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Figure 1. Overview of 4D-DRESS. We propose the first real-world 4D dataset of human clothing, capturing 64 human outfits in more than
520 motion sequences. These sequences include a) high-quality 4D textured scans; for each scan, we annotate b) vertex-level semantic
labels, thereby obtaining c) the corresponding garment meshes and fitted SMPL(-X) body meshes.

Abstract

The studies of human clothing for digital avatars have pre-
dominantly relied on synthetic datasets. While easy to col-
lect, synthetic data often fall short in realism and fail to
capture authentic clothing dynamics. Addressing this gap,
we introduce 4D-DRESS, the first real-world 4D dataset
advancing human clothing research with its high-quality
4D textured scans and garment meshes. 4D-DRESS cap-
tures 64 outfits in 520 human motion sequences, amount-
ing to 78k textured scans. Creating a real-world clothing
dataset is challenging, particularly in annotating and seg-
menting the extensive and complex 4D human scans. To
address this, we develop a semi-automatic 4D human pars-
ing pipeline. We efficiently combine a human-in-the-loop
process with automation to accurately label 4D scans in di-
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verse garments and body movements. Leveraging precise
annotations and high-quality garment meshes, we estab-
lish several benchmarks for clothing simulation and recon-
struction. 4D-DRESS offers realistic and challenging data
that complements synthetic sources, paving the way for ad-
vancements in research of lifelike human clothing.

1. Introduction

Human clothing is crucial in various applications such as
3D games, animations, and virtual try-on. Researchers are
actively investigating algorithms for clothing reconstruc-
tion [14, 26, 36] and simulation [4, 5, 17], to achieve re-
alistic clothing behavior, enhance user engagement, and en-
able cross-industry applications. These algorithms are fre-
quently developed and assessed using synthetic datasets [3,
7, 57], since they comprise a) meshes covering various
garment types and outfits and b) parametric body mod-
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Dataset # of Outfits # of Frames Data Format Textured
Semantic

Labels
Loose

Garments

TailorNet [37] 9 5.5k SMPL + Garments ✓
ReSynth [35] 24 30k SMPLX + Point Clouds ✓
CLOTH3D [3] 8.5k 2.1M SMPL + Garments ✓ ✓ ✓
CLOTH4D [57] 1k 100k Mesh + Garments ✓ ✓ ✓
BEDLAM [7] 111 380k SMPL-X + Garments ✓ ✓ ✓
D-LAYERS [43] 5k 700k SMPL + Garments ✓ ✓

BUFF [55] 6 14k Scans + SMPL ✓
CAPE [34] 15 140k SMPL+D
ActorsHQ [25] 8 39k Scans ✓
X-Humans [44] 20 35k Scans + SMPL-(X) ✓
4DHumanOutfit [2] 14 459k Scans + SMPL ✓ ✓

4D-DRESS (Ours) 64 78k Scans + SMPL(-X)
+ Garments ✓ ✓ ✓

Table 1. Summary of 4D clothed human datasets. The datasets highlighted in gray color are synthetic datasets while the others are real-
world scans. # of Outfits: number of outfits included; # of Frames: total number of 3D human frames; Data Format: 3D representations
of human bodies and garments; Textured: with textured map or not; Semantic Labels: with semantic labels for clothing or not; Loose
Garments: containing challenging loose clothing such as dresses or not. 4D-DRESS demonstrates outstanding features against others.

els with diverse motions. While synthetic datasets lead
in outfit quantity and the number of frames provided (re-
fer to Tab. 1), there also presents a significant challenge
in bridging the domain gap between the synthetic and real
garments. Despite the recently released real-world 4D hu-
man datasets such as X-Humans [44], ActorsHQ [25], and
4DHumanOutfit [2], a key limitation persists: they lack ac-
curately segmented garment meshes, offering only raw hu-
man scans. Moreover, these datasets are limited in the num-
ber of loose garments (e.g., jackets and dresses) or dynamic
motions, which reduces their applicability as test benches.
These challenges highlight the need for a real-world 4D
dataset that provides semantic annotations and captures di-
verse garments across various body motions.

