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Abstract

Open-vocabulary scene understanding aims to localize
and recognize unseen categories beyond the annotated la-
bel space. The recent breakthrough of 2D open-vocabulary
perception is largely driven by Internet-scale paired image-
text data with rich vocabulary concepts. However, this
success cannot be directly transferred to 3D scenarios
due to the inaccessibility of large-scale 3D-text pairs. To
this end, we propose to distill knowledge encoded in pre-
trained vision-language (VL) foundation models through
captioning multi-view images from 3D, which allows ex-
plicitly associating 3D and semantic-rich captions. Fur-
ther, to foster coarse-to-fine visual-semantic representa-
tion learning from captions, we design hierarchical 3D-
caption pairs, leveraging geometric constraints between
3D scenes and multi-view images. Finally, by employ-
ing contrastive learning, the model learns language-aware
embeddings that connect 3D and text for open-vocabulary
tasks. Our method not only remarkably outperforms base-
line methods by 25.8% ~ 44.7% hloU and 14.5% ~ 50.4%
hAPsq in open-vocabulary semantic and instance segmen-
tation, but also shows robust transferability on challenging
zero-shot domain transfer tasks. See the project website at
https://dingry.github.io/projects/PLA.

1. Introduction

3D scene understanding is a fundamental perception
component in real-world applications such as robot manipu-
lation, virtual reality and human-machine interaction. Deep
learning has attained remarkable success in this area [ 13, 39,

]. However, deep models trained on a human-annotated
dataset are only capable of understanding semantic cate-
gories in that dataset, i.e. closet-set prediction. As a result,
they fail to recognize unseen categories in the open world
(see Fig. 1). This largely restricts their applicability in real-
world scenarios with unbounded categories. Besides, heavy
annotation costs on 3D datasets (e.g. 22.3 minutes for one
scene with 20 classes [7]) further make it infeasible to rely
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Figure 1. An example of 3D open-vocabulary scene understanding
with “bookshelf” as unseen class for ScanNet [7]. The close-set
model mistakes “bookshelf” as “cabinet” or simply misses “book-
shelf” in (a) and (c). Our open-vocabulary model correctly local-
izes and recognizes “bookshelf” in (b) and (d).

on human labor to cover all real-world categories.

This motivates us to study open-vocabulary 3D scene un-
derstanding, which equips a model with the ability to local-
ize and recognize open-set classes beyond the label space of
an annotated dataset (see Fig. 1). Recently, vision-language
(VL) foundation models [34, 22, 48] trained on billions of
web-crawled image data with semantic-rich captions [37]
are capable of learning adequate vision-language embed-
dings to connect text and image, which are further leveraged
to solve many 2D open-vocabulary tasks including object
detection [15, 36], semantic segmentation [44, 26, 52], vi-
sual question answering [32] and etc. Albeit significantly
advancing open-vocabulary image understanding tasks, this
pre-training paradigm is not directly viable in the 3D do-
main due to the absence of large-scale 3D-text pairs.

To this end, initial efforts [51, 20] have attempted to
project 3D data into 2D modalities, such as RGB images
and depth maps, enabling pre-trained VL foundation mod-
els to process the 2D data and achieve object-level open-
vocabulary recognition. Nevertheless, this line of methods
suffers from several major issues, making it suboptimal to
handle scene-level understanding tasks (e.g., instance seg-
mentation). First, multiple RGB images and depth maps are
required to represent a 3D sample, which incurs heavy com-
putation and memory costs during training and inference.
Second, the projection from 3D to 2D induces information
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loss and prohibits direct learning from rich 3D data, lead-
ing to subpar performance. Our preliminary study shows
the cutting-edge 2D open-vocabulary semantic segmenta-
tion method MaskCLIP [52] attains a mere 17.8% mloU
with a 20-fold increase in latency when applied to analyze
projected 2D images from 3D ScanNet dataset.
Thus, considering the success of VL foundation mod-
els for a variety of vision-language tasks [15, 36, 44, 26, 52,
, 20], we ask: is it possible to elicit knowledge encoded in
powerful VL foundation models to build an explicit associa-
tion between 3D and language for open-vocabulary under-
standing? To this end, our core idea is to exploit pre-trained
VL foundation models [ 1, 40] to caption easily-obtained im-
age data aligned with 3D data (i.e. the point set in the corre-
sponding frustum to produce the image). Note that these
images can be acquired through neural rendering [9, 47]
or from the 3D data collection pipeline [7]. By doing so,
we can distill semantic-rich textual descriptions to the 3D
domain, which allows explicit association between 3D and
vocabulary-rich text for zero-shot 3D scene understanding.
Given 3D-language association, the next question is en-
abling a 3D network to learn language-aware embeddings
from (pseudo) captions. The key challenge stems from intri-
cate object compositions in 3D scene-level data (see Fig. 3),
making it difficult to connect objects with corresponding
words in the caption. This differs from object-centric image
data containing a single centered object [34]. Fortunately,
the captioned multi-view images from a 3D scene are re-
lated by 3D geometry, which can be leveraged to build hi-
erarchical point-caption pairs, including scene-, view- and
entity-level captions. These multi-level point-caption pairs
offer coarse-to-fine supervision signals, facilitating learning
adequate visual-semantic representations from rich vocabu-
lary by contrastive learning. Without task-specific design,
our Point-Language Association paradigm, namely PLA, is
generic for various open-vocabulary 3D scene understand-
ing tasks, such as semantic and instance segmentation.
Experimental results for ScanNet [7] and S3IDS [2]
datasets show the effectiveness of our method in in-domain
open-vocabulary tasks with only category shifts, i.e. train-
ing and evaluation are conducted on the same dataset, sur-
passing baselines by 25.8% ~ 44.7% hloU on semantic seg-
mentation and 14.5% ~ 50.4% hAPs5q on instance segmen-
tation. Besides, our model, trained on a dataset (i.e. Scan-
Net), can generalize to another dataset (i.e. S3IDS) with
both data distribution and category shifts, manifesting its
transferability. Finally, our model can benefit from more ad-
vanced foundation models that provide higher-quality cap-
tion supervision, showing its scalability and extensibility.

2. Related Work

3D scene understanding focuses on understanding the se-
mantic meaning of objects and surrounding environment
from point clouds. In this work, we focus on two fundamen-

tal scene understanding tasks: semantic and instance seg-
mentation. 3D semantic segmentation aims to obtain point-
wise semantic predictions for point clouds. Representative
works develop point-based solutions [33, 19] with elab-
orately designed point convolution operations [38, 43] or
transformers [24] or voxel-based [!3, 6] methods with 3D
sparse convolutions [14] to produce point-wise segmenta-
tion results. 3D instance segmentation further targets distin-
guishing different object instances based on semantic seg-
mentation. Existing approaches either adopt a top-down so-
lution [46, 45] via predicting 3D bounding box followed by
mask refinement, or a bottom-up [23, 39] approach through
grouping points. However, existing methods cannot recog-
nize open-set novel categories, which we aim to address.

