
Learning Hypergraph-regularized Attribute Predictors

Sheng Huang† Mohamed Elhoseiny‡ Ahmed Elgammal‡ Dan Yang†,∗
†Chongqing University, P.R.China ‡Rutgers University, USA

{huangsheng,dyang}@cqu.edu.cn {mhe19,elgammal}@cs.rutgers.edu

Abstract

We present a novel attribute learning framework named
Hypergraph-based Attribute Predictor (HAP). In HAP, a hy-
pergraph is leveraged to depict the attribute relations in the
data. Then the attribute prediction problem is casted as a
regularized hypergraph cut problem in which HAP jointly
learns a collection of attribute projections from the feature
space to a hypergraph embedding space aligned with the
attribute space. The learned projections directly act as at-
tribute classifiers (linear and kernelized). This formulation
leads to a very efficient approach. By considering our model
as a multi-graph cut task, our framework can flexibly in-
corporate other available information, in particular class
label. We apply our approach to attribute prediction, Zero-
shot and N -shot learning tasks. The results on AWA, USAA
and CUB databases demonstrate the value of our methods
in comparison with the state-of-the-art approaches.

1. Introduction
Attribute learning aims at achieving an intermediate rep-

resentation on top of the low-level visual feature space,
which encodes semantic properties shared across different
categories of objects or scenes. Such an intermediate repre-
sentation plays a role as the vehicles of semantics in human-
machine communication. Farhadi et al. [8] and Lampert et
al. [18] showed that supervised attributes can be transferred
across object categories, allowing description and naming
of objects from categories not seen during training. There-
fore, attributes provide a way to encode and share knowl-
edge to achieve challenging tasks such as the Zero-Shot
Learning (ZST) problem, where the goal is to categorize
classes that are unseen during training [18, 17].

A lot of approaches have been proposed for attribute
learning, e.g. [18, 8, 27, 21, 1, 14, 10, 20]. Two funda-
mental issues remain unsolved, although recent researches
have started to pay attention to them e.g. [1, 14, 10]. First,
traditional approaches learn attributes independently from
each other (one-vs-all classifiers) [18, 8], without explic-
itly exploiting the correlation between attributes. Second,

Figure 1. The visualization of the hypergraph cut for predicting the
attribute ”water”. Each ellipse with solid lines denotes a hyper-
edge that encodes an attribute relation and each circle represents a
sample.

learning attribute classifiers are typically done independent
of the subsequent tasks, such as categorization or zero shot
learning, and typically category labels are ignored in the
learning process. Optimizing the attribute prediction inde-
pendent of the succeeding task does not guarantee to yield
the best attribute predictor for that task.

Correlations naturally exist among attributes. Is it bet-
ter to exploit the correlation or to discourage the correlation
during attribute learning, i.e. decorrelation? Several papers
have argued that exploiting correlation between attributes
improves their discriminative powers, e.g. [31, 28]. Recent
works attempted to address the issue of joint attribute learn-
ing with a focus on decorrelating attributes [1, 14]. Jayara-
man et al. [14] argued that attribute learning approaches
are prone to learn visual features that correlates with at-
tributes, not attributes themselves. Therefore they argued
for decorrelation of attributes, by exploiting feature compe-
tition during learning through a multitask learning frame-
work. Decorrelation of attributes might be suitable in tasks
such as describing images with text, key-word based re-
trieval, or generating image annotations. However, pre-
serving and exploiting correlation between attributes should

1

ar
X

iv
:1

50
3.

05
78

2v
1

 [
cs

.C
V

]
 1

9
M

ar
 2

01
5

preserve the natural clustering in the data and should be bet-
ter for classification and zero-shot learning tasks. Correla-
tion is a nature of attributes and compulsively decorrelating
the attributes may break the original relations of attributes
in the visual space as well as in the semantic space.

To illustrate our point we use the example in Figure 1
where we used attributes from the AWA dataset [18]. Con-
sider learning the attribute “water”. In the figure, there
are two clusters denoted as two superclasses (terrestrial and
aquatic animals). It is expected that the attributes in each
cluster will be highly correlated and coexist in images. The
conventional classifiers directly learn an optimal separation
for the attribute “water” which clearly ignores the correla-
tions as well as the natural clusters in the data. Although it
achieves the optimal attribute prediction, it clearly reduces
the utility of attribute predictors in subsequent tasks such
as categorization, and is much easier to get mired in overfit-
ting. Instead we aim at a cut that, besides minimizing the at-
tribute prediction loss, tries to preserve the clustering in the
data. Preserving the correlation can be even more beneficial
for attributes that are not visual. For example the attribute
“swim” describes an action and it is very hard to predict it
from visual features if it is forced to be decorrelated from
other attributes such as “water”.

Our goal is to design a new attribute learning frame-
work that addresses the two aforementioned issues, i.e.
jointly learning attributes while exploiting the correlation
between attributes, and exploiting class information as well
as any available side information. We propose to model
the attribute learning as a supervised hypergraph cut prob-
lem. As a generalization of graphs, hypergraphs are typ-
ically used to depict the high-order and multiple relations
of data [35, 5, 15, 29]. One merit of hypergraph is that
it can capture the correlations of multiple relations, since
the partition of a vertex set who has many common hyper-
edges will lead to a heavy penalty [29]. In our formulation,
we define a hypergraph where each vertex corresponds to a
sample and a hyperedge is a vertex set sharing the same at-
tribute label. Then, we can consider the attribute prediction
problem as a hypergraph cut problem. More specifically,
a collection of hypergraph cuts (one cut per attribute) that
minimizes the loss of attribute relations (defined by the hy-
peredges) is jointly learned. Moreover, such cuts also min-
imize the attribute prediction errors of training data. Since
hypergraph cuts can be deemed as the hypergraph embed-
ding from the perspective of graph embedding [26, 3, 32],
this step actually tries to align the embedding space, which
encodes the attribute relations, with the semantic attribute
space. We also propose attribute predictors (or classifiers)
that can be obtained by introducing a mapping from the fea-
ture space to this aligned hypergraph embedding space. We
name this approach Hypergraph-based Attribute Predictor
(HAP), which can be combined with different hypergraph

Figure 2. The overview of our approach, we learn a collection of
the mappings (projections) from the feature space to the hyper-
graph embedding space which is aligned by the attribute space and
encode the attribute relations. The learned projections span the At-
tribute Prediction Space (APS) in which each basis is an attribute
predictor. The attribute prediction of a sample can be achieved by
projection it to the APS and then the attribute-based categorization
can be performed.

models to obtain classifiers from the cuts. We illustrate our
model in Figure 2.

