
MPViT : Multi-Path Vision Transformer for Dense Prediction

Youngwan Lee1,2 Jonghee Kim1 Jeff Willette2 Sung Ju Hwang2,3

1Electronics and Telecommunications Research Institute (ETRI), South Korea
2Korea Advanced Institute of Science and Technology (KAIST), South Korea

3AITRICS, South Korea

Abstract

Dense computer vision tasks such as object detection
and segmentation require effective multi-scale feature rep-
resentation for detecting or classifying objects or regions
with varying sizes. While Convolutional Neural Networks
(CNNs) have been the dominant architectures for such
tasks, recently introduced Vision Transformers (ViTs) aim
to replace them as a backbone. Similar to CNNs, ViTs
build a simple multi-stage structure (i.e., fine-to-coarse)
for multi-scale representation with single-scale patches.
In this work, with a different perspective from existing
Transformers, we explore multi-scale patch embedding and
multi-path structure, constructing the Multi-Path Vision
Transformer (MPViT). MPViT embeds features of the same
size (i.e., sequence length) with patches of different scales
simultaneously by using overlapping convolutional patch
embedding. Tokens of different scales are then indepen-
dently fed into the Transformer encoders via multiple paths
and the resulting features are aggregated, enabling both fine
and coarse feature representations at the same feature level.
Thanks to the diverse, multi-scale feature representations,
our MPViTs scaling from tiny (5M) to base (73M) con-
sistently achieve superior performance over state-of-the-
art Vision Transformers on ImageNet classification, object
detection, instance segmentation, and semantic segmenta-
tion. These extensive results demonstrate that MPViT can
serve as a versatile backbone network for various vision
tasks. Code will be made publicly available at https:
//git.io/MPViT.

1. Introduction

Since its introduction, the Transformer [53] has had a
huge impact on natural language processing (NLP) [4, 14,
43]. Likewise, the advent of Vision Transformer (ViT) [16]
has moved the computer vision community forward. As a
result, there has been a recent explosion in Transformer-
based vision works, spanning tasks such as static image

...

...

M
ulti-Scale

Patch Em
bedding

...

...

Transformer

...
Transformer

Transformer

...
...

Transformer

Single-Scale
Patch Em

bedding

Aggregation

ViT-variants : Single-scale patch + Single-Path structure

Ours : Multi-scale Patches + Multi-Path structure

...
...

...

Figure 1. Top: The state-of-the-art ViT-variants [37, 60, 67] use
single-scale patches and single-path Transformer encoders. Bot-
tom: MPViT uses multi-scale patch embedding, each embedded
patch following a path to an independent Transformer encoder, al-
lowing simulatneous representations of fine and coarse features.

classification [17, 37, 50, 51, 57, 58, 65, 67], object detec-
tion [5, 12, 74], and semantic segmentation [54, 63] to tem-
poral tasks such as video classification [1, 3, 18] and object
tracking [7, 41, 56].

It is crucial for dense prediction tasks such as object
detection and segmentation to represent features at mul-
tiple scales for discriminating between objects or regions
of varying sizes. Modern CNN backbones which show
better performance for dense prediction leverage multiple
scales at the convolutional kernel level [19, 32, 33, 46, 47],
or feature level [34, 42, 55]. Inception Network [46] or
VoVNet [32] exploits multi-grained convolution kernels at
the same feature level, yielding diverse receptive fields and

1

ar
X

iv
:2

11
2.

11
01

0v
2

 [
cs

.C
V

]
 2

7
D

ec
 2

02
1

https://git.io/MPViT
https://git.io/MPViT

in turn boosting detection performance. HRNet [55] rep-
resents multi-scale features by simultaneously aggregating
fine and coarse features throughout the convolutional layers.

Although CNN models are widely utilized as feature
extractors for dense predictions, the current state-of-the-
art (SOTA) Vision Transformers [17,37,57,58,60,65,67,71]
have surpassed the performance of CNNs. While the ViT-
variants [17, 37, 58, 60, 67, 71] focus on how to address
the quadratic complexity of self-attention when applied to
dense prediction with a high-resolution, they pay less atten-
tion to building effective multi-scale representations. For
example, following conventional CNNs [23, 44], recent Vi-
sion Transformer backbones [37, 58, 67, 71] build a sim-
ple multi-stage structure (e.g., fine-to-coarse structure) with
single-scale patches (i.e., tokens). CoaT [65] simultane-
ously represents fine and coarse features by using a co-scale
mechanism allowing cross-layer attention in parallel, boost-
ing detection performance. However, the co-scale mecha-
nism requires heavy computation and memory overhead as
it adds extra cross-layer attention to the base models (e.g.,
CoaT-Lite). Thus, there is still room for improvement in
multi-scale feature representation for ViT architectures.

In this work, we focus on how to effectively represent
multi-scale features with Vision Transformers for dense
prediction tasks. Inspired by CNN models exploiting the
multi-grained convolution kernels for multiple receptive
fields [19, 32, 46], we propose a multi-scale patch em-
bedding and multi-path structure scheme for Transformers,
called Multi-Path Vision Transformer (MPViT). As shown
in Fig. 1, the multi-scale patch embedding tokenizes the vi-
sual patches of different sizes at the same time by overlap-
ping convolution operations, yielding features having the
same sequence length (i.e., feature resolution) after properly
adjusting the padding/stride of the convolution. Then, to-
kens from different scales are independently fed into Trans-
former encoders in parallel. Each Transformer encoder with
different-sized patches performs global self-attention. Re-
sulting features are then aggregated, enabling both fine and
coarse feature representations at the same feature level. In
the feature aggregation step, we introduce a global-to-local
feature interaction (GLI) process which concatenates con-
volutional local features to the transformer’s global fea-
tures, taking advantage of both the local connectivity of
convolutions and the global context of the transformer.

Following the standard training recipe as in DeiT [50],
we train MPViTs on ImageNet-1K [13], which consistently
achieve superior performance compared to recent SOTA Vi-
sion Transformers [17, 37, 60, 65, 67]. Furthermore, We
validate MPViT as a backbone on object detection and
instance segmentation on the COCO dataset and seman-
tic segmentation on the ADE20K dataset, achieving state-
the-art performance. In particular, MPViT-Small (22M &
4GFLOPs) surpasses the recent, and much larger, SOTA

2 × 102 3 × 102 4 × 102 6 × 102 103

FLOPs (G)

37

38

39

40

41

42

43

44

C
O

C
O

 m
as

k
A

P
(%

)

T

XS

S

MPViT-B

Mini

CoaT-Lite S
Mini

CoaT-S

T

S Focal-B

T

S Swin-B

T12

S12

S24

XCiT-M24/8

T

S

M
PVT-L

ResNet-50

ResNet-101

ResNeXt-101

Figure 2. FLOPs vs. COCO mask AP on Mask R-CNN.
MPViTs outperform state-of-the-art Vision Transformers while
having fewer parameters and FLOPs. B, S, XS, and T at the end of
the model names denote base, small, extra-small and tiny respec-
tively. Complete results are in Table 3.

Focal-Base [67] (89M & 16GFLOPs) as shown in Fig. 2.
To summarize, our main contributions are as follows:

• We propose a multi-scale embedding with a multi-
path structure for simultaneously representing fine and
coarse features for dense prediction tasks.

• We introduce global-to-local feature interaction (GLI)
to take advantage of both the local connectivity of con-
volutions and the global context of the transformer.

• We provide ablation studies and qualitative analysis,
analyzing the effects of different path dimensions and
patch scales, discovering efficient and effective config-
urations.

• We verify the effectiveness of MPViT as a backbone of
dense prediction tasks, achieving state-of-the-art per-
formance on ImageNet classification, COCO detection
and ADE20K segmentation.