Zero-shot and open-vocabulary understanding aims to
recognize novel classes that are not annotated in training
data. Early approaches mainly follow zero-shot settings that
can be coarsely grouped into discriminative methods [4 1, 3]
and generative methods [4, 16]. 3DGenZ [28] extends [4]
to the 3D scenario for zero-shot semantic segmentation.
Going beyond zero-shot learning, the more general open-
vocabulary setting assumes a large vocabulary corpus is ac-
cessible during training [50]. Existing 2D open-vocabulary
learning works either exploit massive annotated image-text
pairs to provide weak supervision for expanding vocabu-
lary size [50, 54] or leverage pre-trained VL models from
large-scale image-caption pairs, such as CLIP [34], to ad-
dress open-vocabulary recognition where knowledge distil-
lation [306, 15, 49] and prompt learning [12, | 1] are studied.
In comparison, 3D open-vocabulary learning is still in
its infancy with only a few explorations focusing on ob-
ject classification [51, 20]. They attempt to project object-
level 3D point clouds to multi-view 2D images and depth
maps to adopt the pre-trained VL model to generate open-
vocabulary predictions, which, however, suffer from heavy
computation and poor performance if applied to 3D scene
understanding tasks. In this work, we propose a language-
driven 3D open-vocabulary framework that directly asso-
ciates 3D with text descriptions leveraging multi-view im-
ages and VL foundation models. It can be generally applied
to various scene understanding tasks and is efficient with
only the 3D network employed in training and inference.

3. Method
3.1. Preliminary

3D open-vocabulary scene understanding aims to local-
ize and recognize unseen categories without corresponding
human annotation as supervision. Formally, annotations on
semantic and instance levels Y = {y*™, y'™} are divided
into base C” and novel C" categories. In the training stage,
the 3D model can access all point clouds P = {p} but only
annotations for base classes V2, unaware of both annota-
tions YV and category names concerning novel classes C*V.
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However, during inference, the 3D model needs to localize
objects and classify points belonging to both base and novel
CB UCN categories.

As for a typical scene understanding network, it consists
of a 3D encoder F;p, a dense semantic classification head
Fiem and an instance localization head Fj,. (see Suppl. for
details). Its inference pipeline can be demonstrated below,

prF\gD(p)7 S:UOFsem(fp), Z:Floc(fp,s)7 (1)
where p is the input point cloud, f? is point-wise visual
feature, s is semantic score, z is the instance proposal out-
put and o is the softmax function. With these network pre-
dictions, we can then calculate semantic classification loss
Lgem with semantic label y*™, and localization loss Lo
with instance label y'™ similar to [23, 39] as Eq (2). Notice
that y**™ and y'™ only relate to base categories C5.

Lsem = Loss(s, y*™"), Lioc = LOSS(ZyyinS)- (2)

sem)

3.2. Open-Vocabulary Setups

Though we can train a scene understanding model with
loss functions in Eq. (2), it is actually a close-set model with
a close-set classifier F.y,, incapable of recognizing unseen
categories. In this regard, we introduce the text-embedded
semantic classifier to obtain an open-vocabulary model and
propose a binary calibration module to correct the bias to-
ward base categories for open-vocabulary inference.

3.2.1 Text-Embedded Semantic Classifier

First, as shown in Fig. 2, to make the model become an
open-vocabulary learner, we replace its learnable semantic
classifier Fy., with category embeddings f' and a learnable
vision-language adapter Fy to match the dimension between
3D features f? and f! as follows,

f' =Fy(f?), s=o(f' - £), 3)
where ¥ is the projected features with the VL adapter Fy,
£l = [fl, £l fl] is a series of category embeddings ob-
tained by encoding category names C with a frozen text en-
coder Fiy such as BERT [10] or CLIP [34] (see Fig. 2).
The prediction is made by calculating the cosine similar-
ity among projected point features £ and categories f' and

then selecting the most similar category. Notice that f! only
contains embeddings belonging to base categories C¥ dur-
ing training, but embeddings related to both base and novel
classes CBUCY are used during open-vocabulary inference.
With category embeddings f! as a classifier, the model can
support open-vocabulary inference with any desired cate-
gories. The above design generally follows LSeg [26] and
is named LSeg-3D as a baseline.

3.2.2 Semantic Calibration with Binary Head

Although the model has already possessed open-vocabulary
capability, we empirically find that it can hardly make any
correct predictions on novel classes but mistakes them for
base classes. As the model is only trained to recognize base
categories, it inevitably produces over-confident predictions
on base classes regardless of their correctness, also known
as the calibration problem [17]. To this end, we propose
a binary calibration module to rectify semantic scores with
the probability of a point belonging to base or novel classes.
Specifically, as shown in Fig. 2, the binary head Fy, is em-
ployed to distinguish annotated (i.e. base) and unannotated
(i.e. novel) points. During training, F,, is optimized with:

s’ = Fy(f?), Ly = BCELoss(s’,y?), 4)
where BCELoss(-, -) is the binary cross-entropy loss, y? is
the binary label and s? is the predicted binary score indicat-
ing the probability that a point belongs to novel categories.
In the inference stage, we then exploit the binary probability
s? to correct the over-confident semantic score s as follows,

s=sp-(1—s +sy-s° (5)
where sp is the semantic score computed solely on base
classes with novel class scores set to zero. Similarly, sy is
computed only for novel classes, setting base class scores to
zero. We empirically show that the probability calibration
largely improves the performance of both base and novel
categories (see Sec. 5), demonstrating that our design effec-
tively corrects over-confident semantic predictions.

3.3. Image-Bridged Point-Language Association

With the text-embedded classifier and the binary se-
mantic calibration module, we obtain a deep model with
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Figure 3. Image-bridged point-language association. We present hierarchical scene-level, view-level and entity-level point-language
association manners to assign partial point set with caption supervision through multi-view RGB images and VL foundation models.

open-vocabulary capability. Nevertheless, its performance
on novel categories is very close to random guesses as
shown in Table 5. Recent success of open-vocabulary
works [26, 36, 15] in 2D vision community shows the ef-
fectiveness of introducing language supervision to guide vi-
sion backbones. Language supervision can not only enable
the vision backbone to access abundant semantic concepts
with a large vocabulary size but also assist in mapping vi-
sion and language features into a common space to facilitate
multi-modality downstream tasks. However, Internet-scale
paired point-text data are not as readily available as image-
text pairs on social media, which largely hinders the devel-
opment of language-driven 3D understanding.

To address this challenge, we propose PLA, an image-
bridged point-language association module to provide lan-
guage supervision for 3D scene perception without human
annotation (see Fig. 2 & Fig. 3). Our core idea is to use
multi-view images of a 3D scene as a bridge to access
knowledge encoded in VL foundation models. As shown
in Fig. 3, a text description is first generated by a powerful
image-captioning model taking images of 3D scenes as in-
put, and then associated with a set of points in the 3D scene
using the projection matrix between images and 3D scenes.
We elaborate on our captioning procedure as well as the de-
signed hierarchical point-caption association as follows.

3.3.1 Caption Multi-View Images

As image captioning is a fundamental task in VL research
area [ 18], various foundation models [40, 1, 30] trained with
massive samples are readily available for solving this task.
Specifically, taking the 5 image of the i scene v;; as in-
put, the pre-trained image-captioning model G can generate
its corresponding language description t7; as follows,

ti; = G(viz). (©)
Surprisingly, though G has not been specifically trained on
the 3D scene understanding dataset, the entities in gener-
ated captions already cover the whole semantic label space
of the popular 3D scene understanding dataset ScanNet [7].
In addition, the caption t provides fairly accurate and com-
prehensive descriptions for room types, semantic categories
with color and texture attributes, and even spatial relations

(see language supervision {t”} examples in Fig. 3 and more
examples in Suppl.).

3.3.2 Associate Point Cloud with Language

Given the image-caption pairs, the next step is to connect a
point set P to language t with images v as bridge as follows:

Explore (P, t) with (P, v) and (v, t). (7
Here, we propose three association fashions on point sets
with different spatial scales.