In this work, we contribute 4D-DRESS, the first real-
world dataset of human clothing with 4D semantic segmen-
tation. We aim to provide an evaluation testbench with real-
world data for tasks related to human clothing in computer
vision and graphics. We capture over 520 human motion
sequences featuring 64 distinct real-world human outfits in
a high-end multi-view volumetric capture system, similar
to the one used in [12]. The complete dataset comprises a
total of 78k frames, each composed of an 80k-face triangle
mesh, a 1k resolution textured map, and a set of 1k resolu-
tion multi-view images. As illustrated in Fig. 1, we provide
a) high-quality 4D textured scans, b) vertex-level semantic
labels for various clothing types, such as upper, lower, and
outer garments, and c) garment meshes along with their reg-
istered SMPL(-X) body models.

Capturing real-world 4D sequences of humans wearing
various clothing and performing diverse motions requires
dedicated high-end capture facilities. Moreover, processing
these clips into accurately annotated and segmented 4D hu-
man scans presents significant challenges. To develop our

dataset, we tackled the task of labeling 78k high-resolution
meshes at the vertex level. Given that the mesh topologies
of consecutive frames do not inherently correspond, con-
sistently propagating 3D vertex labels from one frame to
the next is non-trivial. While previous methods [6, 38] at-
tempted to fit a fixed-topology parametric body model to the
scans, these template-based approaches still struggle with
scenarios such as a jacket being lifted to reveal a shirt or the
emergence of new vertices on a flowing coat as illustrated
in the example shown in Fig. 3. Consequently, we opted for
an alternative approach. We developed a semi-automatic
and template-free 4D human parsing pipeline. Leveraging
semantic maps from a 2D human parser [16] and a seg-
mentation model [29], we extended these techniques to 4D,
considering both multi-view and temporal consistency. Our
pipeline accurately assigns vertex labels without manual in-
tervention in 96.8% of frames. Within the remaining scans,
only 1.5% of vertices require further rectification, addressed
via a human-in-the-loop process.

The quality of the ground-truth data in 4D-DRESS al-
lows us to establish several evaluation benchmarks for di-
verse tasks, including clothing simulation, reconstruction,
and human parsing. Our evaluation and analysis demon-
strate that 4D-DRESS offers realistic and challenging hu-
man clothing that cannot be readily modeled by existing al-
gorithms, thereby opening avenues for further research. In
summary, our contributions include:

• the first real-world 4D human clothing dataset comprising
4D textured scans, vertex-level semantic labels, garment
meshes, and corresponding parametric body meshes.

• a semi-automatic and template-free 4D human parsing
pipeline for efficient data annotation.

• evaluation benchmarks showing the utility of our dataset.
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2. Related Work
4D clothed human dataset. Datasets featuring clothed
humans can be divided into two categories. Firstly, syn-
thetic datasets [3, 7, 35, 37, 43, 57] create large volume
of synthetic data using graphic engines [48] and simula-
tion tools [11] (Tab. 1 top). These datasets are easy to
scale with ground truth semantic labels available by de-
sign. However, they often lack realism in human appear-
ances, clothing deformations, and motion dynamics. Even
though recent work [7, 50] attempted to achieve photoreal-
istic human textures with manual efforts, it is challenging
to precisely mimic the way real-world clothing moves and
deforms. Therefore, it is essential to create datasets of real-
world human clothing by capturing these intricate details.

The second category (Tab. 1 bottom) involves using
multi-view volumetric capture systems [12, 28] to collect
datasets of people dressed in real-world clothing [2, 19, 22,
24, 25, 34, 44, 45, 47, 54, 55]. However, the resources re-
quired for capturing, storing, and processing this data are
substantial, which limits the size of these publicly available
datasets [2, 44, 55]. Moreover, these methods do not in-
herently provide labeled annotations, offering only tempo-
rally uncorrelated scans. This makes the raw data on these
datasets less suitable for research focusing on human cloth-
ing. 4D-DRESS gathers a variety of human subjects and
outfits providing accurate semantic labels of human cloth-
ing, garment meshes, and SMPL/SMPL-X fits.

