explore ($ecl 3.2). The firggeli i > 05735 > 0,
on a margin criterion to select pairs of images (§ec. B.2.1).
The second reasons about mutual margins between a set ofhere the constan’ balances the regularizer and con-
images (Se€_3.2.2). For the third, we propose a setwise cri-straints. The learning objective is similar to the SVM clas-

terion that promotes feature space exploration (Sec)3.2.3 sification problem, but on paired difference vectors. Basi-
cally, it aims to find the vectaw € R that will project data

3.1. Learning to rank visual attributes in such a way that 1) the orderings specified in the training
set are satisfied, and 2) the margin between the nearest pro-
jected training points ii® is maximal. See Figuid 2.

We can apply the learned ranking function to compare
new image pairs. Specifically, it”z, > w’z,, we pre-
dict that imagep has the attribute more strongly than image
q. Note that a relative attribute predictor provides a 1D or-
dering of the image data; we will exploit this structure be-
low when searching for sets of useful examples to compare.

Relative attributes, originally introduced in_[27], com-
pare images in terms of how strongly they exhibit a name-
able visual property. Whereas categorical attributes use
classifiers trained with labeled images, relative attabut
use ranking functions trained with comparative labels.

Training objective We use a large-margin approachl[15,
[27] to model relative attributes, and briefly review it next.
Given an attribute of interest (e.duyzzinesp the method  Soliciting partial orders ~ While the learning objective is
trains a ranking function- that will prEdiCt the relative expressed in terms of pair@’ and.S can be deduced from
strength of that attribute in an image. To leanit uses  anypartial orderingof the imaged in the training data with

1) a set of training images = {i}, each of which is de-  respect to attribute strength. To test our active setwise ap
scribed by some image features € R, together with 2)  proach, we develop an intuitive interface to facilitatetjar

two sets of human-provided visual comparisons on thosegrder requests on sets of images (where two or more images
images. The first seb = {(i, j)} consists of ordered pairs  may be marked as equally strong). Rather than ask the an-
of images for which the first imagehas the attribute more  notator to assign a number to each image indicating its rank
than the second image The second sef = {(i,j)} con-  order, which can be tedious, we present a visual cascade.
sists of unordered pairs for which both images have the at-rirst, the user is shown all images in the set. Then, he must
tribute to a similar extent. The ranking function takes the select all those that show the specified attribute most. The

fornf] interface removes those image(s), then repeats the process
r(x) = wla. 1) with the remaining ones, until all images are accounted for.
) ) ) See Figur€l3 (best on pdf).
Ideally, it should satisfy the maximum number of CON- N qte that this cascaded interface obtains the exact same

straints specified by the training comparisons. That is
V(i,j) € O : wle; > wlz;, andv(i,j) € S : wla; =
wTz;. While this is an NP hard problem, an approximate

" information as depicted in Figule 1 (right) using only mouse
clicks. We find this is a relatively foolproof way to gather
ordering information on multiple images, which is impor-
tant when we do our live experiments with non-expert
MTurk workers.

1The method is also kernelizable for non-linear ranking fiomst.
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Focusing on either extreme—Ilow or high rank margins—can
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Figure 3. Our cascade user interface for requesting partial orders.
After aggregation, we disregard the temporary numeri-
cal ranks, turning the (now more robust) orders back into
Aggregating annotator comparisons A strength of comparative judgments.
training with relative comparisons, as opposed to absolute . .
ranks, is that annotators tend to be more consistent. For exS-2. Active learning to rank

ample, deciding if imagéis brighter than imagej is often We follow a pool-based active learning strategy to train

easier than quantifying its absoluteightness Nonethe-  relative attribute rankers. At each iteration, the systemstm

Iess, some attributes may have different connotations toexamine a pooVD of unlabeled images and predict what

different observers, and some are less careful than othersgomparison will most benefit its current ranking functions.

Therefore, when our learning methods request new compar-fter it makes a selection, the comparison is posed to anno-

isons, we need to build in some resiliency to noisy annotator tators, and their (aggregated) comparisons are used to aug-

responses. ment the training set® andS. Then, the learned attribute
To this end, we use a simple but effective aggregation rankers are retrained, and the process repeats.

procedure. It accounts for the annotators’ labels as well as  |n the following, we explain a series of three increasingly

their stated confidences. When giving an ordering, the an-complex active selection criteria that we investigate for a

notator rates it as “very obvious”, “somewhat obvious”, or tive relative attribute learning.