Scene-Level Point-Caption Association. The simplest and
coarsest association manner is to link language supervision
to all points in a given 3D point cloud scene p° = p. As
illustrated in Fig. 3, we take all 2D image captions t;; of a
given scene p; to obtain a scene-level caption t] via a text

summarizer [25] Goum as follows:

t; = gsum({tql)jv gja e t;;jj})v (8)
where n; is the number of images of scene p;. By forcing
each scene p to learn from the corresponding scene descrip-
tions t°, abundant vocabulary and visual-semantic relation-
ships are introduced to improve the language understanding
capability of a 3D network. Despite the simplicity of scene-
level caption, we empirically find that it can lift the model’s
open-vocabulary capability by a large margin (see Sec. 5).

View-Level Point-Caption Association. Albeit effective,
scene-level caption only provides a single caption for all
points in a scene, which overlooks the relation of language
to local 3D point clouds, rendering it sub-optimal for scene
understanding tasks. In this regard, we further propose a
view-level point-caption association that leverages the ge-
ometrical relationship between image and points to assign
each image caption t¥ with a point set inside the 3D view
frustum P* of the given image v (see blue box in Fig. 3).
Specifically, to obtain the view-level point set p¥, we first
back-project the RGB image v to 3D space using the depth
information d to get its corresponding point set p:

[(Bl1]=T7"[v][d], ©)
where [|-] denotes block matrix, T € R3** is the projec-
tion matrix comprising of camera intrinsic matrix and rigid

transformations obtained by sensor configurations or ma-
ture SLAM approaches [8]. As back-projected points p and



points in 3D scene p may be only partially overlapped, we
then compute their overlapped regions to get the view-level
point set p* as follows,

b’ =V H(R(V(B),V(p)) (10)
where V' and V~! are the voxelization and reverse-
voxelization processes, and R denotes the radius-based
nearest-neighbor search [53]. Such a view-based associa-
tion enables the model to learn with region-level language
description, which largely strengthens the model’s recogni-
tion and localization ability on unseen categories.

Entity-Level Point-Caption Association. Although view-
level caption can already associate each image-caption t"
with a concrete partial point set in a 3D scene, such an as-
sociation still constructs on a large 3D area (i.e. around 25K
points) with multiple semantic objects/categories as shown
in Fig. 3. This is not friendly for the 3D network to learn
fine-grained point-wise semantic attributes and instance-
wise position information from caption supervision. In this
regard, we further propose a fine-grained point-language as-
sociation that owns the potential to build entity-level point-
caption pairs, i.e. object instances with a caption.

Specifically, as illustrated in Fig. 3, we leverage the dif-
ferences and intersections of adjacent view-level point sets
P? and their corresponding view-caption t” to obtain the
entity-level associated points p© and caption t°. First, we
calculate entity-level caption t°¢ as below:

w; = E(t]), (11)
wi; = wi \ wy, wi; =wj \wi, win; =w; Nwj, (12)
t° = Concate(w®), (13)

where E denotes extracting a set of entity words w from
caption t¥, \ and N represent the set difference and inter-
section separately, and Concate denotes the concatenation
of all words with spaces to form an entity-level caption t°.
Similarly, we can easily calculate entity-level point sets and
associate them to previously obtained entity-level captions
to form point-caption pairs as below:

ﬁf\j = (IA);J \f);) pj\z (pj \pz )7 l’jfﬂj = ﬁl) n f)317 (14)
< ﬁS\jvtf\j >, < pj\i: j\i >, < Ping, bing > - (15)
With entity-level (P, t°) pairs, we further filter them to

ensure each entity-level points set p® relates to at least one
entity and focuses on a small enough 3D space as follows,

v < [P] <& -min([p7],[P}]) and [t°] >0,  (16)

where < is a scalar to define minimal number of points, 9 is
a ratio to control the maximum size of p©, and caption t€ is
not empty. Such a constraint helps focus on a fine-grained
3D space with fewer entities in each caption supervision.

Comparison Among Different Point-Caption Associa-
tion Manners. The above-proposed three coarse-to-fine
point-caption association manners actually hold different
merits and drawbacks. As shown in Table 1, the scene-level
association has the simplest implementation but obtains the

scene-level view-level entity-level
complexity simplest middle hardest
# captions 1,201 24,902 6,163
# points for each caption | 145,171 24,294 3,933

Table 1. Comparison among point-caption association manners.

coarsest correspondence between captions and points (i.e.
each caption corresponds to over 140K points); the view-
level association provides point-language mapping relation
at a finer level, enjoying a larger semantic label space (i.e.
over 20 x more captions) and a more localized point set (i.e.
around 6x fewer corresponding points per caption) than
scene caption; the entity-level association owns the most
fine-grained correspondence relation, matching each cap-
tion to only 4K points on average, and thus can further bene-
fit dense prediction and instance localization in downstream
tasks. We empirically show that the fine-grained association
and the semantic-rich label space are two important factors
for open-vocabulary perception tasks (see Sec. 5).

3.4. Contrastive Point-Language Training

With obtained point-caption pairs (P, t), we are ready
to guide the 3D network F;p to learn from vocabulary-rich
language supervisions. Here, we introduce a general point-
language feature contrastive learning that can be applied to
all kinds of coarse-to-fine point-caption pairs.

Specifically, we first obtain caption embeddings f¢ with
a pre-trained text encoder F.x. As for the associated partial
point set P, we select its corresponding point-wise features
from adapted features f¥ and leverage global average pool-
ing to obtain its feature vector £? as follows,

f! = Fiex(t), 2 = Pool(p, fV). (17)

We then adopt contrastive loss as [50] to pull correspond-
ing point-caption feature embeddings closer and push away
unrelated point-caption features as follows,

n D et
Lo = 721 exp (f] fI'J/Tt) (18)
J m exp(f] f/ )

where n; is the number of point-caption pairs in any given
association fashion and 7 is a learnable temperature to mod-
ulate the logits as CLIP [34]. It is also worth noting that
we remove duplicate captions in a batch to avoid noisy op-
timization during contrastive learning. With Eq. (17) and
Eq. (18), we can easily compute caption losses on scene-

level L3, view-level L, and entity-level £g,,. Our final
caption loss is a weighted combination as follows,
£glllp = 1 *£C4p+a2*£cap+a3*£0ap7 (19)

where «1, ao and a3 are trade-off factors. As shown in
Fig. 2, the overall training objective can be written as

L= Esem + Eloc + ‘Ccap + Ebi- (20)



ScanNet S3DIS

Method cN prior B15/N4 B12/N7 B10/N9 B8/N4 B6/N6
hIoU mloU® mIoU% [hloU mIoU? mloU” [hIoU mloU® mIoU” [hloU mIoU? mloU” [hIoU mloU® mlIoU
LSeg-3D [26] X 000 644 000 [00.9 557 001 [01.8 684 009 |00.1 490 00. [00.0 30.1 00.0
3DGenZ [28] v 206 560 126 [198 355 133 |120 63.6 066 |088 503 048 |094 203 06.1
3DTZSL [5] v 105 367 06.1 [03.8 366 020 |07.8 555 042 |084 431 047 |035 282 019
PLA (w/o Cap.) X 397 683 280 [245 700 148 [257 756 155 |13.0 580 074 [122 545 068
PLA X 653 683 624 [553 695 459 [531 762 40.8 |34.6 59.0 245 [385 555 294
PLA (W/ self-train)| v 703 689 717 |61.1 704 540 592 769 482 [36.1 597 260 |46.7 589 387
Fully-Sup. v 733 684 79.1 [706 700 71.8 [69.9 758 649 [675 614 750 [654 599 720

Table 2. Results for open-vocabulary 3D semantic segmentation on ScanNet and S3DIS in terms of hloU, mloU? and mloUV. ¢V prior
denotes whether novel category names C" need to be known during training. PLA (w/o Cap.) denotes training without point-caption pairs
as supervision. Best open-vocabulary results are highlighted in bold.