2. Related works

Vision Transformers for dense predictions. Current
SOTA Vision Transformers [17, 37, 58, 65, 67, 71] have fo-
cused on reducing the quadratic complexity of self-attention
when applied to dense prediction with a high-resolution.
[37, 67, 71] constrain the attention range with fine-grained
patches in local regions and combine this with sliding win-
dows or sparse global attention. [58, 60] exploit a coarse-
grained global self-attention by reducing sequence length

2

Model mAP Param. GFLOPs

CoaT-Lite S [65] 41.1 40M 249
CoaT-S [65] 43.7 42M 423
Swin-B [37] 43.4 107M 496
Focal-B [67] 43.7 110M 533
XCiT-M24/8 [17] 43.7 99M 1448

MPViT-S (ours) 43.9 43M 268

Multi-Path Transformer Block

Multi-Scale Patch Embedding

!×#

!
4 ×

#
4

!
8 ×

#
8

!
16×

#
16

!
32×

#
32

conv-stem

MS-PatchEmbed

Transformer
Encoder

Transformer
Encoder

Transformer
Encoder

Global-to-Local Feature Interaction

Convolutional
Local Feature

MP-Transformer Block

MS-PatchEmbed

MP-Transformer Block

MS-PatchEmbed

MP-Transformer Block

MS-PatchEmbed

MP-Transformer Block

Global-to-Local Feature Interaction

Transformer
Encoder

Convolutional
Local Feature

1×1 Conv

1×1 Conv

3×3
DWConv

LayerNorm

FFN

Factorized
MHSA

LayerNorm

Concatenation

1×1 Conv

Figure 3. Overview of Multi-Path Vision Transformer (MPViT). MPViT consists of multi-scale patch embedding (MS-PatchEmbed)
and multi-path transformer (MP-Transformer) blocks, which output features from each of the four stages for dense prediction tasks. Trans-
former encoders utilize factorized multi-head self-attention (MHSA) [65]. We omit the convoultional position encodings for simplicity.

with spatial reduction (i.e., pooling). [17, 65] realizes lin-
ear complexity by operating the self-attention across fea-
ture channels rather than tokens. While [37, 58, 67, 71] has
a simple pyramid structure (fine-to-coarse), XCiT [17] has
a single-stage structure as ViT [16]. When applied to dense
prediction tasks, XCiT adds down-/up-sampling layers to
extract multi-scale features after pre-training on ImageNet.
Xu et al. [65] introduce both CoaT-Lite with a simple pyra-
mid structure and CoaT with cross-layer attention on top of
CoaT-Lite. The cross-layer attention allows CoaT to out-
perform CoaT-Lite, but requires heavy memory and com-
putation overhead, which limits scaling of the model.
Comparison to Concurrent work. CrossViT [6] also
utilizes different patch sizes (e.g., small and large) and
dual-paths in a single-stage structure as ViT [16] and
XCiT [17]. However, CrossViT’s interactions between
branches only occur through [CLS] tokens, while MPViT
allows all patches of different scales to interact. Also, un-
like CrossViT (classification only), MPViT explores larger
path dimensions (e.g., over two) more generally and adopts
multi-stage structure for dense predictions.

3. Multi-Path Vision Transformer

3.1. Architecture

Fig. 3 shows the Multi-Path Vision Trans-
former (MPViT) architecture. Since our aim is to
explore a powerful backbone network for dense predic-
tions, we construct a multi-stage architecture [37, 58, 67]
instead of a single-stage (i.e., monolithic) one such as
ViT [16] and XCiT [17]. Specifically, we build a four-stage

feature hierarchy for generating feature maps of different
scales. As a multi-stage architecture has features with
higher resolutions, it requires inherently more computation.
Thus, we use Transformer encoders including factorized
self-attention as done in CoaT [65] for the entire model
due to its linear complexity. In LeViT [20], a convolutional
stem block shows better low-level representation (i.e.,
without losing salient information) than non-overlapping
patch embedding. Inspired by LeViT, given an input image
with the size of H ×W × 3, we also adopt a stem block
which consists of two 3 × 3 convolutional layers with
channels of C2/2, C2 and stride of 2 which generates a
feature with the size of H/4 ×W/4 × C2 where C2 is the
channel size at stage 2. Each convolution is followed by
Batch Normalization [29] and a Hardswish [25] activation
function. From stage 2 to stage 5, we stack the proposed
multi-scale patch embedding (MS-PatchEmbed) and multi-
path Transformer (MP-Transformer) blocks in each stage.
Many works [8, 16, 20, 58] have proved that replacing the
[CLS] token with a global average pooling (GAP) of the
final feature map does not affect performance, so we also
remove the [CLS] token and use GAP for simplicity.

3.2. Multi-Scale Patch Embedding

We devise a multi-scale patch embedding (MS-
PatchEmbed) layer that exploits both fine- and coarse-
grained visual tokens at the same feature level. To this end,
we use convolution operations with overlapping patches,
similar to CNNs [23, 44] and CvT [60]. Specifically, given
a 2D-reshaped output feature map (i.e., token map) from
a previous stage Xi ∈ RHi−1×Wi−1×Ci−1 as the input to

3

stage i, we learn a function Fk×k(·) that maps Xi into new
tokens Fk×k(Xi) with a channel size Ci, where F (·) is
2D convolution operation of kernel size (i.e., patch size)
k × k, stride s and padding p. The output 2D token map
Fk×k(Xi) ∈ RHi×Wi×Ci has height and width as below:

Hi = b
Hi−1 − k + 2p

s
+1c,Wi = b

Wi−1 − k + 2p

s
+1c.

(1)
The convolutional patch embedding layer enables us to

adjust the sequence length of tokens by changing stride and
padding. i.e., it is possible to output the features of the
same size (i.e., resolution) with different patch sizes. Thus,
we form several convolutional patch embedding layers with
different kernel sizes in parallel. For example, as shown in
Fig. 1, we can generate various-sized visual tokens of the
same sequence length with 3× 3, 5× 5, 7× 7 patch sizes.

Since stacking consecutive convolution operations with
the same channel and filter sizes enlarges receptive
field (e.g., two 3 × 3 are equivalent to 5 × 5) and requires
fewer parameters (e.g., 2 × 32 < 52), we choose consecu-
tive 3× 3 convolution layers in practice. For the triple-path
structure, we use three consecutive 3× 3 convolutions with
the same channel size C ′, padding of 1 and stride of s where
s is 2 when reducing spatial resolution otherwise 1. Thus,
given a feature Xi ∈ RHi×Wi×Ci at stage i, we can get
F3×3(Xi), F5×5(Xi), F7×7(Xi) features with the same size
of Hi

s ×
Ci

s ×C ′. Since MPViT has more embedding layers
due to the multi-path structure, we reduce model parameters
and computational overhead by adopting 3 × 3 depthwise
separable convolutions [9,26] which consist of 3× 3 depth-
wise convolution followed by 1 × 1 pointwise convolution
in embedding layers. All convolution layers are followed
by Batch Normalization [29] and Hardswish [25] activation
functions. Finally, the different sized token embedding fea-
tures are separately fed into each transformer encoder.

3.3. Global-to-Local Feature Interaction

Although self-attention in Transformers can capture
long-range dependencies (i.e., global context), it is likely
to ignore structural information [30] and local relation-
ships [39] within each patch. Additionally, Transformers
benefit from a shape bias [52], allowing them to focus on
important parts of the image. On the contrary, CNNs can ex-
ploit local connectivity from translation invariance [31, 52]
– each patch in an image is processed by the same weights.
This inductive bias encourages CNN to have a stronger de-
pendency on texture rather than shape when categorizing
visual objects [2]. Thus, MPViT combines the local con-
nectivity of CNNs with the global context transformers in a
complementary manner. To this end, we introduce a global-
to-local feature interaction module that learns to interact be-
tween local and global features for enriched representations.
Specifically, to represent local feature Li ∈ RHi×Wi×Ci

MPViT #Layers Channels Param. GFLOPs
Tiny (T) [1, 2, 4, 1] [64, 96, 176, 216] 5.7M 1.5
XSmall (XS) [1, 2, 4, 1] [64, 128, 192, 256] 10.5M 2.9
Small (S) [1, 3, 6, 3] [64, 128, 216, 288] 22.8M 4.7
Base (B) [1, 3, 8, 3] [128, 224, 368, 480] 74.8M 16.4

Table 1. MPViT Configurations. MPViT models use paths
[2,3,3,3] in each of the 4 stages. #Layers and Channels denote
the number of transformer encoders and the embedding dimen-
sion in each stage, respectively. We use 8 transformer heads in all
models. The MLP expansion ratio is 2 and 4 for Tiny and other
models, respectively. FLOPs are measured using 224× 224 input
image.

at stage i, we adopt a depthwise residual bottleneck block
which consists of 1 × 1 convolution, 3 × 3 depthwise con-
volution, and 1× 1 convolution with the same channel size
of Ci and residual connection [23]. With the 2D-reshaped
global features from each transformer Gi,j ∈ RHi×Wi×Ci .
Aggregation of the local and global features is performed
by concatenation,

Ai = Concat([Li, Gi,0, Gi,1, ..., Gi,j]) (2)

Xi+1 = H(Ai), (3)

where j is the index of the path, Ai ∈ RHi×Wi×(j+1)Ci

is the aggregated feature and H(·) is a function which
learns to interact with features, yielding the final feature
Xi+1 ∈ RHi×Wi×Ci+1 with the size of next stage channel
dimension Ci+1. We use 1× 1 convolution with channel of
Ci+1 for H(·). The final feature Xi+1 is used as input for
the next stage’s the multi-scale patch embedding layer.