“subtle”. We first assign a numerical rank to each image

in th.e comparisoE. For a pai_r(a:h:cj) where the annota- 321  Pajrwise margin criterion

tor finds imagei has the attribute more than imagewe

assign rankg and1, respectively. If the annotator says  Intuitively, the large margin criterion in Eqil 2 prefersieo

andj are equal in the attribute, we assign ramksto both fident orderings, in that it favors projections that keep the

i andj. (The scale of these constants is unimportant; they closest pair of training instances as far away as possible.

are just for aggregation.) Then, for each training image, we Accordingly, a natural active selection criterion is toriele

take a weighted average of the numerical ranks across alfify unlabeled pairs of images for which the rank margin is

annotators, where the weight reflects annotator confidencelowest. That is, the best pair to compare is:

Specific_ally, we attribute twice th_e weight to “very obvibu_s (i*,*) = argmin [wTz; — wijL 3)

comparisons as “somewhat obvious” ones, and three times ijEP

the weight as “subtle” ones. . .
We take three further steps to eliminate outliers and im- where denotes the set of unlabeled images, ant the

prove robustness. First, if all annotators designate a Com_relative attribute ranking function trained with all date: a
parison “subtle” We rer’nove it as unreliable data. In the quired so far. See Figufé 5(a). This criterion is analogous

) o .~ to the well known “simple margin” criterion for SVM clas-
case of a partial order, we additionally gauge how consis- _... .
) . . sifiers [34], which requests labels on examples close to the
tent each annotator’s numerical ranks are with the other an-

o ) . decision hyperplane. For ranking, the margin is instead the
notators. Specifically, we use Kendal'srank correlation .
. ) distance between ranks. And, rather than request a label for
coefficient to compare each annotator’s ranks to the aver-_ . . .
. L a single instance, the learner requestomparisonfor a
age of all other annotators; if < 0.7, we eliminate the

air of instances.
annotator. We update the aggregated scores after any sucﬁ

. . . The low margin selection criterion is sensible and can
removals. Finally, we apply mean shift clustering on the 1D L ; . .
) be effective in practice, but it has two potential weakngsse
rank scores to cluster those that are relatively close. &hos

. 2 : . First, it may select examples that are not only hard to dis-

that belong to the same cluster will form a similar pair. This . " )
. . tinguish for the machine, but also the human annotator. As
accounts for fluctuations caused by uncertainty among an- . : ]
notators a result, some low margin pairs can be wasted requests: hu-

man labelers either disagree on the correct ordering or sim-
2For clarity, we describe it for pairs, but it generalizes #atjal orders. ply label them as “equal”, which will have little impact on




the learning objective. Reversing the criterion to request Image feature space f\ Attribute space
comparisons oiigh margin pairs would ensure more dis- 7 (e, openness)
tinct images, but is prone to uninformative requests, since 7(:8;30];;:" i

distant examples are often already captured by the ranker .

learned with minimal labeled pairs. See Figllre 4. The sec-
ond weakness is its restriction to requesting sopelywise
comparisons. The human labeler spends time interpreting
the images’ attributes, whose visual differences may be sub
tle. Yet, then the system gets only one bit of information in
return—namely, which image exhibits the attribute more.
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3.2.2 Setwise margin criterion Figure 5. Overview of all three selection criteria. The rank func-

) ) ) tion r projects the high-dimensional image descriptors to a 1D or-
In light of the latter shortcoming, we next consider tes- dering that preserves the training attribute comparisons. (a) The

wise margin criterion proposed in_[87]. It selects a set of pairwise low margin active selection method requests labels for
examples whose mutual margin distances are low. Specifi-those pairs with minimal rank margins. (b) The setwise low mar-

cally, the best sef* is: gin method generalizes that to select a set of instances whose mu-
tual rank margins are low. (c) The proposed diverse setwise low
S* = argmin Z |'wTa:Z- — waj|’ 4) margin further accounts for the diversity of the selectedrseh- _
SCP (if)eS age spaceHere, we see that the chosen set (dashed black ellipse)

has not only low mutual rank margins, but is also composed of

where|S| = k is a parameter to the algorithm. The selected diverse examples spanning tF(’emeans clusters in image feature
set should be useful, in that all respective pairs withiméta ~ SPace (bottom left). Best viewed in color.
currently ambiguous to the learned ranking function (i.e.,

close in rank). See _Figuﬁ 5(b). ~ required teexplicitly compare 6 independent pairs (4 choose
To efficiently optimize Ed. 1, the authors 6f[37] exploit * 2) is about 3 times what is required to do the full ordering
the 1D ordering induced by the ranking function. First, all 45 4 (whichimplicitly relates all 6 pairs). Thus, the setwise

unlabeled instances in; € 7> are sorted by their rank val-  sejection and partial order interface stand to give us more
uesr(x;) using the current model. Then, the cumulative \5)ye for annotator effort.