ScanNet S3DIS

Method ¢™ prior BI13/N4 BI0/N7 B8/N9 B8/N4 B6/N6
hAPs0 mAPS, mAPL, [hAPso mAPE, mAPL, |hAPso mAPS, mAPZ, |hAPso mAPS, mAPL, [hAPso mAPE, mAPL,
LSeg-3D [26] X 05.1 579 026 | 020 507 OI.0 | 024 594 012 | 005 583 003 | 0.1 414 005
PLA (w/o Cap.) X 210 59.6 126 | 11.1 562 062 | 159 632 09.1 | 01.8 593 009 | 01.3 492 012
PLA X 555 585 529 | 312 546 219 | 359 631 251|150 590 08.6 | 160 469 09.8
PLA (w/ self-train)| v 58.6 58.0 592 | 414 569 326 | 421 61.1 321 | 267 603 172 | 234 456 158
Fully-Sup. v 645 594 705 | 625 576 620 | 620 651 620 | 576 60.8 546 | 574 500 675

Table 3. Results for open-vocabulary 3D instance segmentation on ScanNet and S3DIS in terms of hAP50, mAPS, and mAPQ(f).

4. Experiments

4.1. Basic Setups

Datasets and Perception Tasks. To validate the effective-
ness of our point-language association paradigm, we con-
duct experiments on two datasets: ScanNet [7] densely an-
notated in 20 classes and S3DIS [2] with 13 classes on both
semantic and instance segmentation tasks.

Category Partitions. Without standard open-vocabulary
partitions on these two datasets, we build an open-
vocabulary benchmark with multiple base/novel partitions.
To circumvent model confusion, we disregard the “otherfur-
niture” class in ScanNet and the “clutter” class in S3DIS as
they lack exact semantic meanings and can include any se-
mantic categories. As for ScanNet, we randomly partition
the rest 19 classes into 3 base/novel partitions for seman-
tic segmentation, i.e. B15/N4, B12/N7 and B10/N9, where
B15/N4 indicates 15 base and 4 novel categories. We also
follow SoftGroup [39] to exclude two background classes
and thus obtain B13/N4, B10/N7, and B8/N9 partitions for
instance segmentation on ScanNet. As for S3DIS, we ran-
domly shuffle the rest 12 classes into 2 base/novel splits,
i.e. B8/N4, B6/N6 for both semantic and instance segmen-
tation. Specific category splits are presented in the Suppl..

Metrics. We employ widely adopted mean intersection
over union (mloU) and mean average precision under 50%
IoU threshold (mAPs5g) as evaluation metrics for semantic
and instance segmentation, respectively. These metrics are
calculated on base and novel classes separately with super-
scripts of B and NV (e.g. mlIoUB). Further, we use harmonic
mean loU (hloU) and AP5( (hAP5¢) as major indicators fol-
lowing popular zero-shot learning works [41, 44] to con-
sider category partition between base and novel.

Architectures and Baseline Methods. We adopt the popu-
lar and high-performance sparse convolutional UNet [13, 6]
as 3D encoder F;p, the text encoder of CLIP as Fiy, two
fully-connected layers with batch normalization [21] and
ReLU [31] as VL adapter Fy, an UNet decoder as binary
head F,. Also, we utilize the state-of-the-art instance seg-
mentation network SoftGroup [39] for instance head Fjy;.

As for baseline methods, other than the above-mentioned
LSeg-3D in Sec.3.2.1, we also re-produce two 3D zero-shot
learning methods 3DGenZ [28] and 3DTZSL [5] with task-
tailored modifications. The implementation details are pro-
vided in the Suppl..

4.2. Main Results

3D Semantic Segmentation. As shown in Table 2, com-
pared to LSeg-3D [26] baseline, our method obtains around
51.3% ~ 65.3% and 34.5% ~ 38.5% hloU improvements
among different partitions on ScanNet and S3DIS respec-
tively, demonstrating its superior open-vocabulary capa-
bility. Even compared to previous zero-shot methods
3DGenZ [28] and 3DTZSL [5] that know novel category
names during training, our method still obtains 35.5% ~
54.8% improvements in terms of hloU among various par-
titions on ScanNet. Especially, our PLA trained model
largely surpasses its no caption supervision counterparts
(i.e. PLA (w/o Cap.)) by 25.6% ~ 30.8% hloU and 21.6%
~ 26.3% hloU on ScanNet and S3DIS, respectively. It is
noteworthy that the improvement from our method is con-
sistent on different base/novel partitions and datasets, fur-
ther illustrating its robustness and effectiveness.

3D Instance Segmentation. As demonstrated in Table 3,
our method remarkably surpasses baseline methods by
29.2% ~ 50.4% hAPsq and 14.5% ~ 14.9% hAP5o among
different base/novel partitions on ScanNet and S3DIS, re-



spectively. Such outstanding performance indicates our
contrastive point-language training helps the 3D backbone
learn not only semantic attributes but also instance localiza-
tion information from captions. Notice that the improve-
ment for S3DIS is slighter than ScanNet on both semantic
segmentation and instance segmentation. This is actually
caused by S3DIS’s small number of training samples (only
271 scenes) and much fewer point-caption pairs owing to
fewer overlapped regions between images and 3D scenes.

Self-Bootstrap with Novel Category Prior. As some exist-
ing zero-shot methods (i.e. 3DGenZ [28] and 3DTZSL [5])
can access novel category names but no human-annotation
during training, here we also provide a simple variant to
leverage such novel category prior in self-training fash-
ion [42]. As shown in Table 2 and 3, PLA (w/ self-train) ob-
tains around 2% ~ 12% gains among semantic and instance
segmentation on two datasets. This demonstrates that our
model can further self-bootstrap its zero-shot capability and
extend its vocabulary size without any human annotation.

4.3. Zero-shot Domain Transfer

Our method already shows excellent potential in solving
in-domain open-vocabulary scene understanding tasks with
category shifts. However, transferable open-vocabulary
learners across different domains/datasets also merit ex-
ploration, as they face both category and data distribution
shifts. In this regard, we conduct zero-shot domain transfer
experiments that train the model on ScanNet’s base classes
and test it on all S3DIS classes without fine-tuning. No-
tably, S3DIS has 4 categories not present in ScanNet. As
shown in Table 4, our PLA consistently outperforms LSeg-
3D [26] by 7.7% ~ 18.3% mloU for semantic segmenta-
tion and 5.0% ~ 9.5% mAPs, for instance segmentation.
Such outstanding improvements substantiate our model’s
generality for both category shift and data distribution shift.
Note that we do not use the binary head for domain trans-
fer here, as the base/novel partition is dataset-specific. We
leave calibrating base and novel semantic predictions in out-
of-domain open-vocabulary scenarios to future work.

5. Ablation Studies

In this section, we examine key components of our
framework through in-depth ablation studies. Experiments
are conducted on ScanNet B15/N4 partition by default. The
default setting is marked in gray .

our proposed binary calibration module and three coarse-
to-fine point-caption supervision here. As shown in Ta-
ble 5, adopting binary head for semantic calibration greatly
surpasses baseline LSeg-3D by 39.8% hloU on semantic
segmentation and 15.9% hAP5o on instance segmentation.
Such performance lifts on both base and novel classes verify
that it correctly rectifies semantic scores.