3.4. Model Configuration

To alleviate the computational burden of multi path
structure, we use the efficient factorized self-attention pro-
posed in CoaT [65]:

FactorAtt(Q,K, V) =
Q√
C
(softmax(K)>V), (4)

where Q,K, V ∈ RN×C are linearly projected queries,
keys, values and N,C denote the number of tokens and
the embedding dimension respectively. To maintain com-
parable parameters and FLOPs, increasing the number of
paths requires a reduction of the channel C or the num-
ber of layers L (i.e., the number of transformer encoders).
L factorized self-attention layers [65] with N tokens and
h transformer encoder heads have a total time complex-
ity of O(LhNC2) and memory complexity of O(LhC2 +
LhNC). The complexities are quadratic w.r.t. to the chan-
nel C while linear w.r.t. the number of layers L. Accord-
ingly, we expand the number of paths from single-path (i.e.,
CoaT-Lite [65] baseline) to triple-path by a reduction in C
rather than L. We verify that reducing C achieves better
performance than reducing L in the ablation study (see Ta-
ble 5). As the computation cost of stage 2 is relatively high

4

due to a higher feature resolution, we also set the number
of paths to 2 at stage 2 for triple-path models. Thus, from
stage 3, triple-path models have 3 paths.

Interestingly, we also found that while triple-path and
dual-path yield similar accuracy on ImageNet classification,
the triple-path model shows better performance in dense
prediction tasks. This indicates that the diverse features
from expanding the path dimension are useful for dense pre-
diction tasks. Therefore, we build MPViT models based
on the triple-path structure. We scale-up the MPViT mod-
els from the small-scale MPViT-Tiny (5M) corresponding
to CoaT-Lite Tiny (5M) [65] or DeiT-Tiny(5.7M) [50], to
the large-scale MPViT-Base (74M) corresponding to Swin-
Base (88M) [37]. All MPViT models use 8 transformer en-
coder heads, and the expansion ratio of the MLPs are set
to 2 and 4 for Tiny and the other models, respectively. The
details of MPViTs are described in Table 1.

4. Experiments
In this section, we evaluate the effectiveness and versatil-

ity of MPViT as a vision backbone on image classification
(ImageNet-1K [13]), dense predictions such as object detec-
tion and instance segmentation (COCO [36]), and semantic
segmentation (ADE20K [73]).

4.1. ImageNet Classification

Setting. We perform classification on the ImageNet-
1K [13] dataset. For fair comparison with recent works, we
follow the training recipe in DeiT [50] as do other baseline
Transformers [37, 57, 58, 65, 67]. We train for 300 epochs
with the AdamW [38] optimizer, a batch size of 1024,
weight decay of 0.05, five warm-up epochs, and an initial
learning rate of 0.001, which is scaled by a cosine decay
learning rate scheduler. We crop each image to 224 × 224
and use the same data augmentations as in [50, 65]. The
stochastic depth drop [27] is only used in the Small and
Base sized models, where we set the rates to 0.05 and 0.3,
respectively. More details are described in the Appendix.

Results. Table 2 summarizes performance comparisons ac-
cording to model size. For fair comparison, we compare the
models only using 224 × 224 input resolution and without
distillation [50] or a larger resolution of 384× 384. MPViT
models consistently outperform SOTA Vision Transformer
architectures with similar parameter counts and computa-
tional complexity. Both MPViT-XS and Small improve
over the single-path baselines, CoaT-Lite Mini and Small
by a large margin of 2.0% and 1.1%, respectively. MPViT-
Small also outperforms CoaT Small, while having about 3×
fewer GFLOPs. Furthermore, MPViT-Small outperforms
the larger models such as PVT-L, DeiT-B/16, and XCiT-
M24/16. MPViT-Base (74M) achieves 84.3%, surpassing

Model Param.(M) GFLOPs Top-1 Reference
DeiT-T [50] 5.7 1.3 72.2 ICML21
XCiT-T12/16 [17] 7.0 1.2 77.1 NeurIPS21
CoaT-Lite T [65] 5.7 1.6 76.6 ICCV21
MPViT-T 5.8 1.6 78.2 (+1.6)
ResNet-18 [23] 11.7 1.8 69.8 CVPR16
PVT-T [58] 13.2 1.9 75.1 ICCV21
XCiT-T24/16 [17] 12.0 2.3 79.4 NeurIPS21
CoaT Mi [65] 10.0 6.8 80.8 ICCV21
CoaT-Lite Mi [65] 11.0 2.0 78.9 ICCV21
MPViT-XS 10.5 2.9 80.9 (+2.0)
ResNet-50 [23] 25.6 4.1 76.1 CVPR16
PVT-S [58] 24.5 3.8 79.8 ICCV21
DeiT-S/16 [50] 22.1 4.6 79.9 ICML21
Swin-T [37] 29.0 4.5 81.3 ICCV21
CvT-13 [60] 20.0 4.5 81.6 ICCV21
XCiT-S12/16 [17] 26.0 4.8 82.0 NeurIPS21
Focal-T [67] 29.1 4.9 82.2 NeurIPS21
CoaT S [65] 22.0 12.6 82.1 ICCV21
CrossViT-15 [6] 28.2 6.1 82.3 ICCV21
CvT-21 [60] 32.0 7.1 82.5 ICCV21
CrossViT-18 [6] 43.3 9.5 82.8 ICCV21
CoaT-Lite S [65] 20.0 4.0 81.9 ICCV21
MPViT-S 22.8 4.7 83.0 (+1.1)
ResNeXt-101 [64] 83.5 15.6 79.6 CVPR17
PVT-L [58] 61.4 9.8 81.7 ICCV21
DeiT-B/16 [50] 86.6 17.6 81.8 ICML21
XCiT-M24/16 [17] 84.0 16.2 82.7 NeurIPS21
Swin-B [37] 88.0 15.4 83.3 ICCV21
XCiT-S12/8 [17] 26.0 18.9 83.4 NeurIPS21
Focal-B [67] 89.8 16.0 83.8 NeurIPS21
MPViT-B 74.8 16.4 84.3

Table 2. ImageNet-1K classification. These models are trained
with 224×224 resolution. For fair comparison, we do not include
models that are distilled [50] or use 384 × 384 resolution. Note
that CoaT-Lite [65] models are our single-path baselines.

the recent SOTA models which use more parameters such as
Swin-Base (88M) and Focal-Base (89M). Interestingly, the
MPViT-Base outperforms XCiT-M24/16 which is trained
with a more sophisticated training recipe [17, 51] using
more epochs (400), LayerScale, and a different crop ratio.

4.2. Object Detection and Instance Segmentation

Setting. We validate MPViT as an effective feature ex-
tractor for object detection and instance segmentation with
RetinaNet [35] and Mask R-CNN [22], respectively. We
benchmark our models on the COCO [36] dataset. We pre-
train the backbones on the ImageNet-1K and plug the pre-
trained backbones into RetinaNet and Mask R-CNN. Fol-
lowing common settings [22, 61] and the training recipe
of Swin-Transformer [37], we train models for 3× sched-
ule (36 epochs) [61] with a multi-scale training strat-
egy [5, 37, 45]. We use AdamW [38] optimizer with an ini-
tial learning rate of 0.0001 and weight decay of 0.05. We
implement models based on the detectron2 [61] library.
More details are described in the Appendix.

5

Backbone Params. (M) GFLOPs
Mask R-CNN 3× schedule + MS RetinaNet 3× schedule + MS

AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 AP b
S AP b

M AP b
L

XCiT-T12/16 [17] 26 200 42.7 64.3 46.4 38.5 61.2 41.1 - - - - - -
XCiT-T12/8 [17] 26 266 44.5 66.4 48.8 40.4 63.5 43.3 - - - - - -
MPViT-T 28 (17) 216 (196) 44.8 66.9 49.2 41.0 64.2 44.1 44.4 65.5 47.4 29.9 48.3 56.1
PVT-T [58] 33 (23) 240 (221) 39.8 62.2 43.0 37.4 59.3 39.9 39.4 59.8 42.0 25.5 42.0 52.1
CoaT Mini [65] 30 307 46.5 67.9 50.7 41.8 65.3 44.8 - - - - - -
CoaT-Lite Mini [65] 31 210 42.9 64.7 46.7 38.9 61.6 41.7 - - - - - -
MPViT-XS 30 (20) 231 (211) 46.6 68.5 51.1 42.3 65.8 45.8 46.1 67.4 49.3 31.4 50.2 58.4
PVT-S [58] 44 (34) 305 (226) 43.0 65.3 46.9 39.9 62.5 42.8 42.2 62.7 45.0 26.2 45.2 57.2
XCiT-S12/16 [17] 44 285 45.3 67.1 49.5 40.8 64.0 43.8 - - - - - -
Swin-T [37] 48 (39) 267 (245) 46.0 68.1 50.3 41.6 65.1 44.9 45.0 65.9 48.4 29.7 48.9 58.1
XCiT-S12/8 [17] 43 550 47.0 68.9 51.7 42.3 66.0 45.4 - - - - - -
Focal-T [67] 49 (39) 291 (265) 47.2 69.4 51.9 42.7 66.5 45.9 45.5 66.3 48.8 31.2 49.2 58.7
CoaT S [65] 42 423 49.0 70.2 53.8 43.7 67.5 47.1 - - - - - -
CoaT-Lite S [65] 40 249 45.7 67.1 49.8 41.1 64.1 44.0 - - - - - -
MPViT-S 43 (32) 268 (248) 48.4 70.5 52.6 43.9 67.6 47.5 47.6 68.7 51.3 32.1 51.9 61.2
PVT-M [58] 64 (54) 392 (283) 44.2 66.0 48.2 40.5 63.1 43.5 43.2 63.8 46.1 27.3 46.3 59.9
PVT-L [58] 81 (71) 494 (345) 44.5 66.0 48.3 40.7 63.4 43.7 43.4 63.6 46.1 26.1 46.0 59.5
XCiT-M24/16 [17] 101 523 46.7 68.2 51.1 42.0 65.5 44.9 - - - - - -
XCiT-S24/8 [17] 65 892 48.1 69.5 53.0 43.0 66.5 46.1 - - - - - -
XCiT-M24/8 [17] 99 1448 48.5 70.3 53.4 43.7 67.5 46.9 - - - - - -
Swin-S [37] 69 (60) 359 (335) 48.5 70.2 53.5 43.3 67.3 46.6 46.4 67.0 50.1 31.0 50.1 60.3
Swin-B [37] 107 (98) 496 (477) 48.5 69.8 53.2 43.4 66.8 49.6 45.8 66.4 49.1 29.9 49.4 60.3
Focal-S [67] 71 (62) 401 (367) 48.8 70.5 53.6 43.8 67.7 47.2 47.3 67.8 51.0 31.6 50.9 61.1
Focal-B [67] 110 (101) 533 (514) 49.0 70.1 53.6 43.7 67.6 47.0 46.9 67.8 50.3 31.9 50.3 61.5
MPViT-B 95 (85) 503 (482) 49.5 70.9 54.0 44.5 68.3 48.3 48.3 69.5 51.9 32.3 52.2 62.3

Table 3. COCO detection and instance segmentation with RetinaNet [35] and Mask R-CNN [22]. Models are trained for 3× sched-
ule [61] with multi-scale training inputs (MS) [37, 45]. All backbones are pretrained on ImageNet-1K. We omit models pretrained on
larger-datasets (e.g., ImageNet-21K). Mask R-CNN’s parameters/FLOPs are followed by RetinaNet in parentheses.

Results. Table 3 shows MPViT-models consistently out-
perform recent, comparably sized SOTA Transformers on
both object detection and instance segmentation. For Reti-
naNet, MPViT-S achieves 47.6%, which improves over
Swin-T [37] and Focal-T [67], by large margins of over
2.1 - 2.6%. Interestingly, MPViT-S (32M) shows superior
performance compared to the much larger Swin-S (59M) /
B (98M) and Focal-S (61M) / B (100M), which have higher
classification accuracies in Table 2. These results demon-
strate the proposed multi-scale patch embedding and multi-
path structure can represent more diverse multi-scale fea-
tures than simpler multi-scale structured models for object
detection, which requires scale-invariance. Notably, Swin-
B and Focal-B show a performance drop compared to Swin-
S and Focal-S, while MPViT-B improves over MPViT-S,
showing MPViT scales well to large models.

For Mask R-CNN, MPViT-XS and MPViT-S outperform
the single-path baselines CoaT [65]-Lite Mini and Small by
significant margins. Compared to CoaT which adds par-
allel blocks to CoaT-Lite with additional cross-layer atten-
tion, MPViT-XS improves over CoaT Mini, while MPViT-
S shows lower box AP b but higher mask APm. We note
that although CoaT-S and MPViT-S show comparable per-
formance, MPViT-S requires much less computation. This
result suggests that MPViT can efficiently represent multi-
scale features without the additional cross-layer attention of

Backbone Params. GFLOPs mIoU
Swin-T [37] 59M 945 44.5
Focal-T [67] 62M 998 45.8
XCiT-S12/16 [17] 54M 966 45.9
XCiT-S12/8 [17] 53M 1237 46.6
MPViT-S 52M 943 48.3
XCiT-S24/16 [17] 76M 1053 46.9
Swin-S [37] 81M 1038 47.6
XCiT-M24/16 [17] 112M 1213 47.6
Focal-S [67] 85M 1130 48.0
Swin-B [37] 121M 1841 48.1
XCiT-S24/8 [17] 74M 1587 48.1
XCiT-M24/8 [17] 110M 2161 48.4
Focal-B [67] 126M 1354 49.0
MPViT-B 105M 1186 50.3

Table 4. ADE20k semantic segmentation results using Uper-
Net [62]. For fair comparison, We do not include models that are
pre-trained on larger datasets (i.e., ImageNet-21K).

CoaT. Notably, the mask AP (43.9%) of MPViT-S is higher
than those of larger models such as XCiT-M24/8 or Focal-
B, while having much less FLOPs.

4.3. Semantic segmentation

Setting. We further evaluate the capability of MPViT for se-
mantic segmentation on the ADE20K [73] dataset. We de-

6

Path Spec Param. GFLOPs Memory img/sec Top-1 APbox APmask

Single [1,1,1,1]P [2,2,2,2]L [64, 128, 320, 512]C 11.0M 1.9 9216 1195 78.9 40.2 37.3
(a) Dual [2,2,2,2]P [1,2,4,1]L [64, 128, 256, 320]C 10.9M 2.6 6054 945 80.7+1.8 42.6+2.4 39.1+1.8

(b) Triple [2,3,3,3]P [1,1,2,1]L [64, 128, 256, 320]C 10.8M 2.3 6000 1080 79.8+0.9 41.4+1.2 38.0+0.7

(c) Triple [2,3,3,3]P [1,2,4,1]L [64, 128, 192, 256]C 10.1M 2.7 5954 803 80.5+1.6 43.0+2.8 39.4+2.1

(d) Quad [2,4,4,4]P [1,2,4,1]L [64, 96, 176, 224]C 10.5M 2.6 5990 709 80.5+1.6 42.4+2.2 38.8+1.5

Table 5. Exploring the path dimension. Spec means [#path per stage]P, [#layer per stage]L and [dimension per stage]C. We measure
inference throughput and peak GPU memory usage on V100 GPU with batch size of 256. Note that the single-path is CoaT-Lite Mini [65].

Path Param. GFLOPs Top-1 APb/APm

Single (CoaT-Lite Mini) 11.01M 1.99 78.9 40.2 / 37.3
+ Triple (p=[3,5,7], parallel) 10.18M 2.78 80.3 41.7 / 38.4
+ Triple (p=[3,3,3], series) 10.15M 2.67 80.5 43.0 / 39.4
+ GLI (Sum) 10.13M 2.82 80.3 43.0 / 39.5
+ GLI (Concat.) 10.57M 2.97 80.8 43.3 / 39.7

Table 6. Component Analysis.

ploy UperNet [62] as a segmentation method and integrate
the ImageNet-1k pre-trained MPViTs into the UperNet.
Following [17,37], for fair comparison, we train models for
160k iterations with a batch size of 16, the AdamW [38] op-
timizer, a learning rate of 6e-5, and a weight decay of 0.01.
We report the performance using the standard single-scale
protocol. We implement MPViTs using mmseg [11] library.
More details are described in the Appendix.

Results. As shown in Table 4, our MPViT models con-
sistently outperform recent SOTA architectures of simi-
lar size. MPViT-S achieves higher performance (48.3%)
over other Swin-T, Focal-T and XCiT-S12/16 by large mar-
gins of +3.8%, +2.5%, and +2.4%. Interestingly, MPViT-
S also surpasses much larger models, e.g., Swin-S/B,
XCiT-S24/16, -M24/16, -S24/8, and Focal-S. Furthermore,
MPViT-B outperforms the recent (and larger) SOTA Trans-
former, Focal-B [67]. These results demonstrate the diverse
feature representation power of MPViT, which stems from
its multi-scale embedding and multi-path structure, makes
MPViT effective on pixel-wise dense prediction tasks.

4.4. Ablation study

We conduct ablation studies on each component of
MPViT-XS to investigate the effectiveness of the proposed
multi-path structure on image classification and object de-
tection with Mask R-CNN [22] using 1× schedule [22] and
single-scale input.