In order to incorporate class information and any ad-
ditional side information within the HAP formulation, we
consider it as a multi-graph cut problem. One or several
additional graphs (or hypergraphs), which encode side in-
formation, will be introduced as the penalties to the HAP.
In that case, the new cuts should not only minimize the
loss of attribute relations, but also the losses of the side
information. In case of class labels, we formulate a new
HAP framework, denoted as Class-Specific HAP (CSHAP),
which enhances the discriminating ability of the attribute
predictors. A hypergraph and a graph, which encode the
class information in two different ways, are respectively
leveraged to produce two different versions of the CSHAP
approaches. We denote them Hypergraph-based CSHAP
(CSHAPH) and Graph-based CSHAP (CSHAPG) respec-
tively. Finally, all the proposed approaches are kernelized
to incorporate the nonlinearity.

We summarize the contributions of this paper as follows:

1. As far as we know, our approach is the first to formu-
late attribute learning as a supervised hypergraph cut
problem.

2. We propose an approach to construct predictors (linear
and nonlinear classifier) jointly while solving for the
cuts. This idea is applicable in general (not limited
to the context of attribute learning) to any hypergraph
cut algorithm, as a general path to derive the classifiers
from graph model.

3. We provide a flexible solution to incorporate the side

information in attribute learning.
4. The proposed approach provides efficient attribute pre-

dictions, since the computational complexity of the at-
tribute prediction is linear with respect to the dimen-
sion of feature.

We experimented with three datasets: Animal With At-
tributes (AWA) [18], Caltech-UCSD Birds (CUB) [30] and
Unstructured Social Activity Attribute (USAA) [10]. The
results on attribute prediction, Zero-shot, N-shot Learning,
and categorization consistently validate the effectiveness of
the proposed framework. The rest of paper is organized as
follows: Section 2 presents the related works; Section 3 de-
scribes the proposed approach. Section 4 shows the exper-
imental evaluation of our works; the conclusion is summa-
rized in Section 5.

2. Related Works
2.1. Attributes

Traditional attribute learning approaches follow a su-
pervised discriminative learning pipeline (one-vs-all clas-
sifiers) where attribute classifiers are learned independently
given attribute labels for each image or each class [8, 18].
Recently several papers suggested approaches for joint
learning of attributes [19, 31, 1, 14]. Wang et al. [31]
and Song et al. [28] construct a graph of attributes in at-
tribute domain from the training data and consider it as the
latent variables in the latent SVM for categorization, and
they showed that exploiting attribute relations helps im-
prove class prediction. In contrast our hypergraph is con-
structed on the samples, which facilitates aligning the fea-
ture space with the attribute semantic space.

Mahajan et al. [19] proposed a joint learning framework
that removes the correlations as the redundancies during
learning the mapping between attributes and classes which
actually ignores the contributions of the co-occurrence at-
tributes. Akata et al. [1] proposed an approach that simul-
taneously target three problems: optimizing attribute pre-
diction using class labels, using side information, and in-
cremental learning. They achieved decorrelation by using
dimensionality reduction on the class-attribute matrix, i.e.
in the label space, and showed that the attribute dimen-
sions can be reduced significantly without affecting the ac-
curacy. In contrast our hypergraph construction achieve cor-
relation/decorrelation by employing the sample-attribute re-
lations and embeding the data samples in a space that is
aligned with the attribute labels. Recently, Jayaraman et
al. [14] attempted to decorrelate the attributes via solving a
structure sparsity model in which semantic attribute groups
are manually provided as auxiliary data.

Attribute learning is just the preliminary step for some
other visual tasks. Few approaches have been proposed to
incorporate the additional information, in particular class
labels into attribute learning for benefiting the subsequent

tasks [8, 1, 31, 4, 33]. However, the attribute learning and
the exploitation of the additional information are highly
coupled in these approaches. It is very hard to add novel ad-
ditional information into the model, or unplug the additional
information exploitation part from the original models when
the additional information of the given data is not available.
In contrast, our proposed method can flexibly to address this
issue by considering the attribute prediction task as multi-
graph (hypergraph) cut problem, enabling adding any side
information as an extra graph or hypergraph.

Zero-Shot Learning (ZSL) is the task of object recogni-
tion for categories with no training examples [18]. Several
intermediate representations has been used for ZSL, includ-
ing attributes [18, 8, 17, 1], linguistic knowledge [9, 23],
textual description [7] and visual abstraction [2]. The core
attribute-based ZSL approaches are the attribute learning.
Therefore our attribute prediction can be integrated to sev-
eral ZSL frameworks. Although our work is an attribute-
based ZSL, other intermediate representation can also be
readily plugged into the HAP framework to replace the at-
tributes, since it generally provides a mapping from the low-
level representation to intermediate representation. Sev-
eral ZSL approaches can be extended to N-Shot Learn-
ing [34, 1, 9, 25].

2.2. Hypergraph Learning
Hypergraph is a generalization of the regular graph

which has been widely applied to depict the high-order rela-
tions between data points [35, 5, 15, 29]. Since the attribute
prediction task can be regarded as a multi-label classifica-
tion problem, we will introduce not only the relevant hyper-
graph model, but also some hypergraph-based multi-label
classification algorithms, which motivated our work. More
specifically, Zhou et al. [35] proposed a normalized hyper-
graph model for embedding and transduction. Our formu-
lation is based on Zhou’s model, however it is inductive.
Moreover, we show how the hypergraph cut can be reformu-
lated to provide direct linear or nonlinear class predictors.
Chen et al. [5] leveraged the hypergraph to capture the cor-
relation of categories and introduced it as a regularization
to SVM model for multi-label classification. Similar to [5],
Sun et al. [29] used the hypergraph to capture the correla-
tion of classes and performed a hypergraph embedding as
the new representation for multi-class classification. In [15]
the hypergraph is utilized to measure the loss of multi-labels
during the multi-kernel learning. In contrast to all the exist-
ing hypergraph learning algorithms, as far as we know, our
model is the first approach that directly derives the multi-
label classifier from the hypergraph embedding.

3. Approach
3.1. Preliminaries

We start by reviewing some basic definitions of hyper-
graphs and introducing the notations. Hypergraphs are a

generalization of graphs in which a hyperedge (the analogy
of an edge) is an arbitrary non-empty subsets of the vertex
set (Fig 1 shows a hypergraph with five hyperedges). Given
a hypergraph G = (V,E) in an arbitrary feature space, V
and E are the vertex set and hyperedge set, where each ver-
tex and hyperedge are respectively defined as v ∈ V and
e ∈ E. Moreover, a hyperedge e is a subset of V . The
vertex-edge incidence matrix H ∈ R|V |×|E| is defined as
follows

h(v, e) =

{
1, if v ∈ e
0, otherwise.