As for point-caption association manners, they all sub-
stantially improve results by a large margin of 14.8% ~
23.8% hloU and 31.8% ~ 35.6% hAPs5, on semantic and
instance segmentation, respectively. Among three associa-
tion fashions, entity-level caption supervision performs the
best, demonstrating that fine-grained language-point corre-
spondence is one of the most vital considerations for con-
structing point-caption pairs. Notice that when we combine
different types of captions, the model will not always obtain
improvements in all scenarios, potentially caused by the dif-
ficulty of simultaneously optimizing multiple caption losses
with various granularities on some tasks.

Binarycgf:;’fg'gi Cape 110U / mIoU® /mloU™ |nAPso / mAPE, / mAPY,

00.0764.4700.0 05.1757.97026
7 39.8/68.5/28.1 31.0/59.6/12.8
v v 5461679745 52.8/57.8/36.6
v v 613/685/55.5 55.9/58.9/53.3
v v | 63.6/67.8/60.0 56.6/59.0/ 54.4
v Vv 619/63.1/56.8 5497595/51.0
v v | v | 65376837624 55.5/58.5/52.9
v v |v|v] 646/690/608 545/582/51.4

ScanNet | S3DIS Semantic (mIoU) | S3DIS Instance (mAPs)
partition | LSeg-3D PLA LSeg-3D PLA

B19/NO 42.5 50.2 (+7.7) 37.5 43.6 (+6.1)
B15/N4 30.2 48.5 (+18.3) 31.2 40.7 (+9.5)
B12/N7 26.1 38.3 (+12.2) 28.2 35.1 (+6.9)
B10/N9 34.5 48.1 (+13.6) 33.8 38.8 (+5.0)

Table 4. Zero-shot domain transfer results for semantic segmenta-
tion and instance segmentation on ScanNet — S3DIS.

Component Analysis. We investigate the effectiveness of

Table 5. Component analysis on ScanNet. Binary denotes binary
head calibration. Cap®, Cap" and Cap® denotes scene-level, view-
level and entity-level caption supervision, respectively.

Caption Composition Analysis. As a caption can com-
posite entities (e.g. sofa), their relationships (e.g. spatial re-
lation) and attributes (e.g. color and texture), we investi-
gate which types of words mainly contribute to the open-
vocabulary capability. As shown in Table 6, when only
keeping entity phrases in the caption, (a) variant even out-
performs the full caption variant. In addition, if we only
keep entities that exactly match category names in cap-
tions, obtained (b) variant suffers over 13% mloU degrada-
tion on novel categories, showing that diverse entity words
to expand semantic space is a crucial factor for captions.
Furthermore, although the (c) variant introduces both cor-
rect base and novel label names in the caption, it still ob-
tains slightly inferior performance to our foundation-model-
generated caption, illustrating existing foundation models
are powerful enough to provide promising supervision.

hloU / mIoU® / mIoU¥
65.7/69.0/62.7
57.6/68.5/49.6
64.8/68.1/61.9
65.3/68.3/62.4

Caption Composition

(a) keep only entities

(b) keep only label names
(c) ground-truth label names
(d) full caption

Table 6. Ablation of caption composition.
Text Encoder Selection. Here, we compare different text
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Figure 4. Qualitative results of recognizing out-of-vocabulary classes. (a) demonstrates the results of recognizing synonymical classes. (b)
shows the segmentation results on abstract concepts. (c) presents the results of segmenting unannotated categories in the dataset.

encoders Fiy for extracting caption and category embed-
dings. As shown in Table 7, the vision-language pre-trained
text encoder of CLIP [34] shows over 7% higher mloUV
than BERT [10] and GPT2 [35] that are only pre-trained on
language modality. This demonstrates that the vision-aware
text encoder can provide better language embedding for 3D-
language tasks since 3D also leverages texture, shape and
RGB information as images for recognition.

Text Encoder BERT [10] GPT2 [35] CLIP [34]
hloU / mIoU? / mloU™ [61.2/68.7/55.2[61.0/69.1/54.6|65.3/68.3 / 62.4

Table 7. Ablation of text encoder.

Foundation Model for Image Captioning. By default, we
employ one of the most popular open-source image cap-
tioning models, GPT-ViT2 [1], on the HuggingFace plat-
form to generate captions in main experiments. However,
as shown in Table 8, the recent state-of-the-art founda-
tion model OFA [40] can consistently surpass GPT-ViT2 on
three partitions, which reflects the potential of our method
to be further boosted with stronger foundation models.

hloU / mIoU® / mIoUY
B15/N4 BI2/N7 B10/N9
ViT-GPT2 [1]]65.3/68.3/62.4|553/69.5/45.953.1/76.2/40.8
OFA [40] 65.6/68.3/63.1|57.5/69.8/48.9|56.6/75.9/45.1

model

Table 8. Ablation of VL foundation model for image captioning.

6. Qualitative Analysis

To more straightforwardly illustrate the open-vocabulary
ability of our method, we present some interesting quali-
tative results in terms of recognizing synonymical classes,
abstract classes and even unannotated classes.
Synonymical Novel Classes. Here, we substitute class
names with related but new words for inference. As illus-
trated in Fig. S9 (a), when we replace “sofa” with “couch”
or “refrigerator” with “freezer”, the model still attains a
high-quality segmentation mask. This demonstrates our
model is robust to recognize synonymical concepts.

Abstract Novel Classes. Apart from object entities, we
find the model is able to understand more abstract concepts
such as room types. As shown in Fig. S9 (b), by remov-
ing “shower curtain”, “toilet”, “sink” and “bathtub” in in-
put categories and adding “bathroom”, the predicted “bath-
room” roughly covers the real bathroom region. The right
example shows the model can also understand ‘kitchen’ re-
gions. It indicates our model is capable to recognize out-of-
vocabulary and abstract concepts beyond concrete semantic
objects.

Unannotated Novel Classes. As current 3D datasets fail
to annotate all classes due to insufferable annotation costs,
our model owns the potential to recognize those unan-
notated classes with high-quality predictions, facilitating
open-world applications. As shown in Fig. S9 (c), the model
successfully identifies “monitor” and “blackboard” that are
not included in the dataset annotations with accurate masks.

7. Conclusion

We propose PLA, a general and effective language-
driven 3D scene understanding framework that enables the
3D model to localize and recognize novel categories. By
leveraging images as a bridge, we construct hierarchical
point-language pairs harvesting powerful 2D VL foundation
models and geometric constraints between 3D scenes and
2D images. We employ contrastive learning to pull features
of such associated pairs closer, introducing rich semantic
concepts into the 3D network. Extensive experimental re-
sults show the superiority of our method on not only in-
domain open-vocabulary semantic and instance segmenta-
tion, but also challenging out-of-domain zero-shot transfer.
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Outline

In this supplementary file, we provide more experimental
results and details not elaborated on in our main paper due
to page length limits:

* Sec. S1: Details of our open-vocabulary scene under-
standing benchmark.

» Sec. S2: Limitation analysis of PointCLIP for scene
understanding tasks.

e Sec. S3: Additional experimental results on re-
partition results, per-class results, error bar results,
fully-supervised results with caption supervision and
combination of caption supervisions.

e Sec. S4: Examples of image-caption pairs and hierar-
chical point-caption pairs.

e Sec. S5: Qualitative results of open-vocabulary scene
understanding.

 Sec. S6: Limitation and open problems.

S1. Implementation Details

Here, we present the implementation details of dataset
category partition, network modifications, baseline setups,
hyper-parameter configurations and usage of images.