Exploring path dimension. We investigate the effect
of differing path dimensions, and how the path dimension
could be effectively extended in Table 5. We conduct ex-
periments using various metrics such as model size (i.e.,
model parameter), computation cost (GFLOPs), GPU peak
memory, and GPU throughput (img/sec). We use Coat-Lite
Mini [65] as a single-path baseline because it also leverages
the same factorized self-attention mechanism as MPViT.

For a fair comparison with the baseline, we do not use a
stem block, stochastic depth drop path, and the convolu-
tional local features introduced in Sec. 3.3. For dual-path,
higher feature resolution at stage 2 requires more computa-
tion, so we decrease the number of layers L (i.e., the number
of transformer encoders). At stage 5, a higher embedding
dimension results in a larger model size, thus we also reduce
L and the embedding dimension C, increasing L at stage 4
instead. As multiple paths lead to higher computation cost,
we curtail C at stages 3 and 4 to compensate. As a result,
dual-path (a) in Table 5 improves over the single-path while
having a similar model size and slightly higher FLOPs.

When expanding dual-path to triple-path, we ablate the
embedding dimension C and the number of layers L, re-
spectively. For the embedding dimension of (b) in Table 5,
we maintain C but reduce L to maintain a similar model
size and FLOPs, which leads to worse accuracy than the
dual-path. Conversely, when we decrease C and maintain
L, (c) achieves similar classification accuracy but higher de-
tection performance than the dual-path. Lastly, we further
expand the path to quad-path (d), keeping L and reducing
C. The quad-path achieves similar classification accuracy,
but detection performance is not better than the triple-path
of (c). These results teach us three lessons : i) the number of
layers (i.e., deeper) is more important than the embedding
dimension (i.e., wider), which means deeper and thinner
structure is better in terms of performance. ii) the multi-
grained token embedding and multi-path structure can pro-
vide object detectors with richer feature representations. iii)
Under the constraint of the same model size and FLOPs,
triple-path is the best choice.

We note that our strategy of expanding the path dimen-
sion does not increase the memory burden as shown in Ta-
ble 5. dual-path (a) and triple-path (b,c) consume less mem-
ory than the single-path. Also, (a) and (b) consume more
memory than (c) because (a) and (b) have bigger C at stages
3 and 4. This is because C (quadratic) is a bigger factor
in memory usage than L (linear) as described in sec.3.4.
Therefore, our strategy of reducing the embedding dimen-
sion and expanding the path dimension and layers (deeper)
leads to a memory-efficient model. However, the growth of
the total number of layers due to multi-path structure de-
creases inference speed as compared the single-path. This
issue is addressed in detail in sec. 5.

7

Model Top-1 APb/APm Param. GFLOPs Mem. img/s
Swin-T 81.3 46.0/41.6 28M 4.5 10.4 1021
Focal-T 82.2 47.2/42.7 29M 4.9 19.3 400
XCiT-S12/16 82.0 45.3/40.8 26M 4.8 6.5 1181
XCiT-S12/8 83.4 47.0/42.3 26M 18.9 10.5 318
CoaT S 82.1 49.0/43.7 22M 12.6 13.3 121
CoaT-Lite S 82.0 45.7/41.1 20M 4.0 9.8 688
MPViT-S 83.0 48.4/43.9 22M 4.7 7.2 546

Table 7. Model Capacity Analysis. We measure inference
throughput and peak GPU memory usage (GB) for MPViT-S and
comparable models. All models are tested on V100 GPU with
batch size of 256 and 224× 224 resolution.

Multi-Scale Embedding. In Table 6, we investigate the
effects of patch size and structure in the multi-scale embed-
ding, as outlined in Section 3.2. We use three convolution
layers in parallel with the same stride of 2 and patch sizes of
3, 5, and 7, respectively. i.e., each path embedding layer op-
erates independently using the previous input feature. For
parameter efficiency, we also use three convolution layers
in series with the same kernel size of 3 and strides of 2, 1,
1, respectively. We note that the latter has equivalent recep-
tive fields (e.g., 3, 5, 7) as shown in Fig. 3. The series ver-
sion improves over parallel while reducing the model size
and FLOPs. Intuitively, this performance gain likely comes
from the fact that the series version actually contains small
3 layer CNNs with non-linearities, which allows for more
complex representations.

Global-to-Local feature Interaction. We experiment with
different aggregation schemes in the GLI module, which
aggregates convolutional local feature and the global trans-
former features, we test two types of operations: addition
and concatenation. As shown in Table 6, the sum opera-
tion shows no performance gain while concatenation shows
improvement on both classification and detection tasks. In-
tuitively, summing features before the 1 × 1 convolution
naively mixes the features, while concatenation preserves
them, allowing the 1×1 convolution to learn more complex
interactions between the features. This result demonstrates
that the GLI module effectively learns to interact between
local and global features for enriching representations.

5. Discussion

Model Capacity Analysis. Measuring actual GPU
throughput and memory usage, we analyze the model ca-
pacity of MPViT-S, comparing with recent SOTA Trans-
formers [17, 37, 65, 67] in Table 7. We test all models on
the same Nvidia V100 GPU with a batch size of 256. Al-
though CoaT Small [65] achieves the best detection per-
formance thanks its additional cross-layer attention, it ex-
hibits heavier memory usage and GPU computation than
CoaT-Lite Small with a simple multi-stage structure simi-
lar to Swin-T [37] and Focal-T [67]. Compared to CoaT

Input CoaT-Lite Path-1 (૜ × ૜) Path-2 (૞ × ૞) Path-3 (ૠ × ૠ)
MPViT

Input CoaT-Lite Path-1 (૜ × ૜) Path-2 (૞ × ૞) Path-3 (ૠ × ૠ)
MPViT

Figure 4. Attention maps generated by CoaT-Lite and MPViT at
stage4. MPViT has a triple-path structure with patches of various
sizes (e.g., 3× 3, 5× 5, 7× 7), leading to fine and coarse features.
See Appendix for more visualization results.

Small, MPViT-S consumes much less memory and runs
4× faster with comparable detection performance, which
means MPViT can perform efficiently and its multi-scale
representations are effective without the additional cross
layer attention of CoaT. Moreover, CoaT has limitations in
scaling up models due to its exhaustive memory usage, but
MPViT can scale to larger models. For XCiT [17] hav-
ing single-stage structure, XCiT-S12/16 (16x16 patches :
scale 4) shows faster speed and less memory usage, while
XCiT-S12/8 requires more computation and memory than
MPViT-S due to its higher feature resolution. We note that
XCiT-S12/8 shows higher classification accuracy (83.4%)
than MPViT-S (83.0%), whereas detection performance is
the opposite (47.0 vs. 48.4). This result demonstrates that
for dense prediction tasks, the mutli-scale embedding and
multi-path structure of MPViT is both more efficient and
effective than the single-stage structure of XCiT equipped
with additional up-/down-sampling layers. MPViT also has
a relatively smaller memory footprint than most models.

Qualitative Analysis. In Fig. 4, we visualize the atten-
tion maps, comparing the triple-path (c in Table 5) with the
single-path (CoaT-Lite Mini). Since the triple-path embeds
different patch sizes, we visualize attention maps for each
path. The attention maps from CoaT-Lite and path-1 have
similar patch sizes and show similar attention maps. Inter-
estingly, we observe that attention maps from path-3, which
attends to larger patches with higher-level representations,
are more object centric, precisely capturing the extents of
the objects, as shown in the rightmost column of Fig. 4.
However, at the same time, path-3 suppresses small ob-
jects and noise. Contrarily, path-1 attends to small objects
due to fine patches, but does not precisely capture large-
object boundaries due to its usage of low-level representa-

8

tions. This is especially apparent in the 3rd-row of Fig. 4,
where path-1 captures a smaller ball, while path-3 attends
to a larger person. These results demonstrate that combin-
ing fine and coarse features via a multi-path structure can
capture objects of varying scales in the given visual inputs.

Limitation and Future works. The extensive experimen-
tal results have demonstrated that MPViT significantly out-
performs current SOTA Vision Transformers not only on
image-level prediction, but also on dense predictions tasks.
A possible limitation of our MPViT model is the latency at
inference time. As shown in Table 7, the inference time of
MPViT-S is slower than Swin-T and XCiT-S12/16. We hy-
pothesize that the multi-path structure leads to suboptimal
GPU utilization as similar observations have been made for
grouped convolution [32,40,64] (e.g., GPU context switch-
ing, kernel synchronization, etc.). To alleviate this issue, we
are currently working on an efficient implementation of our
model to speed-up the inference of MPViT, which integrates
the features with different scales into one tensor and then
performing multi-head self attention with the tensor. This
will improve parallelization and GPU utilization. Moreover,
to strike the balanced tradeoff between accuracy/speed, we
will further consider path dimensions in a compound scal-
ing strategy [15,49], to consider the optimal combination of
depths, widths, and resolutions when increasing/decreasing
the model capacity.