Human parsing. Human parsing [53] is a specific task
within semantic segmentation aimed at identifying detailed
body parts and clothing labels. Conventionally, this chal-
lenge is tackled using deep neural networks, trained on im-
ages with their corresponding semantic labels [9, 15, 31].
Although these methods have been successful in 2D [16, 20,
21, 30, 32, 49], applying them to annotate 3D and 4D scans
is still a challenge. Previous work has explored it using two
distinct strategies. One strategy, used by SIZER [47] and
MGN [6], involves rendering multi-view images and pro-
jecting parsing labels onto 3D meshes through a voting pro-
cess. While this method considers consistency across multi-
ple views, it overlooks temporal consistency and falls short
of accurately labeling 4D scans. Another approach, used by
ClothCap [38], registers all scans to a fixed-topology SMPL
model [33] with per-vertex displacements. Yet, this method
struggles with handling large motions and complex clothing
due to limited template resolutions and model-fitting capa-
bilities. This results in noisy labels near boundaries and
loose garments. In contrast, our approach combines multi-
view voting and optical warping in a template-free pipeline,
achieving both multi-view and temporal consistency.

3. Methodology
To accurately label each vertex within our 4D textured scan
sequences, we leverage a semi-automatic parsing pipeline

that incorporates but minimizes manual efforts during the
labeling process. Fig. 2 depicts the overall workflow of our
pipeline. We first render 24 multi-view images of the cur-
rent frame textured scan. We combine those images with
the previous frame’s multi-view images and labels to de-
ploy three state-of-the-art tools to vote candidate labels for
each rendered pixel (Sec. 3.1): a) human image parser, b)
optical flow transfer, and c) segmentation masks. Next, we
re-project and fuse all the 2D label votes via a Graph Cut
optimization to obtain vertex-level semantic labels, consid-
ering neighboring and temporal consistency (Sec. 3.2). For
those challenging frames where further labeling refinement
is needed (around 3% in our dataset), we refined their se-
mantic labels with a manual rectification step that we feed
back into the optimization (Sec. 3.3). We describe the de-
tails of the pipeline within this section.

3.1. Multi-view Parsing
At each frame k ∈ {1, ..., Nframe}, we render the 3D-mesh
into a set of multi-view images, consisting of twelve hori-
zontal, six upper, and six lower uniformly distributed views.
We note this as Iimg,n,k with n ∈ {1, ..., Nview = 24}.
Within the multi-view space, we tackle the problem of as-
signing a label vote l to each pixel p using multi-view
image-based models. The label l varies for human skin,
hair, shoes, upper clothing (shirts, hoodies), lower clothing
(shorts, pants), and outer clothing (jackets, coats). For clar-
ity, we omit the frame index (k) in the following unless they
are strictly needed. Please refer to Fig. 2 and the Supp. Mat.
for more label definitions and the versatility of our parsing
method with new labels like belts and socks.

Human image parser (PAR). Our primary source of la-
bels is a deep-learning image parser, which provides pixel-
level votes for body parts and clothes. Specifically, we ap-
ply Graphonomy [16] to each view n and store the labels as
a new set of images {Ipar} (see Fig. 2). These labels are
then accessible by the vote function fpar,n(p, l) that checks
if the image Ipar,n matches the value l at the pixel p, in
which case returns 1, or 0 otherwise. This vote function
and the other two defined below will be crucial later when
setting our full-mesh optimization (Sec. 3.2).

Optical flow transfer (OPT). This block leverages the
previous frame’s multi-view labels to provide temporal con-
sistency. Specifically, we use the optical flow predictor
RAFT [46] to transfer multi-view labels in the k − 1 frame
to the current k frame using the texture features on the ren-
dered multi-view images. Similarly to the image parser
above, the optical flow output goes to a set {Iopt}. These la-
bels are accessible via the vote function fopt,n(p, l), which
checks Iopt,n and returns 1 if label l is in p and 0 otherwise.