(1)

The degree of a hyperedge e, which is denoted as δ(e), is
the number of vertices in e

δ(e) =
∑
v∈e

h(v, e), (2)

and the degree of a vertex v ∈ V is defined as follows

d(v) =
∑

v∈e,e∈E

w(e) =
∑
e∈E

w(e)h(v, e), (3)

where w(e) is the weight of the hyperedge e. We denote the
diagonal matrix forms of δ(e), d(v) andw(e) asDe,Dv and
W respectively. Note, here we definedH as a binary matrix
for simplicity. For the continuous value case, a probabilis-
tic hypergraph model [12] can be adopted in which each
element of H denotes the probability of a vertex in a hyper-
edge.

3.2. Attribute Hypergraph
In our model, we define a hypergraph to depict the at-

tribute relations of samples (corresponding to images in the
training set). In this hypergraph, the vertex vi ∈ V is cor-
responding to the sample xi ∈ X , which is the i-th col-
umn of the d × n-dimensional sample matrix X . Here, n
is the number of samples and d is the dimension of the fea-
ture space. Each hyperedge is defined as a vertex set that
shares the same attribute label. In such case, the number of
hyperedges is equal to the number of attributes m and the
n×m-dimensional matrix incident matrix H is exactly the
attribute label matrix. The more common attributes among
a set of images, the more hyperedges will exist between
their corresponding vertices, and the stronger the link will
be between these vertices. Therefore, break such a link will
lead to a heavy penalty during the learning process. In this
way, the hypergraph actually provides a natural way to cap-
ture the correlation/decorrelation of attributes. We regard
the hyperedge e as a clique and consider the mean of the
heat kernel weights of the pairwise edges in this clique as
the hyperedge weight

w(e) =
1

δ(e)(δ(e)− 1)

∑
{vi,vj}∈e

exp

(
−||xi − xj ||

2

µ

)
. (4)

Certainly, some other hyperedge weighing schemes can be
also applied.

3.3. Hypergraph-based Attribute Predictor
Normalized hypergraph cut is often utilized to learn the

high-order relation and correlation information. The main
idea of our model stems from the hypergraph-based trans-
duction which is regarded as a regularized normalized hy-
pergraph cut model [35]. In contrast, our method is a super-
vised inductive model. Since our proposed attribute predic-
tor (or classifier) is based on the hypergraph model, we call
it Hypergraph-based Attribute Predictor (HAP).

In HAP, a collection of hypergraph cuts F =
[f1, · · · , fm] is defined as the predictors of attributes in the
feature space where m is the number of attributes and the
cut fi is a column vector whose elements are the predictions
of i-th attribute for each sample. An optimal cut should not
disrupt the hyperedges during hypergraph partition as much
as possible. In other words, the optimal cut should keep the
attribute relations of samples as much as possible since each
hyperedge is given by an attribute label. Similar to Zhou’s
normalized hypergraph [35], we can define an attribute re-
lation loss function with respect to the given hypergraph G
and a collection of hyperedge cuts F can be denoted as fol-
lows

Ω(F,G) =
1

2

∑
e∈E

∑
(u,v)∈e

w(e)

δ(e)

∣∣∣∣∣
∣∣∣∣∣ Fu√

d(u)
− Fv√

d(v)

∣∣∣∣∣
∣∣∣∣∣
2

, (5)

where Fu returns a row vector corresponding to the predic-
tions of attributes for the vertex u. Clearly, the loss will be
reduced when the signs of Fu and Fv are identical. Follow-
ing some deductions, Equation 21 can be reformulated as
follows

Ω(F,G) =
1

2

∑
e∈E

∑
(u,v)∈e

w(e)

δ(e)

∣∣∣∣∣
∣∣∣∣∣ Fu√

d(u)
− Fv√

d(v)

∣∣∣∣∣
∣∣∣∣∣
2

= Tr(FT (I −D−1/2
v HWD−1

e HTD−1/2
v)F)

= Tr(FTLHF), (6)

where LH is the normalized hypergraph Laplacian matrix
which is derived from the hypergraph of attributes, and I
is an identity matrix. Tr(·) is the trace of the matrix. The
detail deductions of Equation 21 can be found in the sup-
plementary material.

Besides measuring the loss of attribute relation informa-
tion, we also need to consider the attribute prediction errors
of the train data, which can be obtained via calculating the
Euclidean distance between attribute predictions F and the
attribute label matrix. In order to make zero as the classi-
fication boundary, we define a shifted attribute label matrix
Y via shifting the attribute labels as Y = 2H − 1 where
1 is a matrix of the same size as H whose elements are all
equal to 1. In Y , if an attribute exists in a sample, its cor-
responding attribute label is 1, otherwise it is -1. Given this
definition, the attribute prediction loss is defined as

∆(F, Y) = ||F − Y ||2 (7)

Simultaneously minimizing the the previous two losses
leads to our model

F̂ = arg min
F
{Ω(F,G) + λ∆(F, Y)}

= Tr(FTLHF) + λ||F − Y ||2, (8)

where λ is a positive parameter to reconcile these two
losses. Now, the optimal hypergraph cut fi introduces a
binary partition to hypergraph that can preserve the infor-
mation of i-th attribute relation and reduce the prediction
error of i-th attribute as much as possible.

From the perspective of graph embedding, the hyper-
graph cuts are the embedding of the given hypergraph,
where the embedding coordinate of sample u is the u-th
row of F . Equation 8 actually aligns the hypergraph embed-
ding space (defined by F) with the shifted attribute space.
Consequently, we now transform the problem of seeking at-
tribute predictors/cuts to the problem of finding a mapping
from the feature space to this aligned embedding space, i.e.

F = XTB, (9)

where the projection matrix B = [β1, · · · , βi, · · · , βm] is
such collection of mappings whose i-th column is a predic-
tor of the i-th attribute, corresponding to the i-th hypergraph
cut fi = βT

i X . We then substitute Equation 9 into Equa-
tion 8, and introduce L2-norm constraint to B to avoid the
overfitting. Thus, the Equation 8 is reformulated as the fol-
lowing optimization problem with respect to B

B̂ = arg min
B

(Tr(BTXLHXTB) +λ||XTB−Y ||2 + η||B||2).