6. Acknowledgement

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No. 2020-
0-00004, Development of Previsional Intelligence based
on Long-term Visual Memory Network and No. 2014-3-
00123, Development of High Performance Visual BigData
Discovery Platform for Large-Scale Realtime Data Analy-
sis).

A. Appendix

In this appendix, Section A.1 first describe the train-
ing details of our experiments for ImageNet classification,
COCO detection/instance segmentation, and ADE20K se-
mantic segmentation. Second, in Section A.2, we show fur-
ther experimental analyses for ImageNet classification and
COCO object detection. Finally, in Section A.3, we provide
more qualitative analysis on the learned attention maps and
failure cases.

A.1. Detailed Experimental Settings

ImageNet classification. Following the training recipe as
in CoaT [65] and DeiT [14], we perform the same data

Model Param.(M) GFLOPs Top-1 Reference
DeiT-T [50] 5.7 1.3 72.2 ICML21
TnT-Ti [21] 6.1 1.4 73.9 NeurIPS21
ViL-Ti-RPB [71] 6.7 1.3 76.7 ICCV21
XCiT-T12/16 [17] 7.0 1.2 77.1 NeurIPS21
ViTAE-6M [66] 6.5 2.0 77.9 NeurIPS21
CoaT-Lite T [65] 5.7 1.6 76.6 ICCV21
MPViT-T 5.8 1.6 78.2 (+1.6)
ResNet-18 [23] 11.7 1.8 69.8 CVPR16
PVT-T [58] 13.2 1.9 75.1 ICCV21
XCiT-T24/16 [17] 12.0 2.3 79.4 NeurIPS21
CoaT Mi [65] 10.0 6.8 80.8 ICCV21
CoaT-Lite Mi [65] 11.0 2.0 78.9 ICCV21
MPViT-XS 10.5 2.9 80.9 (+2.0)
ResNet-50 [23] 25.6 4.1 76.1 CVPR16
PVT-S [58] 24.5 3.8 79.8 ICCV21
DeiT-S/16 [50] 22.1 4.6 79.9 ICML21
Swin-T [37] 29.0 4.5 81.3 ICCV21
Twins-SVT-S [10] 24.0 2.8 81.3 NeurIPS21
TnT-S [21] 23.8 5.2 81.5 NeurIPS21
CvT-13 [60] 20.0 4.5 81.6 ICCV21
XCiT-S12/16 [17] 26.0 4.8 82.0 NeurIPS21
ViTAE-S [66] 23.6 5.6 82.0 NeurIPS21
GG-T [68] 28.0 4.5 82.0 NeurIPS21
CoaT S [65] 22.0 12.6 82.1 ICCV21
Focal-T [67] 29.1 4.9 82.2 NeurIPS21
CrossViT-15 [6] 28.2 6.1 82.3 ICCV21
ViL-S-RPB [71] 24.6 4.9 82.4 ICCV21
CvT-21 [60] 32.0 7.1 82.5 ICCV21
CrossViT-18 [6] 43.3 9.5 82.8 ICCV21
HRFormer-B [69] 50.3 13.7 82.8 NeurIPS21
CoaT-Lite S [65] 20.0 4.0 81.9 ICCV21
MPViT-S 22.8 4.7 83.0 (+1.1)
ResNeXt-101 [64] 83.5 15.6 79.6 CVPR17
PVT-L [58] 61.4 9.8 81.7 ICCV21
DeiT-B/16 [50] 86.6 17.6 81.8 ICML21
XCiT-M24/16 [17] 84.0 16.2 82.7 NeurIPS21
Twins-SVT-B [10] 56.0 8.3 83.1 NeurIPS21
Swin-S [37] 49.6 8.7 83.1 ICCV21
Twins-SVT-L [10] 99.2 14.8 83.3 NeurIPS21
Swin-B [37] 88.0 15.4 83.3 ICCV21
XCiT-S12/8 [17] 26.0 18.9 83.4 NeurIPS21
Focal-S [67] 51.1 9.1 83.5 NeurIPS21
XCiT-M24/8 [17] 84.0 63.9 83.7 NeurIPS21
Focal-B [67] 89.8 16.0 83.8 NeurIPS21
XCiT-S24/8 [17] 48.0 36.0 83.9 NeurIPS21
MPViT-B 74.8 16.4 84.3

Table 8. Full comparison on ImageNet-1K classification. These
models are trained with 224×224 resolution. For fair comparison,
we do not include models that are distilled [50] or use 384 × 384
resolution. Note that CoaT-Lite [65] models are our single-path
baselines.

augmentations such as MixUP [28], CutMix [70], ran-
dom erasing [72], repeated augmentation [24], and label
smoothing [48]. We train MPViTs for 300 epochs with the
AdamW [38] optimizer, a batch size of 1024, weight decay
of 0.05, five warm-up epochs, and an initial learning rate
of 0.001, which is scaled by a cosine decay learning rate
scheduler. We implement MPViTs based on CoaT official
code 1 and timm library [59].

1https://github.com/mlpc-ucsd/CoaT

9

https://github.com/mlpc-ucsd/CoaT

2.5 5.0 7.5 10.0 12.5 15.0 17.5
FLOPs (G)

70

72

74

76

78

80

82

84
Im

ag
eN

et
 T

op
-1

 A
cc

. (
%

)

MPViT
CoaT-Lite
CoaT
DeiT
PVT

Focal
Swin
CrossViT
XCiT/16
ResNe(X)t

20 40 60 80
Parameters (M)

70

72

74

76

78

80

82

84

Im
ag

eN
et

 T
op

-1
 A

cc
. (

%
)

MPViT
CoaT-Lite
CoaT
DeiT
PVT

Focal
Swin
CrossViT
XCiT/16
ResNe(X)t

Figure 5. Performance comparisons with respect to FLOPs and model parameters on ImageNet-1K classification. These models are
trained with 224× 224 single-crop. For fair comparison, we do not include models that are distilled [50] or use 384× 384 resolution.

Object detection and Instance segmentation. For fair
comparison, we follow the training recipe as in CoaT [65]
and Swin Transformer [37] for RetinaNet [35] and Mask R-
CNN [22]. Specifically, we train all models for 3× sched-
ule (36 epochs) [22,61] with multi-scale inputs (MS) [5,45]
which resizes the input such that the shorter side is between
480 and 800 while the longer side is at most 1333). We use
the AdamW [38] optimizer, a weight decay of 0.05, a batch
size of 16, and an initial learning rate of 0.0001 which is de-
cayed by 10× at epochs 27 and 33. We set stochastic depth
drop rates [27] to 0.1, 0.1, 0.2, and 0.4 for Tiny, XSmall,
Small, and Base, respectively. We implement all models
based on the detectron2 library [61].

Semantic segmentation. Following the same training
recipe as in Swin Transformer [37] and XCiT [17], we
deploy UperNet [62] with the AdamW [38] optimizer, a
weight decay of 0.01, an initial learning rate of 6 × 10−5

which is scaled using a linear learning rate decay, and linear
warmup of 1,500 iterations. We train models for 160K itera-
tions with a batch size of 16 and an input size of 512× 512.
We use the same data augmentations as [11, 37], utilizing
random horizontal flipping, a random re-scaling ratio in the
range [0,5, 2.0] and random photometric distortions. We set
stochastic depth drop rates [27] to 0.2 and 0.4 for Small and
Base, respectively. We implement all models based on the
mmseg library [11].

A.2. More Experimental Analysis

ImageNet classification. We provide a full summary
of comparisons on ImageNet-1K classification in Table 8
by adding more recent Vision Transformers including
ViL [71], TnT [21], ViTAE [66], HRFormer [69], and
Twins [10]. We can observe that MPViTs consistently
achieve state-the-art performance compared to SOTA mod-

Backbone AP AP50 AP75 APS APM APL

ResNet-50 [23] 44.5 63.7 48.7 26.8 47.6 59.6
CoaT-Lite small [65] 47.0 66.5 51.2 28.8 50.3 63.3
CoaT Small [65] 48.4 68.5 52.4 30.2 51.8 63.8
MPViT-Small 49.0 68.7 53.7 31.7 52.4 64.5

Table 9. COCO Object Detection results on Deformable
DETR [74]. These all models are trained using the same code-
base.

els with similar model capacity. Notably, the smaller
MPViT variants often outperform their larger baseline
counterparts even when the baselines use significantly more
parameters, as shown in Table 8 and Fig. 5 (right). Further-
more, Fig. 5 demonstrates that MPViT is a more efficient
and effective Vision Transformer architecture in terms of
computation and model parameters.