Segmentation masks (SAM). The multi-view votes gen-
erated by the Human Image Parser sometimes lack 3D con-
sistency, particularly when dealing with open garments un-
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Figure 2. 4D Human parsing method. We first render current and previous frame scans into multi-view images and labels. Then collect
multi-view parsing results from the image parser, optical flows, and segmentation masks (Sec. 3.1). Finally, we project multi-view labels
to 3D vertices and optimize vertex labels using the Graph Cut algorithm with vertex-wise unary energy and edge-wise binary energy
(Sec. 3.2). The manual rectification labels can be easily introduced by checking multi-view rendered labels. (Sec. 3.3).

der dynamic motions (cf. Fig. 3). While the votes derived
from the optical flows provide a cross-frame prior, they may
not accurately track every human part and can’t identify
newly emerging regions. Therefore, we introduce segmen-
tation masks to regularize the label consistency within each
masked region. We apply the Segment Anything Model [29]
to each rendered image and obtain a self-define group of
masks Mm,n, with the index m ∈ {1, ...Nmask,n}. Within
a mask Mm,n we compute the score function S(l,Mm,n)
that fuses the votes of the image parser and the optical flow,
normalized by the area of the mask:

S(l,Mm,n) =

∑
p∈Mm,n

[fpar,n(p, l) + λpofopt,n(p, l)]∑
p∈Mm,n

(1 + λpo)
,

(1)
where the factor λpo weights the contribution of OPT over
PAR. We now define a check function, C(p,Mm,n), that re-
turns 1 if the input evaluation pixel p is in the mask Mm,n

and 0 otherwise. Finally, we obtain the corresponding vote
function by summing over all the masks in the image:

fsam,n(p, l) =
∑

m∈1:Nmask,n

C(p,Mm,n)∗S(l,Mm,n). (2)

3.2. Graph Cut Optimization for Vertex Parsing
The next step in our semi-automatic process is combining
all the labels obtained in Sec. 3.1 to assign a unique la-
bel to each scan vertex vi, with i ∈ {1, ..., Nvert}. We
frame this 3D semantic segmentation problem as a graph
cut optimization: each 3D frame is interpreted as a graph
G, where vertices are now nodes and mesh edges are con-
nections. Note that in a traditional Graph Cut, the values of
the nodes are fixed, and the optimization computes only the

cost of breaking a connection. In our case, we have several
votes for a vertex label, coming from three different tools
and from concurrent multi-view projections. We define our
cost function that consists of two terms,

E(L) =
∑

i∈1:Nvert

Evert(li) +
∑

i,j∈1:Nvert

Eedge(li, lj), (3)

where L = {li} represents all the vertex labels in current
frame. As described below, the term Evert combines the
different votes into a single cost function, while Eedge eval-
uates neighboring labels for consistent 3D segmentation.
We follow an approach similar to [8].
Vertex-wise unary energy. The cost function per node or
Unary energy comes from combining the different votes ob-
tained in the multi-view image processing (see Sec. 3.1):

Evert(li) =
∑

n∈1:Nview

λpEpar,n + λoEopt,n + λsEsam,n

Nview
,

(4)
where we combine the human image parser (Epar), the
cross-frame optical prior (Eopt), and the segmentation
masks regularization (Esam) contributions. All these en-
ergy terms can be written with the same equation by using
the notation X = {par, opt, sam}:

EX ,n(li) =
∑

p∈P (vi,n)

− wX (p, vi) fX ,n(p, li), (5)

meaning that energy of the method X , calculated for a pro-
posed label li, is obtained by summing over those pixels
p ∈ P (vi, n) whose projections are within a triangle of vi.
The weights for the cases of Epar and Eopt are set to the
barycentric distance from the projected pixel p to the ver-
tex vi, which means wpar = wopt = u as in Fig. 2. For
Esam instead, we set the weight wsam to the constant value
1 given that we look for an across-vertex regularization.
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Figure 3. Qualitative ablation study. We visualize the effectiveness of our 4D human parsing method on our 4D-DRESS dataset. From left
to right, we show the improvements after adding the optical flow labels and mask scores to the multi-view image parser labels. The manual
rectification efforts can be easily introduced from multi-view rendered labels, with which we achieve high-quality vertex annotations. The
problem of isolated labels can be relieved by introducing the edge-wise binary energy term.

Edge-wise binary energy. The Binary energy term penal-
izes the case of adjacent vertices with different labels, en-
couraging neighboring vertices to take the same label. Be-
ing A the adjacency matrix of the graph G and δ the Dirac
delta function, the edge cost can be calculated as follows:

Eedge(li, lj) = λb Ai,j (1− δ(li, lj)), (6)

which increases the energy by λb in the case that the adja-
cent vertices vi, vj take different labels li ̸= lj .