S1.1. Dataset Category Partition

As mentioned in Sec. 4.1 of the main paper, we build
a 3D open-vocabulary benchmark on ScanNet [7] and
S3DIS [2] with multiple base/novel partitions. ScanNet [7]
consists of 1,613 scenes (1,201 scenes for training, 312
scenes for validation and 100 for testing) densely annotated
in 20 classes. We discard the ‘otherfurniture’ class and par-
tition the rest 19 classes into three partitions for semantic
segmentation as shown in Table S9. Note that the B15/N4
partition adheres to the 3DGenZ [28] partitioning scheme.
As for instance segmentation, we follow SoftGroup [39] to
ignore two background classes (i.e. wall and floor) and ob-
tain corresponding partitions (see Table S10).

S3DIS [2] contains 271 scans across 6 building areas
along with 13 categories. Following previous work [33],
we treat the Sth area as the validation split and other areas
as the training split. We discard the ‘clutter’ class and parti-
tion the rest 12 classes into two partitions for both semantic
segmentation and instance segmentation as demonstrated in
Table S11.

S1.2. Network Modifications

In this section, we elaborate on how to extend a close-
set network to an open-vocabulary learner for semantic seg-
mentation and instance segmentation. We employ sparse-
convolution-based UNet [13] with a base hidden dimension
of 16 as our backbone F;p.
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First, as illustrated in Fig. S5 (a), the close-set network
contains a learnable semantic head F,., that classifies a
fixed number of categories. As discussed in Sec. 3.2 in
the main paper, to obtain an open-vocabulary model, we re-
place the semantic head Fy.,, with a vision-language (VL)
adapter Fy and the category embedding f! encoded by a
fixed text encoder Fix. Note that the category embedding
f! can be treated as replacing the weights of the classifier.
The category embedding f! encodes semantic attributes of
base classes in the training stage and encodes any desired
categories during inference to achieve open-vocabulary se-
mantic segmentation.

Further, as we follow SoftGroup [39] to develop instance
head Fj,s, we modify the close-set designs in SoftGroup to
obtain an open-vocabulary instance head. First, as shown in
Fig. S6, the seg head and the score head that produce per-
class confidence in the vector form are modified to class-
agnostic modules that produce a single scalar for each gen-
erated instance proposal. In this way, we can train these
two heads without needing to know novel categories. Sec-
ond, the learnable cls head that predicts the classification
scores of generated proposals is replaced by the proposal-
level pooling of semantic scores s, which can be extended
to arbitrary categories. Finally, the class statistics, such as
the average number of points in an instance mask for each
class, which assists proposal grouping, are removed to avoid
leakage of novel class information. We empirically show
that those modifications cause little degradation of fully-
supervised performance by 1.1% mAPs5y, as demonstrated
in Table S12. Note that we train the model from scratch
rather than fine-tuning a supervised pretrained model, as
SoftGroup does, to prevent leakage of novel classes during
training. Additionally, we use a smaller hidden dimension
size for the UNet backbone. Consequently, our reproduced
performance differs from that in the original paper.

S1.3. Baseline Setups

As mentioned in Sec. 4.1 of the main paper, we fol-
low LSeg [26] to implement LSeg-3D as a baseline with
UNet [13, 6] backbone, vision-language adapter imple-
mented by MLP and the CLIP [34] ViT-B/16 text encoder.
For the other two 3D zero-shot methods, 3DGenZ [28] and
3DTZSL [5], we reproduce them with the same network and
CLIP text embedding for fair comparisons. Specifically, for
3DGenZ [28], instead of training on samples that only con-
tain base classes, we train it on the whole training dataset
with points belonging to novel classes ignored during opti-
mization. Besides, we remove calibrated stacking that aims
to alleviate bias towards seen classes since it brings ex-
tremely minor performance gains in our implementations.
As for 3DTZSL [5] designed for object classification, we
extend it to segmentation via learning with triplet loss on
the point level instead of the sample level. We implement
its projection net with 2 fully-connected layers and the Tanh



Partition | Base Categories Novel Categories
wall, floor, cabinet, bed, chair, table, door, window, picture, .
B15/N4 . . . P sofa, bookshelf, desk, toilet
counter, curtain, refrigerator, showercurtain, sink, bathtub
wall, floor, cabinet, sofa, door, window, counter, desk, . . .
B12/N7 . . . . bed, chair, table, bookshelf, picture, sink, bathtub
curtain, refrigerator, showercurtain, toilet
B10/N9 wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, refrigerator, showercurtain,
curtain toilet, sink, bathtub
Table S9. Category partitions for open-vocabulary semantic segmentation on ScanNet.
Partition | Base Categories Novel Categories
cabinet, bed, chair, table, door, window, picture, .
B13/N4 . . p. . sofa, bookshelf, desk, toilet
counter, curtain, refrigerator, showercurtain, sink, bathtub
cabinet, sofa, door, window, counter, desk, curtain, . . .
B10/N7 . . . bed, chair, table, bookshelf, picture, sink, bathtub
refrigerator, showercurtain, toilet
. . . . bookshelf, picture, counter, desk, refrigerator, showercurtain,
B8/N9 cabinet, bed, chair, sofa, table, door, window, curtain . . P &
toilet, sink, bathtub

Table S10. Category partitions for open-vocabulary instance segmentation on ScanNet.

activation function, the same as its paper claimed.

S1.4. Hyper-Parameter Configurations

We train 19,216 iterations on ScanNet and 4,080 iter-
ations on S3DIS for semantic segmentation. For instance
segmentation, we train 24,020 iterations on ScanNet and
9,160 iterations on S3DIS. The learning rate is initialized
as 0.004 with cosine decay. We adopt the AdamW [27]
optimizer and run all experiments with 32 batch size on 8
NVIDIA V100 or NVIDIA A100.

For entity-level captions, we filter out some (p¢,t€)
pairs to guarantee the point set p€ is small enough con-
taining only a few entities. Specifically, we set the mini-
mal points «y as 100 and the ratio that controls the maxi-
mum number of points § as 0.3. As for the caption loss, we
set a1, ao and a3 as 0, 0.05 and 0.05 for scene-level ,Cﬁap,
view-level Lg,, and entity-level loss L¢,, for ScanNet, re-
spectively. For S3DIS, we set oy, a2, and ag as 0, 0.08,
and 0.02 separately.

S1.5. Usage of Images

For ScanNet, we use a 25,000-frame subset® from Scan-
Net images for captioning. For S3DIS, as each scene con-
tains a widely varying number of images, we subsample its
images to caption at most 50 images per scene. It is worth
noting that some S3DIS scenes lack corresponding images;
we consequently cannot provide language supervision for
those scenes without images during training.

§https://kaldir.vc.in.tum.de/scannet_benchmark/
documentation
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S2. Analysis of PointCLIP for Scene Under-
standing

In recent years, 2D open-vocabulary understanding [ 15,

, 44, 26] achieves unprecedented success driven by trans-
ferable vision-language models such as CLIP [34] trained
on large-scale image-caption pairs. Inspired by that suc-
cess, PointCLIP [20] has made the first attempt to trans-
fer the knowledge of CLIP into the 3D domain for zero-
shot and few-shot object classification tasks. PointCLIP
projects 3D point clouds into 2D multi-view depth maps and
leverages CLIP to process multi-view depth images to ob-
tain predictions. Finally, the predictions are assembled into
3D predictions. Though some progress has been made in
object-level understanding, our experimental results show
that PointCLIP is not suitable for scene-level understand-
ing tasks with poor performance and heavy inference over-
heads.
Task-specific modifications. To extend PointCLIP for 3D
scene understanding, we make the following modifications.
First, we follow the state-of-the-art 2D open-vocabulary se-
mantic segmentation method MaskCLIP [52] to modify the
attentive pooling layer of CLIP’s vision encoder for obtain-
ing pixel-wise dense predictions. Second, instead of us-
ing self-rendered images, we utilize collected depth images
captured by depth sensors since they are realistic with more
accurate depth values. We also explore utilizing collected
RGB images to avoid modal gaps caused by using depth
images. Finally, to assemble multi-view 2D results into 3D,
other than voting to get object-wise predictions, we back-
project all multi-view image predictions into 3D space via
3D geometry and assign predictions to each point of 3D
scenes by searching nearest neighbors in back-projected 3D
point clouds.