Deformable-DETR. Additionally, we compare our
MPViT-Small with baselines, CoaT-Lite Small [65] and
CoaT Small [65], on the Deformable DETR (DD) [74].
For fair comparison, we train MPViT for 50 epochs with
the same training recipe2 as in CoaT [65]. We use the
AdamW [38] optimizer with a batch size of 16, a weight
decay of 10−4, and an initial learning rate of 2 × 10−4,
which is decayed by a factor of 10 at 40 epoch. Tab. 9
shows results comparing with CoaT-Lite Small and CoaT
Small. MPViT-Small improves over both CoaT-Lite Small
and CoaT Small. Notably, MPViT achieves a larger gain in
small object AP (1.5% APS) as compared to others (i.e.,
APM or APL).

COCO with 1× schedule.. In addition to the 3× sched-
ule + multi-scale (MS) setting, we also evaluate MPViT

2https://github.com/mlpc-ucsd/CoaT/tree/main/
tasks/Deformable-DETR

10

https://github.com/mlpc-ucsd/CoaT/tree/main/tasks/Deformable-DETR
https://github.com/mlpc-ucsd/CoaT/tree/main/tasks/Deformable-DETR

Backbone Params. (M) GFLOPs
Mask R-CNN 1× RetinaNet 1×

AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 AP b
S AP b

M AP b
L

PVTv2-B0 [57] 23 (13) 195 (177) 38.2 60.5 40.7 36.2 57.8 38.6 37.2 57.2 39.5 23.1 40.4 49.7
MPViT-T 28 (17) 216 (196) 42.2 64.2 45.8 39.0 61.4 41.8 41.8 62.7 44.6 27.2 45.1 54.2
PVT-T [58] 33 (23) 240 (221) 39.8 62.2 43.0 37.4 59.3 39.9 39.4 59.8 42.0 25.5 42.0 52.1
PVTv2-B1 [57] 33 (23) 243 (225) 41.8 54.3 45.9 38.8 61.2 41.6 41.2 61.9 43.9 25.4 44.5 54.3
MPViT-XS 30 (20) 231 (211) 44.2 66.7 48.4 40.4 63.4 43.4 43.8 65.0 47.1 28.1 47.6 56.5
ResNet-50 [23] 44 (38) 260 (239) 38.0 58.6 41.4 34.4 55.1 36.7 36.3 55.3 38.6 19.3 40.4 48.8
PVT-S [58] 44 (34) 305 (226) 43.0 65.3 46.9 39.9 62.5 42.8 42.2 62.7 45.0 26.2 45.2 57.2
PVTv2-B2 [57] 45 (35) 309 (290) 45.3 67.1 49.6 41.2 64.2 44.4 44.6 65.6 47.6 27.4 48.8 58.6
Swin-T [37] 48 (39) 267 (245) 43.7 66.6 47.7 39.8 63.3 42.7 42.0 63.0 44.7 26.6 45.8 55.7
Focal-T [67] 49 (39) 291 (265) 44.8 67.7 49.2 41.0 64.7 44.2 43.7 65.2 46.7 28.6 47.4 56.9
MPViT-S 43 (32) 268 (248) 46.4 68.6 51.2 42.4 65.6 45.7 45.7 57.3 48.8 28.7 49.7 59.2
ResNeXt101-64x4d [64] 102 (96) 493 (473) 42.8 63.8 47.3 38.4 60.6 41.3 41.0 60.9 44.0 23.9 45.2 54.0
PVT-M [58] 64 (54) 392 (283) 42.0 64.4 45.6 39.0 61.6 42.1 41.9 63.1 44.3 25.0 44.9 57.6
PVT-L [58] 81 (71) 494 (345) 42.9 65.0 46.6 39.5 61.9 42.5 42.6 63.7 45.4 25.8 46.0 58.4
PVTv2-B5 [57] 101 (91) 557 (538) 47.4 68.6 51.9 42.5 65.7 46.0 46.2 67.1 49.5 28.5 50.0 62.5
Swin-S [37] 69 (60) 359 (335) 46.5 68.7 51.3 42.1 65.8 45.2 45.0 66.2 48.3 27.9 48.8 59.5
Swin-B [37] 107 (98) 496 (477) 46.9 69.2 51.6 42.3 66.0 45.5 45.0 66.4 48.3 28.4 49.1 60.6
Focal-S [67] 71 (62) 401 (367) 47.4 69.8 51.9 42.8 66.6 46.1 45.6 67.0 48.7 29.5 49.5 60.3
Focal-B [67] 110 (101) 533 (514) 47.8 70.2 52.5 43.2 67.3 46.5 46.3 68.0 49.8 31.7 50.4 60.8
MPViT-B 95 (85) 503 (482) 48.2 70.0 52.9 43.5 67.1 46.8 47.0 68.4 50.8 29.4 51.3 61.5

Table 10. COCO detection and instance segmentation with RetinaNet [35] and Mask R-CNN [22]. Models are trained for 1× sched-
ule [61] with single-scale training inputs. All backbones are pretrained on ImageNet-1K. We omit models pretrained on larger-datasets (e.g.,
ImageNet-21K). The GFLOPs are measured at resolution 800 × 1280. Mask R-CNN’s parameters/FLOPs are followed by RetinaNet in
parentheses.

on RetinaNet [35] and Mask R-CNN [22] with 1× sched-
ule (12 epochs) [61] using single-scale inputs. Tab. 10
shows result comparisons with state-of-the-art methods. In
the results of 3× schedule + multi-scale (MS), we can also
observe that MPViTs consistently outperform on both Reti-
naNet and Mask R-CNN. We note that MPViTs surpass the
most recent improved PVTv2 [57] models.

A.3. More Qualitative Results

Visualization of Attention Maps. As shown in Eq.(4), the
factorized self-attention in [65] first extracts channel-wise
attention softmax(K) by applying a softmax over spatial
dimensions (x, y). Then, softmax(K)TV is computed as
below:

(softmax(K)TV)(ci, cj)

=
∑
(x,y)

softmax(K)(x, y, ci)V (x, y, cj), (5)

where x and y are position of tokens. ci and cj indicate
channel indices of K and V , respectively. It can be inter-
preted as multiplying V by the channel-wise spatial atten-
tion in a pixel-wise manner followed by the sum over spatial
dimension. In other words, softmax(K)TV represents the
weighted sum of V where the weight of each position (x, y)
is the channel-wise spatial attention. Therefore, to obtain
the importance of each position, we employ the mean of
softmax(K) over the channel dimension, resulting in spa-
tial attention. Then, the spatial attention is overlaid to the

original input image for better visualization, as shown in
Fig. 6. In detail, we resize the spatial attention to the size
of the original image, normalize the value to [0,1], and then
multiply the attention map by the image.

To validate the effectiveness of our attention map qual-
itatively, we compare attention maps of MPViT and CoaT-
Lite [65] in Fig. 6. We compare the attention maps of each
method generated from the 4th stage in the same way. For a
fair comparison, we pick the best qualitative attention map
of each method since both CoaT-Lite and MPViT have eight
heads for each layer. Furthermore, we visualize attention
maps extracted from all three paths of MPViT to observe
the individual effects of each path.

As mentioned in Section 5, the three paths of MPViT
can capture objects of varying sizes due to the multi-scale
embedding of MPViT as the similar effect of multiple re-
ceptive fields. In other words, path-1 concentrates on small
objects or textures while path-3 focuses on large objects or
high-level semantic concepts. We support this intuition by
observing more examples shown in Fig. 6. Attention maps
of path-1 (3rd column) capture small objects such as small
ducks (4th row), an orange (5th row), a small ball (6th row),
and an antelope (8th row). In addition, since path-1 also
captures textures due to a smaller receptive field, a rela-
tively low level of attention is present in the background.
In contrast, we can observe different behavior for path-3,
which can be seen in the rightmost column. Path-3 accen-
tuates large objects while suppressing the background and
smaller objects. For example, the ducks (4th row), orange
(5th row), and ball (8th row) are masked out in the rightmost

11

column since path-3 concentrates on larger objects. The at-
tention maps of path-2 (4th column) showcase the changing
behavior between paths-1 and 3 since the scale of path-2
is in-between the scales of paths-1 and 3, and accordingly,
the attention maps also begin to transition from smaller to
larger objects. In other words, although the attention map
of path-2 attends similar regions as path-1, it is also more
likely to emphasize larger objects, as path-3 does. For ex-
ample, in the last row, path-2 attends to similar regions as
path-1 while emphasizing the large giraffes more than path-
1. Therefore, although the three paths independently deal
with different scales, they act in a complementary manner,
which is beneficial for dense prediction tasks.