3.3. Manual Rectification of 3D Labels
When manual rectification is needed, we introduce it back
into the multi-view space as an additional 2D annotation,
and we recalculate the steps in Sec. 3.2. Concretely, we ran
the graph cut optimization for the first time. Then, we ren-
dered the vertex labels into multi-view labels, from which
we let a person introduce corrections by comparing the re-
sulting labels with the textured multi-view images. Simi-
larly to the vote functions of the image parser and optical
flow, we create a vote function fman(p, l) that accesses this
set of images with rectified annotations and returns 1 if the
label l is assigned to the pixel p and 0 otherwise.

Similar to previous cases, we define a per-view manual
energy (Eman) by using the variable X = man in Eq. (5),
and we added it to the global per-node energy Evert in
Eq. (4). We use a constant large weight for wman to favor
the manual annotation over other sources of voting where
we rectified the labels. The final vertex labels L∗ = {l∗i}
are obtained after the second round of graph cut optimiza-
tion. This manual rectification process finally changed 1.5%
of vertices within 3.2% of all frames. The rectification pro-
cess is detailed in Supp. Mat.

4. Experiments
To validate the effectiveness of our method, we con-
ducted controlled experiments on two synthetic datasets,

CLOTH4D [57] BEDLAM [7]

Method Inner Inner Outer

SMPL+D [38] 0.872 0.846 0.765

PAR Only [47] 0.961 0.910 0.714
PAR+OPT 0.969 0.963 0.942
PAR+OPT+SAM 0.995 0.993 0.988

Table 2. Baseline and ablation study. Mean accuracy of 4D
human parsing methods applied on synthetic datasets. The Inner
and Outer outfits are selected according to our definition in Sec. 5

CLOTH4D [57] and BEDLAM [7], where ground-truth
semantic labels are available. We first compare our pars-
ing method with a template-based baseline [38], that uses a
semantic template (SMPL model with per-vertex displace-
ments) to track and parse the clothed human scans. Due to
the limited resolution and the fixed topology nature of the
SMPL+D model, its parsing accuracy is lower than 90% on
all synthetic outfits (see Tab. 2).

We then compare our 4D parsing pipeline with several
ablations and report them in Tab. 2. We use an example
scan from 4D-DRESS to support the visualization of the
ablation study in Fig. 3. Using PAR only shows reason-
able results for upper and lower clothes. Yet, it predicts
inconsistent labels at open garments like jackets and coats
(Fig. 3 PAR Only), resulting in only 71.4% parsing accu-
racy on the BEDLAM dataset. The optical flow labels from
the previous frame can serve as a cross-frame prior, yet
accuracy may vary, particularly in fast-moving arms and
cloth boundaries (Fig. 3 PAR+OPT). By fusing both of the
previous multi-view labels via the segmentation masks, we
achieve better boundary labels (Fig. 3 PAR+OPT+SAM),
with 98.8% accuracy on the outer outfits in BEDLAM, with
challenging open garments. Finally, we show the effect of
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Figure 4. Qualitative examples for clothing simulation methods. On the left are templates used for simulations. On the right are ground-
truth geometries and original scans, LBS baseline results in body penetrations and overly stretched areas. Compared to other methods,
HOOD better models dresses and jackets and, with tuned material parameters, HOOD* achieves simulations closest to the ground truth.

introducing manual efforts to rectify incorrect labels (Fig. 3
With Manual). Our parsing method can also be deployed to
annotate other existing 4D human datasets. We present ex-
amples of BUFF[55], X-Humans [44], and ActorsHQ[25]
and additional qualitative results in Supp. Mat.

5. Dataset Description
4D-DRESS contains 520 motion sequences (150 frames at
30 fps) in 64 real-world human outfits with a total of 78k
frames. Each frame consists of multi-view images at 1k
resolution, an 80k-face triangle 3D mesh with vertex an-
notations, and a 1k-resolution texture map. We also pro-
vide each garment with its canonical template to benefit the
clothing simulation study. Finally, each 3D scan is accu-
rately registered by SMPL/SMPL-X body models.