https://kaldir.vc.in.tum.de/scannet_benchmark/documentation
https://kaldir.vc.in.tum.de/scannet_benchmark/documentation

Partition Base Categories Novel Categories
B8/N4 ceiling, floor, wall, beam, column, door, chair, board window, table, sofa, bookcase
B6/N6 ceiling, wall, beam, column, chair, bookcase floor, window, door, table, sofa, board

Table S11. Category partitions for open-vocabulary semantic and instance segmentation on S3DIS.
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Fixed module
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(a) Close-set framework

(b) Open-vocabulary framework

Figure S5. Comparison between close-set scene understanding framework and open-vocabulary scene understanding framework.

tion loss and makes the model unable to directly learn from
information-rich 3D data.
In addition, to assess the model efficiency, we use latency

Components
per-class seg head . mAPs0
and score head cls head class statistics
v v v 61.8
v v 62.0
v 61.1
60.7

to measure the execution speed of model inference on a sin-
gle GeForce RTX 2080Ti. As shown in Table S13, Point-
CLIP takes an average of 1667ms to process images of one
3D scene, which is rather costly, not to mention the post-

Table S12. Fully-supervised instance segmentation results of dif-

ferent SoftGroup variants upon ScanNet in terms of mAP5.

Results. As shown in Table S13, with depth images as

processing time for back-projection and results ensemble.
Instead, our 3D network only costs 83ms to process one 3D
sample, which is 20 times more efficient than PointCLIP.
In sum, the poor zero-shot performance, information loss
from projection, and heavy computation costs render this
line of work not suitable for 3D scene understanding and
prevent us from exploring further on this stream of work.

Input 2D mloU 3D mloU latency (ms)
depth images 02.2 01.7 1667
RGB images 17.8 17.2 1667

Table S13. Results of zero-shot 3D semantic segmentation using
PointCLIP on ScanNet.

input, the modified PointCLIP obtains only 2.2% mloU
on 2D semantic segmentation with 5,436 validation sam-
ples of ScanNet. The assembled 3D prediction only attains
1.7% mloU on 312 samples, which is very close to random
guesses. When alternated to use RGB images as input, the
performance lifts to 17.8% mloU on 2D and 17.2% mloU
on 3D, demonstrating that using RGB images can avoid an-
noying modal gaps. However, the performance is still mod-
erate, which suggests this projection-based stream of work
is sub-optimal for tackling 3D scene understanding tasks.
Though further fine-tuning on seen categories might benefit
model performance, this line of research has a key limita-
tion: by projecting 3D data to 2D, it suffers from informa-
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S3. Additional Experimental Results

S3.1. Re-partition Experiments

. hloU / mIoU” / mIoU”
Splits
LSeg-3D [26] Ours
random-sample 1 00.0/61.7/00.0 | 65.3/68.3/62.4
random-sample 2 00.0/48.5/00.0 | 53.1/70.1/42.7
random-sample 3 00.3/66.1/00.2 60.9/69.2/54.5
frequency-sample | 00.0/68.7/00.0 | 62.6/69.0/57.3

Table S14. Results of re-sampled base and novel categories.

To ensure the reliability of results, we randomly re-
sample base and novel categories three times and sample
it based on class frequency for the B15/N4 ScanNet seman-
tic segmentation task. As shown in Table S14, our method
consistently exceeds LSeg-3D baseline among four differ-
ent splits by a large margin of 53.1% ~ 65.3% hloU, which



Modified modules

4 N N
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(a) Close-set instance head

(a) Open-vocabulary instance head

Figure S6. Comparison between close-set instance head and open-vocabulary instance head.

reveals the robustness of our methods in handling different
novel classes.

S3.2. Per-class Results

We present per-category performances of our open-
vocabulary 3D scene understanding framework on seman-
tic and instance segmentation. As shown in Table S15
and Table S16, novel classes generally perform worse than
base classes without annotation supervision. With the
space of novel categories enlarged (e.g. from B15/N4 to
B12/N7 partition), the performance on novel classes de-
grades (e.g. ‘bookshelf’ obtains 7.4% mloU drop from
B15/N4 to B12/N7 partition on semantic segmentation) due
to the insufficient seen-category data to tune the model.

S3.3. Error Bar

Here, to show the robustness of our experimental results,
we repeat the experiments on open-vocabulary semantic and
instance segmentation three times and report their average
along with standard deviation. As shown in Table S17 and
Table S18, the results on base classes are slightly more sta-
ble than novel classes with lower standard deviations, which
demonstrates the higher confidence uncertainty of novel
class predictions. Besides, results on ScanNet are more sta-
ble than S3DIS, which indicates that the sample size and
diversity contribute a lot to the performance stability.

S3.4. Equipping Fully-Supervised Model with
Point-Caption Supervision.

As demonstrated in Table S19, fully-supervised models
equipped with caption supervision loss perform similarly to
those without it, as they already have access to annotations
for all categories. In this scenario, our language supervision
neither hinders nor enhances fully-supervised performance,
validating our fairness in using the fully-supervised model
for comparison in the main paper.

S3.5. Combination of Caption Supervisions.

The combination of three captions, including the scene-
level caption, can result in a 0.6% increase in hloU, as
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shown in Table S20. However, finding such a right balance
between these captions requires sophisticated loss trade-off
techniques that are not universally applicable across differ-
ent datasets. Therefore, the scene-level caption is not used
in our paper for the sake of generalization. Further studies
on effectively combining caption supervisions would be a
future investigation.

S4. Caption Examples

In this section, we present examples of image-caption
pairs obtained by vision-language (VL) foundation models
and examples of hierarchical associated point-caption pairs.
As illustrated in Fig. S7, image captions describe main enti-
ties of images along with room types (e.g. kitchen), texture
(e.g. leather), color (e.g. green) or spatial relationships (e.g.
on top of), conveying rich semantic clues with large vocab-
ulary size. Moreover, uncommon classes such as ‘buddha
statue’ are also correctly detected, reflecting the generaliz-
ability of existing VL foundation models and semantic com-
prehensiveness of generated captions.

With obtained image-caption pairs, we are capable to
associate 3D points and captions hierarchically leveraging
geometric constraints between 3D point clouds and multi-
view images. As shown in Fig. S8 (a), the scene-level cap-
tion describes each area/room (e.g. kitchen, living room)
in the whole scene with abundant vocabulary, providing
semantic-rich language supervision. View-level caption in
Fig. S8 (b) focuses on single view frustums of the 3D point
cloud, capturing more local details with elaborate text de-
scriptions, which enables the model to learn region-wise
vision-semantic relationships. Additionally, as shown in
Fig. S8 (c), the entity-level caption covers only a few en-
tities in small 3D point sets with concrete words, providing
more fine-grained supervisions to learn object-level under-
standing and localization.