(10)
where η is a positive regularization parameter. Since LH

is a positive semi-definite matrix, this problem is a typical
Regularized Least Square (RLS) problem that can be effi-
ciently solved. We obtain the partial derivative of Equa-
tion 10 with respect to B, and equate it to zero, which leads
to a closed-form solution for B as follows

XLhX
TB + λ(XXT −XY) + ηB = 0

⇒ B = (XLHX
T + λXXT + ηI)−1(λXY) (11)

⇒ B = (XLHX
T + λXXT + ηI)−1(λX(2H − 1)).

At test time, given a unlabeled sample zi, its attribute pre-
dictions can be achieved by projecting the sample into the
subspace spanned by B,

pi = sign(zTi B), (12)

where sign(·) returns the sign of each element of a vector
and pi = [pi1, · · · , pij , · · · , pim] is a row vector encoded
the predicted attributes. Its j-th element pij = zTi βj is
the confidence of the existence of the j-th attribute with re-
spect to the sample zi. We call the subspace spanned by B
Attribute Prediction Space (APS), since each basis of this
space actually is a predictor of a specific attribute.

3.4. Incorporating Class and Side Information
As a regularized graph learning approach, it is flexible to

introduce other meaningful constraints to further enhance
attribute learning. In this section, we take the class label as
an example to show how to leverage any additional informa-
tion to enhance our model. The exploitation of class labels
can enhance the classification abilities of HAP algorithms,
since homogenous samples always share more similarities
in attributes.

We adopt two approaches to incorporate the class in-
formation. The first approach uses a hypergraph GC =
(V,EC) to depict the class relation of samples, similar to the
way we used a hypergraph to depict the attribute relations
in the previous subsection. It is not hard to derive the hyper-
graph Laplacian LC from this hypergraph via following the
same way as Equation 21. The second approach, following
[3, 11], constructs a pairwise graph GL = (V,EL) in a su-
pervised way for encoding the class information. We can
encode class information using a graph, since unlike the at-
tributes, the classes are disjoint. Two samples are connected
with an edge if they belong to the same class (homogenous
samples). Similar to the hypergraph model, the heat kernel
weighting is adopted as the edge weighting scheme. Finally,
the well known Laplacian Eigenmapping model can easily
derive the graph Laplacian LL.

Introducing such class-label graphGLor hypergraphGC

to the loss function in Equation 21 leads to the new loss
function

Ω(F,G,G∗) = Tr(FTLHF + γFTL∗F)

= Tr(BTX(LH + γL∗)X
TB)

= Tr(BTXLWXTB), (13)

where G∗ denotes either GL or GC and L∗ is the corre-
sponding Laplacian matrix. LW = LH + γL∗ is the com-
bination of the original and new Laplacian matrices. Ac-
cording to Equation 10, the new objective function can be
reformulated as follows

B̂ = arg min
B

(Tr(BTXLWXTB) +λ||XTB−Y ||2 + η||B||2)

(14)
and the solution of B achieved by just replacing LH with
LW in Equation 11

B = (XLWX
T + λXXT + ηI)−1(λX(2H − 1)). (15)

We call these models Class Specific Hypergraph-based At-
tribute Predictor (CSHAP). To distinguish the Hypergraph-
based CSHAP and Graph-based (Laplacian eigenmapping-
based) CSHAP, we respectively denote them by CSHAPH

and CSHAPG for short. We hypothesize that CSHAPG is
expected to capture the intra-manifold structure between
the samples better than CSHAPH , since CSHAPH just
group the homogenous samples using hyperedges, while
CSHAPG preserves the pair-wise structure.

If more additional information are available, the graph
Laplacians that encode these information, can be also
added, LW = LH + γ1L1 + · · ·+ γaLa. Such positive reg-
ularization parameters γi, i ∈ {1, · · · , a} can be deduced
by multiple kernel learning, since each Laplacian matrix is
associated with an affinity matrix (similarity matrix) which
can be considered as a kernel matrix.

3.5. Kernelization of HAP
The mapping from the feature space to the shifted at-

tribute space (aligned embedding space) may be not lin-
ear. This motivated us to present the kernelization for our
method. According to the generalized representer theorem
[24], a minimizer of a regularized empirical risk function
over a RKHS can be represented as a linear combination of
kernels, evaluated on the training set. Inspired by the repre-
senter theorem on the attribute classification risk function,
we embed kernel representation of the samples (i.e. KXB).
This transformation could be interpreted that each dimen-
sion is the embedding is linear combination of the kernel-
evaluations on the training set, which matches the represen-
ter theorem.

F = KXB (16)

whereKX is an n×n kernel matrix associated with a kernel
function k(·, ·), and n is the number of points in the training
set. Therefore, the objective functions of the Kernelized
HAP (KHAP) and Kernerlized CSHAP (KCSHAP) can be
denoted as follows

B̂ = arg min
B
{Tr(BTKXLAKXB) + λ||KXB − Y ||2 + η||B||2}

where LA is equal to LH in the KHAP case and LW in the
KCSHAP case. The solution of Equation 17 is

B = (KXLAKX)T + λ(K2
X + ηI)−1(λKXY) (17)

Then, the attribute predictions can be obtained as follows

p(z∗) = sign(k(z∗)
TB) = sign

(
N∑
i=1

k(z∗, xi)
TB

)
(18)

where k(z∗) = [k(z∗, x1), · · · , k(z∗, xn)]. z∗ is the test
sample.

3.6. Zero-Shot and N-Shot Learning
Typically there are two ways to annotate the samples us-

ing attributes, either to assign the attributes for each sample,
or to assign the attributes for each class. Our proposed ap-
proach supports both of these two scenarios.

At zero-shot or N-shot time, before we classify sam-
ples based on the predicted attributes, we use the sigmoid
function to normalize the obtained attribute confidences
si = zTi B into the range [0, 1].

ri =
1

1 + exp(− si
ρ

)
, (19)

where ρ is a positive scaling parameter and ri =
[ri1, · · · , rim] is the normalized attribute confidence vector
which can be deemed as the probabilities of the existences
of attributes.

In the case where only the classes are labeled with at-
tributes, we follow the approach of Direct Attribute Predic-
tion (DAP) [18, 17] where the Bayes’ rule is adopted to cal-
culate the posterior of a test class of a given sample based
on its attribute probabilities r. The sample is labeled with
the class with the maximum posterior.

With regard to the case where each sample is annotated
with attributes, we define the mean of the attribute proto-
types in the same class as the attribute template for this
class. We denote the template of class j as tj . The ele-
ments of this template indicate the prior probabilities of the
attributes with respect to this class. We classify the sam-
ples by directly measuring the Euclidean distance between
the attribute existence probabilities of the sample and the
attribute template of a class

L(zi) = arg min
j
||ri − tj ||2 (20)

where L(·) returns the class label of a sample.