margin of each contiguous setloorted items is evaluated
in succession. That is, we start Wlth a set of kh@w_est 3.2.3 Diverse setwise margin criterion
ranked instances, and record their summed pairwise mar-
gin distances. Then, we repeatedly shift the lowest rankedWhile the setwise criterion amortizes annotator effort more
instance out of the set and replace it with the next higher effectively than requesting a series of individual pairstill
ranked instance not already in the set. At the same time, wecan suffer from the ambiguity issue described above. By
incrementally compute the current set’'s cumulative margin definition, the mutually close set of examples may be hard
by subtracting and adding the paired margins for the lowestfor a human annotator to compare relatively.
and highest instance, respectively. The operation regjuire  Thus we introduce a new approach calleddherse set-
only O(|P|) time. wise low margin(DSLM) criterion. Our goal is to select
Since this criterion chooses a set rather than a pair, wethe image examples that minimize the setwise margin, sub-
ask an annotator to provide a partial ordering. For com- ject to a visual diversity constraint. To capture diversitg
parative annotation tasks, requesting partial orders @ilsm first cluster all the image descriptats (e.g., GIST, color)
sets is appealing because it will amortize effort in examin- in P. This establishes the primary modes among the unla-
ing the images. We will get substantial supervision from a beled examples. Lef; denote the cluster to which image
partial order ofi items—implicitly, allk-choose-2 compar-  belongs. Our selection objective is:
isons are revealed—yet, with small enough batchés tife

mental load on the annotator remains modest. S* = argmin Z jw@; —w'ay), ()
To be concrete, we found that across all three datasets SEP (ij)es
in our tests, the average time an annotator takes to compare st ¢ # ¢, Vi # 7,

two pairs is nearly identical to the time he takes to fully
order a set ok = 4 examples, namely, 3.72for the 4-set, where againS| = k is given. In other words, the most
and 3.57s for two pairs. Moreover, the time that would be useful set is the one that has difficult examples that aren’t



“too” difficult—they must each come from a different clus- Most open > Least open

ter. This balancesxploitingthe margin uncertainty with g E Sl ﬁ .
o J y s e B 2 G

exploringthe feature space. See Figlite 5(c).

Most smilini Least smilin
To form the clusters, we us&’-means. The number u ij u'ﬁ téj |- 'a.g - E .g
of clusters will affect the selection in a predictable way. S & = :
Small K values will emphasize diversity, permitting more Most formal Least forml

high margin pairs (e.g., in the extreme Af = 1, no pairs ‘\é k %‘g l - Wy F L =
would be diverse enough). Big values will emphasize un- _ _ _
Certalnty’ permlttlng examples |n the set that are relmlve Flgure 6. Examp|e attl’lbute Spectra from OSR, PUbF|g, and Shoes

close. We discuss setting in Sec[.

To optimize Eqnlb, we propose a search strategy thatreqyires 243;; DSLM requires only 0.015 yet produces
builds on the technique outlined above. The idea is as fol- {he same selection.

lows. Only a strictly rank-contiguous set will minimize the
total margin; yet there may not be a rank-contiguous set for4 Results
which diversity holds. Thus, we scan contiguous sets in se-

quence, always maintaining the current best margin Score_ExperimentaI s_e_tup We use 3 publig datasets: Out_door
If our current best is not diverse, we perturb it using thetnex SC€Ne Recognition (OSR) [26], PubFig Faces [19] with at-

nearest sample until it is. The key to efficiency is to exploit (fiPutes from [27], and ShoesI[1] with attributes from [17].

the 1D ordering inherent in attribute ranks, even though theThey have 2’683’ 72, ancrj‘ 1f4’658 im?gefs, respgctively,
clusters are in the high-dimensional descriptor space. and 6 to 11 attributes each, for a total of 27 attributes.