Since Coat-Lite has a single-path architecture, the singu-
lar path needs to deal with objects of varying sizes. There-
fore, attention maps from CoaT-Lite (2nd column) simulta-
neously attend to large and small objects, as shown in the
4th row. However, it is difficult to capture all objects with
a single path, as CoaT-Lite misses the orange (5th row) and
ball (7th row). In addition, Coat-Lite cannot capture object
boundaries as precisely as path-3 of MPViT since path-3
need not attend to small objects or textures. As a result,
MPViT shows superior results compared to Coat-Lite on
classification, detection, and segmentation tasks.

Failure case. In order to verify the effects of attention from
a different perspective, we further analyze failure cases on
the ImageNet validation images. We show attention maps
of each path corresponding to the input image along with
the ground truth and the predicted labels of MPViT in Fig. 7.
For example, in the first row, the ground truth of the in-
put image is a forklift, while the predicted label is a trailer
truck. Although the attention map from path-1 places light
emphasis on the forklift, the attention maps from all paths
commonly accentuate the trailer truck rather than the fork-
lift, which leads to classifying the image as a trailer truck
and not a forklift. Other classification results in Fig. 7 fail
in similar circumstances, except for the last row. In the last
row, MPViTs attention maps correctly capture the beer bot-
tle. However, the attention maps also attend to the face near
the bottle. Therefore, the bottle is misunderstood as a mi-
crophone since the image of “drinking a bottle of beer” and
“using a microphone” are semantically similar. From the
above, we can observe that the attention maps and the pre-
dicted results are highly correlated.

References

[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vi-
sion transformer. In ICCV, 2021. 1

[2] Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and
Philip J Kellman. Deep convolutional networks do not clas-

sify based on global object shape. PLoS computational biol-
ogy, 14(12):e1006613, 2018. 4

[3] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In ICML, 2021. 1

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 1

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1,
5, 10

[6] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit:
Cross-attention multi-scale vision transformer for image
classification. In ICCV, 2021. 3, 5, 9

[7] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In CVPR, 2021. 1

[8] Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu,
Longhui Wei, and Qi Tian. Visformer: The vision-friendly
transformer. In ICCV, 2021. 3

[9] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In CVPR, 2017. 4

[10] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. In NeurIPS, 2021. 9, 10

[11] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 7, 10

[12] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen.
Up-detr: Unsupervised pre-training for object detection with
transformers. In CVPR, 2021. 1

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2, 5

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT (1),
2019. 1, 9

[15] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and
accurate model scaling. In CVPR, 2021. 9

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 1,
3

[17] Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr
Bojanowski, Matthijs Douze, Armand Joulin, Ivan Laptev,
Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al.
Xcit: Cross-covariance image transformers. In NeurIPS,
2021. 1, 2, 3, 5, 6, 7, 8, 9, 10

[18] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In ICCV, 2021. 1

12

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

Input CoaT-Lite Path-1 (૜ × ૜) Path-2 (૞ × ૞) Path-3 (ૠ × ૠ)
MPViT

Figure 6. Additional Attention Maps generated by CoaT-Lite [65] and our MPViT. MPViT has a triple-path structure with patches of
various sizes (e.g., 3× 3, 5× 5, 7× 7), leading to fine and coarse features.

13

Path-1 (૜ × ૜) Path-2 (૞ × ૞) Path-3 (ૠ × ૠ)Input

Forklift
Trailer truck

Laptop
Fire screen

Sandbar
Pelican

Eel
Plate

Beer bottle
Microphone

Doormat
Ping-pong ball

Quilt
Tabby

Classification
Results (GT/Pred)

Figure 7. Attention Maps of failure cases on ImageNet validation images. The input image and corresponding attention maps from each
path are illustrated. In the rightmost column, we show the ground truth labels and predicted labels colored with red and blue, respectively.

14

[19] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
Zhang, Ming-Hsuan Yang, and Philip HS Torr. Res2net: A
new multi-scale backbone architecture. TPAMI, 2019. 1, 2

[20] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre
Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze.
Levit: a vision transformer in convnet’s clothing for faster
inference. In ICCV, 2021. 3

[21] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. In NeurIPS,
2021. 9, 10

[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In CVPR, 2017. 5, 6, 7, 10, 11

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 3, 4, 5, 9, 10, 11

[24] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In CVPR, 2020.
9

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In CVPR, 2019. 3, 4

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 4

[27] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In ECCV,
2016. 5, 10

[28] Hiroshi Inoue. Data augmentation by pairing samples for im-
ages classification. arXiv preprint arXiv:1801.02929, 2018.
9

[29] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 3, 4

[30] Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much
position information do convolutional neural networks en-
code? arXiv preprint arXiv:2001.08248, 2020. 4

[31] Osman Semih Kayhan and Jan C van Gemert. On translation
invariance in cnns: Convolutional layers can exploit absolute
spatial location. In CVPR, 2020. 4

[32] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok
Bae, and Jongyoul Park. An energy and gpu-computation
efficient backbone network for real-time object detection. In
CVPRW, 2019. 1, 2, 9

[33] Youngwan Lee, Huieun Kim, Eunsoo Park, Xuenan Cui, and
Hakil Kim. Wide-residual-inception networks for real-time
object detection. In IEEE Intelligent Vehicles Symposium
(IV), 2017. 1

[34] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 1

[35] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017. 5, 6, 10, 11

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 5

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 1, 2, 3, 5, 6, 7, 8, 9, 10, 11

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5, 7,
9, 10

[39] David G Lowe. Object recognition from local scale-invariant
features. In ICCV, 1999. 4

[40] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 9

[41] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and
Christoph Feichtenhofer. Trackformer: Multi-object track-
ing with transformers. arXiv preprint arXiv:2101.02702,
2021. 1

[42] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In ECCV, 2016.
1

[43] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding with unsuper-
vised learning. Technical report, OpenAI, 2018. 1

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2014. 2, 3

[45] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object de-
tection with learnable proposals. In CVPR, 2021. 5, 6, 10

[46] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In AAAI, 2017.
1, 2

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 1

[48] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, 2016. 9

[49] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 9

[50] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 1, 2, 5, 9, 10

[51] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In ICCV, 2021. 1, 5

[52] Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L
Griffiths. Are convolutional neural networks or transformers
more like human vision? arXiv preprint arXiv:2105.07197,
2021. 4

15

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1

[54] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. Max-deeplab: End-to-end panoptic seg-
mentation with mask transformers. In CVPR, 2021. 1

[55] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. TPAMI, 2020. 1, 2

[56] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for
robust visual tracking. In ICCV, 2021. 1

[57] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pvtv2: Improved baselines with pyramid vision transformer.
arXiv preprint arXiv:2106.13797, 2021. 1, 2, 5, 11

[58] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In ICCV, 2021. 1, 2, 3, 5, 6, 9,
11

[59] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 9

[60] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing con-
volutions to vision transformers. In ICCV, 2021. 1, 2, 3, 5,
9

[61] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5, 6,
10, 11

[62] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, 2018. 6, 7, 10

[63] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, 2021. 1

[64] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017. 5, 9, 11

[65] Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-
scale conv-attentional image transformers. In ICCV, 2021.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13

[66] Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vi-
tae: Vision transformer advanced by exploring intrinsic in-
ductive bias. In NeurIPS, 2021. 9, 10

[67] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang
Dai, Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-
attention for local-global interactions in vision transformers.
In NeurIPS, 2021. 1, 2, 3, 5, 6, 7, 8, 9, 11

[68] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan Yuille,
and Wei Shen. Glance-and-gaze vision transformer. In
NeurIPS, 2021. 9

[69] Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao
Zhang, Xilin Chen, and Jingdong Wang. Hrformer: High-
resolution transformer for dense prediction. In NeurIPS,
2021. 9, 10

[70] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019. 9

[71] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu
Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision long-
former: A new vision transformer for high-resolution image
encoding. In ICCV, 2021. 2, 3, 9, 10

[72] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, 2020.
9

[73] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In CVPR, 2017. 5, 6

[74] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2021. 1, 10

16

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	1 . Introduction
	2 . Related works
	3 . Multi-Path Vision Transformer
	3.1 . Architecture
	3.2 . Multi-Scale Patch Embedding
	3.3 . Global-to-Local Feature Interaction
	3.4 . Model Configuration

	4 . Experiments
	4.1 . ImageNet Classification
	4.2 . Object Detection and Instance Segmentation
	4.3 . Semantic segmentation
	4.4 . Ablation study

	5 . Discussion
	6 . Acknowledgement
	A . Appendix
	A.1 . Detailed Experimental Settings
	A.2 . More Experimental Analysis
	A.3 . More Qualitative Results