4. Experiments
4.1. Experimental Setups
Datasets: We use three datasets to validate the proposed
approach: Animal With Attributes (AWA) [18], Caltech-
UCSD Birds (CUB) [30] and Unstructured Social Activity
Attribute (USAA) [10]. AWA contains 30,475 images of 50
animal classes. Each class is annotated with 85 attributes.
Following [18, 17], we divide the dataset into 40 classes
(24,295 images) to be used for training and 10 classes (6180
images) for testing. CUB (2011 version) [30] contains
roughly 11,800 images of 200 bird classes. Each class is
annotated with 312 binary attributes. We split the dataset
following [1] to facilitate direct comparison (150 classes for
training and the rest 50 classes for testing). USAA is a video
dataset [10] with 69 instance-level attributes for 8 classes of
complex social group activity videos from YouTube. Each
class has around 100 training and testing videos respec-
tively. We follow [10] for splitting the dataset by randomly
dividing the 8 classes into two disjoint sets of four classes
each for training and testing (the mean accuracies will be
reported).
Features: We adopt the 4096-dimensional deep learning
features named DeCAF [6] as the baseline feature for the
AWA dataset since these features are already been avail-
able online for comparison1. We extract 4096-dimensional
deep learning features called Caffe [16] for representing the
images in CUB database. The USAA databases already
provided the 14,000-dimensional baseline features2 which
are constructed from six histogram features, namely RGB

Table 1. Average Attribute Prediction Accuracies (in AUC).

Approaches Prediction Accuracies (%)
AWA USAA CUB

HAP 74.0 61.7±1.3 68.5
CSHAPH 74.0 62.2±0.8 68.7
CSHAPG 74.3 61.8±1.8 68.5
DAP [17] 72.8/63.0∗ — 61.8
IAP [17] 72.1/73.8∗ — —
ALE [1] 65.7 — 60.3

color histograms, SIFT, rgSIFT, PHOG, SURF and local
self-similarity histograms [10].
Metrics: We report the classification accuracy (in %) av-
eraged over the classes as the N-shot learning and ZSL
accuracy in the AWA and CUB databases. In the USAA
database, we follow [10, 9] and report the absolute classi-
fication accuracy of data. For attribute prediction accura-
cies, we report the average Area Under Curve (AUC) for
the ROC.

4.2. Attribute Prediction
We report the attribute prediction performance of dif-

ferent approaches in Table 1. Three well known attribute
learning approaches, namely Direct Attribute Prediction
(DAP) [18, 17], Indirect Attribute Prediction (IAP) [18, 17]
and Attribute Label Embedding (ALE) [1] are reported for
comparison. The sign ’∗’ indicates the performance of run-
ning the code provided by the authors on the DeCafe fea-
tures we are using, which are also provided by the authors3.
From the results, we can find that HAP, CSHAPH and
CSHAPG outperform all the compared approaches. For ex-
ample, the accuracy gains of HAP, CSHAPH and CSHAPG

over DAP are 11%, 11% and 11.3% respectively under the
same features and experimental settings. The CSHAPH

performed slightly better than the other two HAP algo-
rithms. This is not surprising, since the contribution of the
class label in CSHAPH and CSHAPG is expected to be lim-
ited for attribute prediction.

4.3. Zero-Shot Learning
The results of seven recent ZSL approaches are comple-

mented for comparison in Table 2. These are Attribute Hi-
erarchical Label Embedding (AHLE) [1], Hierarchies La-
bel Embedding (HLE) [1], Multi-modal Latent Attribute
Topic Model (M2LATM) [10], Propagated Semantic Trans-
fer (PST) [22], Zero-Shot Random Forests (ZSRF) [13],
Category-Level Attribute approach (CLA) [33] and Decor-
related Attributes (DA) [14]. For [13, 33] we only compared
with their results on the attributes provided by the dataset,
and not their results using discovered attributes. As before,
the sign ’∗’ indicates the performance of running the code

1http://www.ist.ac.at/ chl/AwA/AwA-features-decaf.tar.bz2.
2http://www.eecs.qmul.ac.uk/ yf300/USAA/download/
3We use the code and features available in the AWA webpage. The

parameters of the model are well tuned using cross validation to get the
best performance.

Table 2. Zero-shot Learning Accuracies.

Approach Classification Accuracies (%)
AWA USAA CUB

HAP 45.0 44.1±3.6 17.5
CSHAPH 45.6 45.3±4.2 17.5
CSHAPG 45.0 44.6±3.7 17.5
DAP [17] 41.4/42.8∗ 35.2 10.5
IAP [17] 42.2/35.7∗ — —
ALE [1] 37.4 — 18.0
HLE [1] 39.0 — 12.1

AHLE [1] 43.5 — 17.0
M2LATM [10] 41.3 41.9 —

PST [22] 42.7 36.2 —
ZSRF [13] 43.0 — —
CLA [33] 42.3 — —
DA [14] 30.6 — —

provided by the AWA authors on the same features we are
using, which are also provided by the authors.

From the results in Table 2, we can notice that the pro-
posed approaches outperform the compared methods on the
AWA and USAA datasets,. For example, the accuracy gains
of CSHAPH over DAP and AHLE are 2.8% and 2.1% on
AWA dataset. On the USAA dataset, the performance im-
provements of HAP algorithms over other approaches are
more significant. CSHAPH obtains 10.1% and 3.0% more
accuracies in comparison with DAP and M2LATM. Al-
though HAP algorithms have not obtained the best perfor-
mance in comparison with AHLE in CUB dataset, it still
outperforms other approaches. Moreover, the performance
gaps between HAP algorithms and AHLE are only 0.5% in
this dataset.

In the experiments, CSHAPH often achieves better re-
sults than HAP, since the CSHAPH attempts to leverage the
class labels for clustering the homogenous samples together
in the attribution prediction step. Similar phenomenon can
be also observed for CSHAPG while its improvement is less
significant. We attribute it to the mechanism of CSHAPG

where it tries to preserve the manifold structure of each class
using the given class labels. In ZSL case, the test classes are
unseen in the train dataset. Therefore, CSHAPG may not
capture the manifold structures of unseen classes. Another
interesting phenomenon is that CSHAP can enhance HAP
in the AWA and USAA databases, while cannot improve on
the CUB database. This is because the CUB databset has
more attributes which are already enough for distinguish
classes while the other two datasets have less attributes so
that they benefitted more from the complementary informa-
tion (The number of attributes of USAA, AWA and CUB
dataset are 69, 85 and 312 respectively).