S5. Qualitative Results

Here, we provide some qualitative results on open-
vocabulary semantic segmentation and instance segmen-
tation as illustrated in Fig. S9. Compared to the LSeg-
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B15/N4 | 84.6 95.0 649 81.1 879 759 722 619 62.1 69.5 309 60.1 46.5 70.7 50.5 66.1 56.8 59.0 81.7
Sem. | B12/N7 | 84.7 95.1 653 57.8 442 759 345 625 623 62.1 205 57.8 614 724 479 649 859 284 69.6
B10/N9 | 83.8 95.2 64.3 80.9 88.0 78.5 732 60.6 615 68.6 17.7 234 513 70.6 25.7 382 513 273 61.7
B13/N4 | — — 505 77.0 829 434 754 49.0 46.0 43.7 46.5 33.7 232 54.1 49.6 56.0 97.8 47.5 85.8
Inst. | BIO/N7 | — — 537 627 112 70.5 272 47.7 457 30.0 01.5 39.9 40.8 50.6 68.6 84.6 929 24.6 00.0
B8/N9 — — 4511 774 822 842 742 489 51.0 30.0 00.5 02.1 16.8 449 283 35.1 943 16.6 00.0

Table S15. Per-class results of 3D open-vocabulary scene understanding on ScanNet. Performance on novel class are marked in blue .
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Sem B8/N4 | 939 978 829 000 172 156 53.7 358 863 053 373 433
| B6/N6 | 937 79.1 80.1 00.1 285 241 084 37.6 87.0 540 240 069
Inst B8/N4 | 89.5 100.0 50.8 000 353 362 605 001 846 019 00.8 594
’ B6/N6 | 89.5 602 179 000 415 102 02.1 006 862 451 00.1 02.2

Table S16. Per-class results of 3D open-vocabulary scene understanding on S3DIS.

3D baseline that always confuses unseen classes as seen
classes, our framework successfully recognizes novel cat-
egories with accurate semantic masks, which shows our
point-caption association injects rich semantic concepts into
the 3D network. Additionally, the instance prediction masks
of our framework are also accurate, while the LSeg-3D
baseline misses novel objects or predicts incomplete object
masks. It reflects the strong generalized localization ability
of our framework.

S6. Limitation and Open Problems

Although our language-driven open-vocabulary 3D
scene understanding framework introduces rich semantic
concepts for learning adequate visual-semantic relation-
ships, it still suffers from limitations in the following as-
pects. First comes the calibration problem that the model
tends to produce over-confident predictions on base classes,
which lies in both semantic and instance segmentation
tasks. For semantic segmentation, though the binary head
is developed to calibrate semantic scores for in-domain
open-vocabulary scene understanding, it fails to rectify pre-
dictions for out-of-domain transfer tasks. Trained on the
dataset-specific base/novel partition, the binary head is hard
to generalize to other datasets with data distribution shifts,
which encourages us to design more transferable score cal-
ibration modules in the future. As for the instance segmen-
tation task, though we largely address the localization prob-
lem for novel classes through fine-grained point-caption
pairs, the calibration problem also exists in the proposal
grouping process, where objects of novel classes cannot
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group well and probably obtain incomplete instance masks.
We also leave it as a challenge that needs to be resolved
further.

The second problem is that S3DIS achieves slightly
worse open-vocabulary performance than ScanNet, largely
due to its limited sample size and diversity, as well as much
fewer point-caption associations. Inspired by our zero-shot
transfer results, we believe it is an appealing alternative to
pre-train on a large dataset with rich semantic information
and then fine-tune it on the small-scale dataset, which we
leave for future study.



ScanNet S3DIS

Round B15/N4 BI2/N7 B10/N9 B8/N4 B6/N6

hIoU mIoU? mlIoU% [hIoU mIoU®” mlIoU” [hIoU mIoU” mloU” [hloU mIoU®” mloU” [hIoU mIoU® mloU%Y
1 663 684 642 [543 695 446 |52.8 762 40.6 |332 582 233 [394 572 30.0
2 652 686 622 |548 697 452 |533 756 409 |37.0 595 269 [39.5 551  30.8
3 645 67.8 60.8 |359.7 692 480 |53.2 766 40.8 |33.7 594 235 |365 543 275

Average| 653 683 624 [553 695 459 [53.1 762 408 [346 59.0 245 [385 555 294
Std 009 004 017 |01.3 002 01.8 |00.3 005 002 |02.1 007 020 |01.7 O0lL5 O0Ll7

Table S17. Repeat results for open-vocabulary 3D semantic segmentation on ScanNet and S3DIS in terms of hloU, mloU” and mloU% .

ScanNet S3DIS

Round BI13/N4 BI0/N7 B8/N9 B8/N4 B6/N6

hAPso mAPE, mAPZ, |hAPso mAPS, mAPZ, [hAPsy mAPS, mAPL, [hAPso mAPS, mAPL, [hAPso mAPE, mAPL,
1 549 581 520 [ 331 525 241 | 345 621 239 [ 193 592 115 [ 109 492 06.1
2 56.7 579 555 | 284 551 19.1 | 375 638 265 | 92 574 050 | 198 467 126
3 550 595 511 | 321 563 225 | 357 635 248 | 168 600 097 | 174 449 10.8

Average| 555 585 529 | 312 546 219 [ 359 63.1 251 [ 150 59.0 086 | 160 469 09.8
Std | 0.0 009 023 | 025 019 026 | 015 009 013 | 043 O0L.1 027 | 046 022 034

Table S18. Repeat results for open-vocabulary 3D instance segmentation on ScanNet and S3DIS in terms of hAPso, mAP2, and mAPQé.

mloU® / mloU%
B15/N4 B12/N7 B10/N9
Fully-Sup. 70.62 [ 68.4/79.1170.0/71.875.8/64.9
Fully-Sup. + Caption | 70.82 | 68.7/78.9|70.3/71.7|76.7/64.6

Method mloU

Table S19. Fully-supervised results equipped with point-caption
supervision.

ai(scene) aso(view) ag(entity) | hloU/ mloU® / mIoUY
0.000 0.050 0.050 65.3/68.3/62.4
0.033 0.033 0.033 64.6/69.0 / 60.8
0.010 0.045 0.045 65.9/68.2/63.8

Table S20. Ablation for caption loss weights on ScanNet B15/N4.
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a kitchen with a refrigerator a living room with a couch a guitar sitting on the a bathroom with a shower
and a trash can and a bar floor in a room and a green towel

a pink plastic container with a toaster oven sitting on to three leather chairs and a the back of a computer
a bunch of boxes on the floor of a kitchen counter stool in a living room screen on a table
S

B 5 3
S
1

a painting of a flower next to a bedroom with a bed a dresser with drawers and a a treadmill in the corner of
alamp and a buddha statue and pictures on the wall tv on top of it aroom

Figure S7. Examples of image-caption pairs by image-captioning model ViT-GPT2 [1].
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Video shows a person sitting on a couch with their feet A living room is clean and ready for the flooring to be installed. A

on a rug. A guitar is sitting in a room next to a bed. A bed with a gold blanket and a laptop on top of it. A bag of clothes
toaster oven is sitting on top of a kitchen counter. A bike sitting on a chair in a living room. A treadmill in the corner of a
is parked in a living room with a tiled floor. room. an exercise bike in a room with a white curtain.

(a) scene-level caption

a kitchen with a refrigerator a bedroom with a bed a dresser with drawers and a
and a trash can and pictures on the wall tv on top of it

(b) view-level caption

a toaster oven sitting on top
of a kitchen counter

table couch living chair couch hotel lamp bed

(c) entity-level caption

Figure S8. Examples of hierarchical point-caption pairs from ScanNet [7]
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Input Lseg-3D Ours Ground-truth

Figure S9. Qualitative results of open-vocabulary semantic segmentation and instance segmentation. In each example, the first row
illustrates the semantic masks and the second row shows the instance masks. Novel classes are highlighted in red bounding boxes.
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