To record 4D-DRESS we recruited 32 participants (18
female), with an average age of 24. The dataset consists of 4
dresses, 30 upper, 28 lower, and 32 outer garments. Partici-
pants were instructed to perform different dynamic motions
for each 5-second sequence. For each participant, we cap-
ture two types of outfits: Inner Outfit comprising the inner
layer dress/upper, and lower garments; and Outer Outfit
with an additional layer of garment, such as open jackets
or coats. A unique feature of 4D-DRESS is the challeng-
ing clothing deformations we captured. To quantify these
deformations, we compute the mean distances from the gar-
ments to the registered SMPL body surfaces. The inner and
outer outfits exhibit distance ranges up to 7.12 cm and 14.76
cm over all frames. This is twice as much as what we ob-
served in the X-Humans dataset [44], for example. In the
10% most challenging frames, this increases to 20.09 cm
for outer outfits, highlighting the prevalence of challenging
garments. Please refer to Supp. Mat. for dataset details.

6. Benchmark Evaluation
With high-quality 4D scans and diverse garment meshes
in dynamic motions, 4D-DRESS serves as an ideal ground

Lower Upper Dress Outer

Method CD ↓ EStr ↓ CD ↓ EStr ↓ CD ↓ EStr ↓ CD ↓ EStr ↓

LBS 1.767 0.333 2.167 0.095 4.461 1.293 4.626 0.811
PBNS [4] 1.885 0.107 2.687 0.040 4.869 0.643 4.859 0.107
NCS [5] 1.716 0.017 2.112 0.016 4.548 0.031 4.738 0.025
HOOD [17] 2.070 0.008 2.668 0.013 4.292 0.010 5.355 0.011
HOOD* 0.924 0.010 1.308 0.015 2.463 0.009 2.833 0.009

Table 3. Clothing simulation benchmark. CD is Chamfer Dis-
tance between the simulation and ground truth. Estr denotes
stretching energy with respect to the template.

truth for a variety of computer vision and graphics bench-
marks. In our work, we outline several standard bench-
marks conducted in these fields using our dataset. Our
primary focus is on tasks related to clothing simulation
(Sec. 6.1) and clothed human reconstruction (Sec. 6.2). Ad-
ditionally, benchmarks on human parsing and human repre-
sentation learning are included in our Supp. Mat.

6.1. Clothing Simulation
Experimental setup. We introduce a new benchmark for
clothing simulation, leveraging the garment meshes from
4D-DRESS, which capture dynamical real-world clothing
deformations. This benchmark evaluates three methods
for modeling garment dynamics: PBNS [4], Neural Cloth
Simulator (NCS [5]), and HOOD [17], as well as a base-
line method that applies SMPL-based linear blend-skinning
(LBS) to the template. We ran the simulations using
T-posed templates extracted from static scans and com-
pared the results to the ground-truth garment meshes across
various pose sequences. Our evaluation metrics include
the Chamfer Distance (CD), which compares the resulting
mesh sequences with ground-truth point clouds, and the av-
erage stretching energy (Estr) calculated by measuring the
difference in edge lengths between the simulated and tem-
plate meshes. The experiments were conducted across four
categories of garments (Lower, Upper, Dress, and Outer),
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Input PIFu PIFuHD PaMIR ICON PHOHRUM ECON GTSiTH

Figure 5. Examples of clothed human reconstruction on 4D-DRESS. We evaluate state-of-the-art methods using both inner (Top) and
outer (Bottom) outfits. We show that existing methods generally struggle with the challenging loose garments. Moreover, these approaches
cannot faithfully recover realistic details such as clothing wrinkles.

with four garment templates in each category. We simu-
lated clothing deformation for each garment in six different
pose sequences, providing a comprehensive comparison of
their ability to generate realistic motions.

Fine-tuning material parameters. To demonstrate the
advantages of real-world garment meshes in 4D-DRESS,
we also introduce a simple optimization-based strategy for
inverse simulation using HOOD. Specifically, we optimize
the material parameters fed into the HOOD model to mini-
mize the simulations’ Chamfer Distance to the ground-truth
sequences and their stretching energy. This optimized ver-
sion is denoted as HOOD*. For more details on the material
optimization experiments, please refer to Supp. Mat.