4.4. N-Shot Learning
We extend ZSL into N-Shot Learning (NSL) where a few

(N) samples of the test classes are added to the training
dataset. The experiments are conducted on the USAA and
AWA datasets. Figure 3 shows the trend of the three ap-
proaches as N increases. In these experiments, we find that

2 5 10 15 20
0.18

0.2

0.22

0.24

0.26

0.28

0.3

N

N
−

S
ho

ts
 A

cc
ur

ac
y

HAP
CSHAP

H

CSHAP
G

(a) CUB

2 5 10 20 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N

N
−

S
ho

ts
 A

cc
ur

ac
y

HAP
CSHAP

H

CSHAP
G

(b) USAA

Figure 3. N-Shot Learning accuracies on two datasets.

all three methods can get similar performances when N is
small. Interestingly, along increasing N , CSHAPG signifi-
cantly outperforms others. This confirms with our hypoth-
esis about the way CSHAPG captures the intra-class mani-
fold structure while incorporating the class information, in
contrast to just grouping the homogenous samples together
as CSHAPH does. In such case, the addition of the sam-
ples of the test classes improves the quality of the captured
intra-class manifold structures, and therefore improves the
performance of CSHAPG.

Note the performances of HAP methods on USAA
dataset are much better than the ones reported in section 4.3,
since only half of the testing samples and training samples
are used, similar strategy is used in CUB dataset. Com-
pared to the previous experiment N samples per each test
class have to be taken out for the NSL training.

4.5. Full Data Categorization
We consider the attributes as the feature representation

to tackle the common categorization task. The default
splits of data defined in the datasets are employed. Ta-
ble 3 reports the results. Two classification methods are
employed for classification. The first one is the one de-
fined in Equation 20. The second one is the simple Eu-
clidean distance-based Nearest Neighbor Classifier (NNC).
The sign ’†’ indicates the results using NNC. Similar to the
in NSL, CSHAPG achieves the best performances since it
better integrates the class information.

Table 3. Full Data Categorization Accuracy (%).

Database Classification Accuracies (%)
HAP CSHAPH CSHAPG AHLE

CUB 23.1/21.4† 23.1/21.2† 26.1/24.5† 23.5
USAA 50.1/48.1† 50.1/48.1† 50.9/49.2† —

4.6. Evaluations of Kernel HAP Algorithms
We also conduct several experiments to test the poten-

tials of the kernel HAP algorithms in Zero-Shot Learning.
The Gaussian kernel and Cauchy kernel are applied. Fig-
ure 4 shows the ZSL performances of these kernel HAP al-
gorithms in USAA and CUB datasets. In USAA dataset, we
can find that Gaussian kernel improves the ZSL accuracies
of HAP, CSHAPH and CSHAPG from 44.1%, 45.3% and
44.6% to 46.3%, 48.2% and 46.7%. The ZSL accuracies
of three Cauchy kernel-based HAP algorithms are 46.1%,

HAP CSHAP(H) CSHAP(G)
10

12

14

16

18

20

A
cc

ur
ac

y
(%

)

Raw Data
Gaussian Kernel
Cauchy Kernel

(a) CUB

HAP CSHAP(H) CSHAP(G)
40

42

44

46

48

50

A
cc

ur
ac

y
(%

)

Raw Data
Gaussian Kernel
Cauchy Kernel

(b) USAA

Figure 4. The performances of Kernel HAP algorithms in USAA
and CUB datasets.

48.3% and 47.0%. In CUB database, these two kernels ac-
tually reduced the ZSL accuracies of HAP algorithms. The
accuracies of the kernel HAP algorithms is around 15.5%
to 16.5%. We attribute this to the fact that the deep features
used in CUB dataset are originally designed to be linear.

4.7. The Parameters and Computational Cost
The experimental results of the choices of the parameters

are reported in the supplementary material. Since HAP is
graph-based algorithm and involves the matrix inversion, its
computational complexity for training is the minimum of
O(nmd) and O(d3) and its computational complexity of
testing is O(d). So, it is more time consuming for training
but quite efficient for testing. Taking the CUB dataset as
an example (5994 samples for training and 5974 samples
for testing), the time for training 312 attribute predictors is
23.33 seconds. The time for predicting the attributes of all
test samples is 0.14 seconds. The code is written in matlab
and the experimental hardware configuration is Quad-Core
CPU: 2.5 GHz, RAM: 8G.

5. Conclusion
We presented a novel attribute prediction approach

called Hypergraph-based Attribute Predictor (HAP) via de-
riving a collection of attribute classifiers from the hyper-
graph embedding, in which the attribute relations are con-
sidered as hyperedges and the hypergraph cuts are the at-
tribute predictions. The hypergraph formulation facilitates
exploiting the correlations of the attributes as well as jointly
learning the attribute predictors. Moreover, the additional
information can be flexibly incorporated into HAP via en-
coding the information in a penalty graph or hypergraph. To
generalize the mappings between the feature space and at-
tribute space which are known as the attribute predictors, we
also kernelized the model. Extensive experiments on three
well known attribute datasets demonstrated the effective-
ness of our model for attribute prediction, Zero-Shot Learn-
ing, N-Shot Learning and categorization. From the results
we can conclude that the CSHAPG variant is the best to in-
tegrate class labels for N-shot learning, however the three
proposed variants performs similarly in zero-shot learning
task.

Acknowledgement
The work described in this paper was partially sup-

ported by the National Natural Science Foundation of China
(Grant no. 61173131,91118005, 11202249), Program for
Changjiang Scholars and Innovative Research Team in Uni-
versity (Grant No. IRT1196) and the Fundamental Re-
search Funds for the Central Universities (Grant Nos. CD-
JZR12098801 and CDJZR11095501). Dan Yang is the cor-
responding author of this paper.