" . . See [1/26[19, 17] for more details. For the features
More .specmcally, Wenstsarkal unIabe[ed Images by we concatenate GIST and LAB color histograms, following
their attribute rank values. Then we start with a candidate

o . rior work .
batch consisting of thé lowest ranked instances 11, and P We comlzile the 3 active learners defined in Bkc. 3 with
record its summed pairwise margin distances as the current3 baselinesp' 1passive which selects &-set at randorﬁ as
bes_t. Then,_we begin shifting th_e batch’s members as de-in 271 2) diverse only, which selects samples based on
scribed previously. At each shift, if the current bafglloes the same diversity constraint as DSLM, but ignores mar-
not reduce the current lowest pairwise margin found so far,gins_ and 3)wide margin, which choosés pairs with the
we disregard 't'. If it dpesand is also diversed; # cj).’ .. widest margins. These baselines help us identify whether
then we hold this solution as the current best, along with its

o ) . . differences in learning curves are due to margin, diversit
pairwise margin value. IB reduces the best margin but is g 9 srstty

. . : or both.
not diverse, we call a subroutine that adjusts the batch mem- The diversity-based methods ue= 10 clusters in all

bers so as to ensure diversity. This subroutine is based on
B R - . . results. We chose the value to roughly correspond to the
a “worst offender” criterion. Specifically, we identify any

) . . number of object categories present in the datasets, which
instances inB belonging to the same cluster, and of those, . . . . oo

. S ~~ "' gives a coarse estimate of the data diversity. Prelimirrary t
pick the one whose total margin distance to the remaining als Show accuracy is not very sensitive to neakbvalues
instances is largest. We remove that offender filBpand Y y y '

replace it with the next instance n that has a higher rank indicating this is & good. prior. See Supp File. . .
: . . To evaluate the quality of the learned ranking functions
than the highest ranked item alreadyfn We iterate be- ; . .
. L on the test set, we use Kendalf's At each active learning
tween 1) checking for a set that reduces the objective func-

. : . : iteration, all methods select a setio&= 4 images for anno-
tion, and 2) replacing offenders, until we find a batch that __. o .

. : ation. For the pairwise methods, we take the top 2 pairs ac-
improves the best seen so far, or until we exceed the bes

margin value. See Supp File for pseudo-code. cording to their selection criterion. Recall that givinga

- o ) ) tial order on 4 images requires the same time as comparing 2
By exploiting the 1D ordering inherent in attribute ranks, independent pairs, meaning the pairwise and setwise meth-

we can incrementally adjust candidate batches, and so the s incur equal human effort per iteration (cf. S6¢.3.2.2).

core loop run-time is linear ifP|. If the subroutine is  \ye stressthe costs per iteration are equalized for all meth-
called to improve diversity for the contiguous set located a ods so the learning curves below reflect accuracy vs. cost

rankn, we have to (in the worst case) examine B¢ — n (i.e., human annotation time iterations).
items with higher ranks, making the search bounded by

O(|P|?) time. In practice, however, the subroutine is rare Offline results First we perform experiments in a “sand-

and/or brief enough, that we observe run-times less thanbox” offline, meaning we already have the true compara-
18% slower than the linear time scan (0.108. 0.128s on tive labels, and we reveal them to the active learners when
average, foftP| = 14,000 images andl = 990). In com- requested. Using publicly available human-generated pair
parison, if we attempt exhaustive search (With = 50), it wise ground truth and confidencés[[17] 27], we apply our
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rank aggregation procedure, and train one ranking functionfreely (literally!), this is exactly the real-world scef@ar\We

per attribute. We apply the learned functions to all datasetuse the interface in Figufé 3 to collect the requested partia

images, yielding ranks for each attribute. We set theseeasid orders on Mechanical Turk. We get each request done by 5
as the target ranks. Figurk 6 shows example spectra for onevorkers and take the majority vote for the label more/less.

attribute per dataset. After the jobs come back, the methods update their rank-

For each dataset, we set aside 40 random images as a te#ftg functions, and then repeat. Due to expense, we run for
set, 4 seed training images per attribute, and an unlabeledewer total iterations than the offline results. Otherwike,
pool of 120 images. We run all 6 selection methods for 25 setup is as described above.
iteration, each time revealing the target comparisons on Figure[7(b) shows the results averaged over all attributes
the selected images to the learner so it can update ii¢e per dataset. The outcomes are very much in line with the of-
conduct the entire process 20 times with random splits. fline results, only our advantage compared to the baselines

Figurg7(a) shows the results. We display learning curvesis noticeablystronger Across all attributes, our method re-
for all methods, averaged across all attributes per datasetquires 39% fewer annotations to attain the same accuracy
with standard error for the 20 trials. (See Supp File for per- reached by the passive learner in the last iteration. This
attribute plots.) For clarity, all plots start at the 3rd-@ton, is a very encouraging result that demonstrates the practi-
since the methods are very similar in accuracy when theycal impact of our idea. The absolutevalues are lower
have only a few seed labeled sets. High and steep curvesor live than for offline. This may be due to the MTurkers’
are best, since that means the concept is accurately learnedisagreement on attributes’ precise meaning, causing labe
with less human effort. inconsistencies. In fact, in the live setting, there may not