References
[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-

embedding for attribute-based classification. In CVPR, pages 819–
826, 2013. 1, 3, 6, 7

[2] S. Antol, C. L. Zitnick, and D. Parikh. Zero-shot learning via visual
abstraction. In ECCV, pages 401–416. 2014. 3

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–
1396, 2003. 2, 5

[4] C.-Y. Chen and K. Grauman. Inferring analogous attributes. In
CVPR, 2014. 3

[5] G. Chen, J. Zhang, F. Wang, C. Zhang, and Y. Gao. Efficient multi-
label classification with hypergraph regularization. In CVPR, pages
1658–1665, 2009. 2, 3

[6] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic
visual recognition. In ICML, pages 647–655, 2014. 6

[7] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-
shot learning using purely textual descriptions. In ICCV, pages 2584–
2591, 2013. 3

[8] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects
by their attributes. In CVPR, pages 1778–1785, 2009. 1, 3

[9] Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive
multi-view embedding for zero-shot recognition and annotation. In
ECCV, pages 584–599. 2014. 3, 7

[10] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Learning multi-
modal latent attributes. TPAMI, 36(2):303–316, 2014. 1, 3, 6, 7

[11] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Face recognition
using laplacianfaces. TPAMI, 27(3):328–340, 2005. 5

[12] Y. Huang, Q. Liu, S. Zhang, and D. N. Metaxas. Image retrieval via
probabilistic hypergraph ranking. In CVPR, pages 3376–3383, 2010.
4

[13] D. Jayaraman and K. Grauman. Zero shot recognition with unreliable
attributes. In NIPS, 2014. 7

[14] D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic vi-
sual attributes by resisting the urge to share. In CVPR, 2014. 1, 3,
7

[15] S. Ji, L. Sun, R. Jin, and J. Ye. Multi-label multiple kernel learning.
In NIPS, pages 777–784, 2009. 2, 3

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 6

[17] C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classifi-
cation for zero-shot visual object categorization. TPAMI, 36(3):453,
2014. 1, 3, 6, 7

[18] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect
unseen object classes by between-class attribute transfer. In CVPR,
pages 951–958, 2009. 1, 2, 3, 6, 7

[19] D. Mahajan, S. Sellamanickam, and V. Nair. A joint learning frame-
work for attribute models and object descriptions. In ICCV, pages
1227–1234, 2011. 3

[20] D. Parikh and K. Grauman. Relative attributes. In ICCV, pages 503–
510, 2011. 1

[21] A. Parkash and D. Parikh. Attributes for classifier feedback. In
ECCV, pages 354–368. 2012. 1

[22] M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a trans-
ductive setting. In NIPS, pages 46–54, 2013. 7

[23] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge trans-
fer and zero-shot learning in a large-scale setting. In CVPR, pages
1641–1648, 2011. 3

[24] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized represen-
ter theorem. In COLT, 2001. 6

[25] V. Sharmanska, N. Quadrianto, and C. H. Lampert. Augmented at-
tribute representations. In ECCV, pages 242–255. 2012. 3

[26] J. Shi and J. Malik. Normalized cuts and image segmentation.
TPAMI, 22(8):888–905, 2000. 2

[27] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and retrieval
based on multi-attribute queries. In CVPR, pages 801–808, 2011. 1

[28] F. Song, X. Tan, and S. Chen. Exploiting relationship between at-
tributes for improved face verification. In BMVC, 2011. 1, 3

[29] L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning for multi-label
classification. In KDD, pages 668–676, 2008. 2, 3

[30] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011. 3, 6

[31] Y. Wang and G. Mori. A discriminative latent model of object classes
and attributes. In ECCV, pages 155–168. 2010. 1, 3

[32] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph
embedding and extensions: a general framework for dimensionality
reduction. TPAMI, 29(1):40–51, 2007. 2

[33] F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Design-
ing category-level attributes for discriminative visual recognition. In
CVPR, pages 771–778, 2013. 3, 7

[34] X. Yu and Y. Aloimonos. Attribute-based transfer learning for object
categorization with zero/one training example. In ECCV, pages 127–
140. 2010. 3

[35] D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In NIPS, pages 1601–
1608, 2006. 2, 3, 4

The Supplementary Materials
The Derivation Details of Attribute Relation Loss Function

In this section, we will introduce the detailed derivations of Equation (6). Before it, let us review some related notations.
The attribute relations are encoded in a given hypergraph G = (V,E) where V is the vertex set and E denotes the hyperedge
sets. In this hypegraph, each vertex is corresponding to an instance and each hyperedge is associated with an attribute
relation. The degree of a hyperedge e ∈ E, which is denoted as δ(e), is the number of vertices in e. The (v, e)-th element
of vertex-edge incidence matrix H ∈ R|V |×|E| is considered as h(v, e) = 1 if v ∈ e otherwise h(v, e) = 0 where v ∈ V .
d(v) =

∑
v∈e,e∈E w(e) =

∑
e∈E w(e)h(v, e) denotes the degree of the vertex v. w(e) is the weight of the hyperedge e. We

denote the diagonal matrix forms of δ(e), d(v) and w(e) as De, Dv and W respectively. We obtain the attribute predictions
by defining a collection of hypergraph cuts which is denoted as F . Fu returns a row vector of F which is corresponding to
the predictions of attributes for the vertex u. LH is the normalized hypergraph Laplacian matrix which is derived from the
hypergraph of attributes, and I is an identity matrix. Tr(·) is the trace of the matrix.

Now we can present the detailed derivations of Equation (6) as follows:

Ω(F,G) =
1

2

∑
e∈E

∑
(u,v)∈e

w(e)

δ(e)

∣∣∣∣∣
∣∣∣∣∣ Fu√

d(u)
− Fv√

d(v)

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)

δ(e)
(
(Fu)2

d(u)
− FuF

T
v√

d(u)d(v)
)

=
∑
e∈E

∑
u∈V

w(e)h(u, e)(Fu)2

d(u)

∑
v∈V

h(v, e)

δ(e)
−
∑
e∈E

∑
u,v∈V

Fuw(e)h(u, e)h(v, e)FT
v

δ(e)
√
d(u)d(v)

=
∑
e∈E

(Fu)2
∑
u∈V

w(e)h(u, e)

d(u)
−
∑
e∈E

∑
u,v∈V

Fuw(e)h(u, e)h(v, e)FT
v

δ(e)
√
d(u)d(v)

(21)

=
∑
e∈E

(Fu)2 −
∑
e∈E

∑
u,v∈V

Fuw(e)h(u, e)h(v, e)FT
v

δ(e)
√
d(u)d(v)

= Tr(FTF)− Tr(FTD−1/2v HWD−1e HTD−1/2v F)

= Tr(FT (I −D−1/2v HWD−1e HTD−1/2v)F)

= Tr(FTLHF),

The Influences of Parameters
There are several parameters in HAP models. They are µ, λ, η and γ. µ is used for controlling the degree of hyperedge

weighting. λ is used for controlling the trade off between the attribute relation loss and the attribute prediction error. η is
employed for avoiding the overfitting. γ is adopted for controlling the degree of penalty of the side information loss. The
ultimate goals of different attribute learning-based systems are different. Some systems may aim at annotation or retrieval.
These systems pay more attention on the improvement of the attribute prediction accuracy. Some other systems may focus
on the categorization, i.e., Zero-shot Learning, N-shot Learning and Attribute-based categorization. These systems pay more
attention on the exploitation of discriminating power of attributes. In our approach, it is available for us to tune the parameters
to decide which evaluation metric we care more. Therefore, we will separately discuss the choices of parameters in these two
cases.

The Influences of Parameters to The Attribute Prediction

HAP has three parameters, µ, λ and η, need to tuned. CSHAP algorithms have one more parameter γ need to be tuned.
In the parameter selection procedure, we choose one parameter to tune and fix the values of the other parameters. The initial
values of µ, λ, η and γ are equal to 0.1. The parameter selection procedure is start from µ to γ. Once the optimal value
of a parameter is learned, its corresponding initial value is replaced by that optimal value for more accurately estimating
the optimal values of the rest parameters. Figures 5, 6 and 7, respectively reports the attribute prediction accuracies using

10
−2

10
−1

10
0

10
1

10
20.725

0.73

0.735

0.74

0.745

0.75

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
0

10
20.613

0.614

0.615

0.616

0.617

0.618

0.619

0.62

µ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
0

10
20.635

0.64

0.645

0.65

0.655

0.66

0.665

µ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 5. The influences of µ to the attribute prediction accuracies.

10
−2

10
−1

10
0

10
1

10
2

0.68

0.7

0.72

0.74

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
0

10
20.59

0.595

0.6

0.605

0.61

0.615

0.62

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
0

10
20.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 6. The influences of λ to the attribute prediction accuracies.

10
−2

10
−1

10
0

10
1

10
20.71

0.72

0.73

0.74

0.75

η

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
0

10
2

0.57

0.58

0.59

0.6

0.61

0.62

0.63

η

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
0

10
2

0.58

0.6

0.62

0.64

0.66

0.68

0.7

η

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 7. The influences of η to the attribute prediction accuracies.

different µ, λ, η on different databases. From the observations, all HAP algorithms can achieve the best performances on all
three databases when µ = 1; The best choices of λ for AWA, USSA and CUB databases are 10, 0.1 and 1 respectively and
such numbers of η are 10, 0.1 and 10. Figure 8 plots the relationships between γ and the attribute prediction accuracy on
three different databases. We can find that CSHAPG is more sensitive to γ. It is not hard to conclude from the observations
that the optimal values of γ are 1, 0.01 and 10 for AWA, USAA and CUB databases respectively.

The Influences of Parameters to Zero-Shot Learning

In Zero-Shot Learning (ZSL), we need to employ the sigmoid function to normalize the attribute confidences, which are
obtained by our models, into range [0,1]. So, there is one additional parameter ρ should be studied in this section. We follow
the aforementioned parameter selection manner to select the parameters. The selection procedure is start from µ to ρ where
the initial value of ρ is 0.5. Figure 9 shows the ZSL accuracies under different µ. On AWA and CUB database, all three
approach can get the best performances when µ = 0.1 while the optimal value of µ on USAA database is 1. Compared
with other parameters, HAP algorithms are relatively insensitive to µ when its value is bigger than 1. Figures 10 and 11

10
−2

10
−1

10
0

10
1

10
20.65

0.7

0.75

γ

A
cc

ur
ac

y

CSHAP
H

CSHAP
G

(a) AWA

10
−2

10
0

10
2

0.58

0.59

0.6

0.61

0.62

0.63

γ

A
cc

ur
ac

y

CSHAP
H

CSHAP
G

(b) USAA

10
−2

10
0

10
2

0.58

0.6

0.62

0.64

0.66

0.68

0.7

γ

A
cc

ur
ac

y

CSHAP
H

CSHAP
G

(c) CUB

Figure 8. The influences of γ to the attribute prediction accuracies.

demonstrate the impacts of ZSL accuracies from λ and η respectively. The curves of these figures share similar behavior that
their peaks are very explicit. From the observations, we can know that the optimal values of λ are 1, 0.01 and 0.1 on AWA,
USAA and CUB databases respectively while such numbers of η are 1, 0.1 and 0.1. As same as the phenomenon observed
in Figure 8, Figure 12 also shows that CSHAPG is very sensitive to γ but CSHAPH is robust to γ. Here, we suggest to set
the γ of AWA, USAA and CUB databases to 1, 10−3 and 10−3 respectively. Figure 13 reports the ZSL performances under
different ρ. However, it is really hard to conclude uniform setting for each database. So we choose different ρ for different
approaches. More specifically, we suggest to choose the ρ in the range [0.007, 0.02] for CSHAPH while choose the ρ in the
range [0.06,0.1] for HAP and CSHAPG on AWA database. On USAA database, CSHAPG can get good ZSL performances
when ρ is in the range [0.005,0.01] while the good ρ for CSHAPH and HAP should be above 0.3. The impacts of ρ to the
performances of all three algorithms are similar on CUB databases. The observations indicate that the ρ which is larger than
1 can get the good performances for all three HAP algorithms.

10
−2

10
−1

10
0

10
1

10
20.43

0.435

0.44

0.445

0.45

µ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
0

10
20.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

µ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
0

10
20.12

0.13

0.14

0.15

0.16

0.17

0.18

µ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 9. The influences of µ to the ZSL accuracies.

10
−2

10
−1

10
0

10
1

10
20.1

0.2

0.3

0.4

0.5

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
0

10
20.25

0.3

0.35

0.4

0.45

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
0

10
20.06

0.08

0.1

0.12

0.14

0.16

0.18

λ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 10. The influences of λ to the ZSL accuracies.

10
−2

10
−1

10
0

10
1

10
20.34

0.36

0.38

0.4

0.42

0.44

0.46

η

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
0

10
20.2

0.25

0.3

0.35

0.4

0.45

η
A

ur
ra

cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
0

10
20.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

η

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 11. The influences of η to the ZSL accuracies.

10
−2

10
−1

10
0

10
1

10
20.1

0.2

0.3

0.4

0.5

γ

A
cc

ur
ac

y

CSHAP
H

CSHAP
G

(a) AWA

10
−2

10
0

10
20.2

0.25

0.3

0.35

0.4

0.45

γ

A
cc

ur
ac

y

CSHAP
H

CSHAP
G

(b) USAA

10
−2

10
0

10
20.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

γ

A
cc

ur
ac

y

CSHAP
H

CSHAP
G

(c) CUB

Figure 12. The influences of γ to the ZSL accuracies.

10
−2

10
−1

10
0

10
10.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(a) AWA

10
−2

10
−10.41

0.42

0.43

0.44

0.45

0.46

ρ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(b) USAA

10
−2

10
−1

10
0

10
10.13

0.14

0.15

0.16

0.17

0.18

ρ

A
ur

ra
cy

HAP
CSHAP

H

CSHAP
G

(c) CUB

Figure 13. The influences of ρ to the ZSL accuracies.