The active learners consistently outperform passive exist a single function that can accommodate all annotated
learning. This constitutes an advance for the state-of-the comparisons, whereas in the offline tests, a consistenaglob
art, since all prior relative attribute work trains the mbde ranker defines the target ground truth.
with passive learnind [27) 8, 21,117, 2]. Diverse-only does  Figure[8 shows an example illustrating why the margin-
as well as or better than passive for most attributes, high-based learners are at a disadvantage. Looking at samples
lighting the role diversity can play in active learning. All selected in the 2nd iteration, we see that images that are
learners outperform the wide margin baseline, showing thattoo similar-looking may be causing MTurkers difficulty. In
naive pairwise diversity is inadequate. comparison, our diversity-based method fares well.

Across the board, the proposed DSLM outperforms all | ooking at individual attributes where the margin be-
other methods. It is stronger for 17 of the 27 attributes, and tween active and passive is smallest, we find that an at-
similar to some other active variant for all others (see $upp tribute with an ambiguous definition can cause problems.
It outperforms the existing setwise low margin mettod [37], For example, fotbright-in-color, some people see a shoe
showing the our proposed diversity formulation is critical as brighter if colors are more vibrant (red, yellow); others
for best results. It is also better than the diverse-onlgbas see a shoe as brighter if it is shinier and glossy, regardless
line, showing the need to balance exploration with margin of the actual color (e.g., ranking a black shiny shoe higher
uncertainty. than a red matte shoe). See Figre 9, top. This can impede

active learning’s impact, since a viable model is needed to
Live results Next we run the active learners in a more (g reasonable exploitation.

challenging “live” experiment. In this case, we letthe meth  Apother case where the active methods have less advan-
ods select comparisons on data for which we have no annotage is when an attribute is localized. Since our descsptor

tations. While the offline tests let us run all methods more are global, this makes it difficult to isolate the relevara-sp

3Since Shoes has less ground truth data, we restrict itseest 80 tial_region_With few training examples, leading to W?aker
images and the number of iterations to 22. active choices at the onset. For example, the PubFidr




Diverse-Setwise-
LowMargin

Setwise-
LowMargin

[1]
Figure 8. Images selected by the two setwise active learners when 2]
learningdiagonal plane Boxes denote ambiguous pairs. Our di- .
verse setwise method produces sets that are both informative to the
system and easy for humans to compare. [4]
[5]

[6]
[71
[8]
[9]
[10]

More bright-in-color
More colorful ?

Less bright-in-color
More shiny?

[11]
[12]

. - . . [13]
Figure 9. Difficult attributesTop: Images sorted according to the

learned attributdright in color. When annotators disagree about
an attribute meaning, active learning tends to have less advantageus)
Bottom: Global descriptors cause ambiguity for diversity-based (16]
active learners when the attribute is localized. While B and C have
the same face, they have different degreesrofling While A
and B have dissimilar faces, they have the same degremithg
(Red boxes for emphasis, but not available to the methods.)

[14]

[17]
(18]
[19]

ing attribute depends largely on the mouth region. Yet GIST 2%
and color histograms will not easily expose that region [21]
(GIST’s spatial bins need not align with the mouth). The [y
diversity-based learners can suffer especially from dloba [23]
descriptors, since they will tend to prefer globally differ [24]
ent instances while missing the finer detail. For example, [,
they may choose faces from different individuals, though 2]
not necessarily faces with mouths that look different. See

Figure[9, bottom. Localized features more tailored to the [

. . . . [28
attribute semantics may be interesting to explore. 29

[30]
]

5. Conclusion

This work takes a close look at active learning for rel- (31
ative attributes. We introduced a novel diverse-setwise se 2
lection strategy to account for the shortcomings of exgstin  [33]
methods. Our results show the promise in focusing humans,,
attention on comparisons that are useful for discrimiredyiv
trained ranking functions. The live online experiments in
particular strongly support the proposed method as a mean$§*®!
to gather partial orders on images. We improve over not [37]
only the status quo for attribute learning (passive), bsi al
prior active learning to rank formulations. In future work,
we plan to investigate ways to account for attribute retatio
ships and localized attributes during active learning.

[35]

[38]
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