Evaluation results. The quantitative and qualitative com-
parisons of the clothing simulation methods are presented
in Tab. 3 and Fig. 4 respectively. The LBS baseline and
LBS-based approaches (PBNS and NCS) perform better
with upper and lower garments, which exhibit limited free-
flowing motions compared with the dress and outer gar-
ments. Conversely, HOOD excels with dresses, generat-
ing more natural, free-flowing motions and achieving lower
stretching energy. However, if HOOD fails to generate re-
alistic motions for a single frame, this error propagates to
all subsequent frames. This issue does not occur in the
LBS-based methods, which generate geometries indepen-
dently for each frame. With finely-tuned material parame-
ters, HOOD* produces garment sequences that more faith-
fully replicate real-world behavior. We anticipate that future
research in learned garment simulation will increasingly fo-
cus on modeling real-world garments made from complex
heterogeneous materials. This will be a major step in cre-
ating realistically animated digital avatars, and we believe
4D-DRESS will be highly instrumental in this task.

Inner Outer

Method CD↓ NC↑ IoU↑ CD↓ NC↑ IoU↑

PIFu [40] 2.696 0.792 0.690 2.783 0.759 0.697
PIFuHD [41] 2.426 0.793 0.739 2.393 0.763 0.743
PaMIR [56] 2.520 0.805 0.706 2.608 0.777 0.715
ICON [51] 2.473 0.798 0.752 2.832 0.762 0.756
PHORHUM [1] 3.944 0.725 0.580 3.762 0.705 0.603
ECON [52] 2.543 0.796 0.736 2.852 0.760 0.728
SiTH [23] 2.110 0.824 0.755 2.322 0.794 0.749

Table 4. Clothed human reconstruction benchmark. We com-
puted Chamfer distance (CD), normal consistency (NC), and Inter-
section over Union (IoU) between ground truth and reconstructed
meshes obtained from different baselines.

6.2. Clothed Human Reconstruction
Experimental setup. We create a new benchmark for
evaluating state-of-the-art clothed human reconstruction
methods on the 4D-DRESS dataset. This benchmark is di-
vided into three subtasks. First, we evaluate single-view
human reconstruction utilizing images and high-quality
3D scans from our dataset. In addition, benefiting from the
garment meshes in our dataset, we establish the first real-
world benchmark for evaluating single-view clothing re-
construction. Finally, we assess video-based human re-
construction approaches leveraging the sequences in 4D-
DRESS that capture rich motion dynamics of both human
bodies and garments. In all the experiments, we report 3D
metrics including Chamfer Distance (CD), Normal Consis-
tency (NC), and Intersection over Union (IoU) to compare
the predictions with ground-truth meshes.
Single-view human reconstruction. We use the two test
sets defined in Sec. 5 (denote as Outer and Inner) to
evaluate the following single-view reconstruction meth-
ods: PIFu [40], PIFuHD [41], PaMIR [56], ICON [51],
PHORHUM [1], ECON [52], and SiTH [23]. The evalu-
ation results are summarized in Fig. 5 and Tab. 4. We ob-
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BCNet ClothWild SMPLicit GTInput

Figure 6. Examples of clothing reconstruction on 4D-DRESS.
We visualize the reconstructed garment meshes from different ap-
proaches. These methods trained on synthetic datasets failed to
predict accurate clothing sizes and detailed wrinkles.

Shoes Lower Upper Outer

Method CD ↓ IoU↑ CD ↓ IoU↑ CD ↓ IoU↑ CD ↓ IoU↑

BCNet [26] - - 2.533 0.675 2.079 0.700 3.600 0.639
SMPLicit [14] 2.619 0.621 2.101 0.698 2.452 0.617 3.359 0.618
ClothWild [36] 3.657 0.548 2.690 0.582 3.279 0.533 4.163 0.588

Table 5. Clothing reconstruction benchmark. We report Cham-
fer Distance (CD), and Intersection over Union (IoU) between the
ground-truth garment meshes and the reconstructed clothing.

served that methods leveraging SMPL body models as guid-
ance (i.e., ICON, ECON, SiTH) performed better in recon-
structing inner clothing. However, their performance sig-
nificantly declined when dealing with outer garments. On
the other hand, end-to-end models like PIFu and PIFuHD
demonstrated more stability with both clothing types. This
leads to an intriguing research question: whether the human
body prior is necessary for reconstructing clothing. Qualita-
tively, we see that even the best-performing methods cannot
perfectly reconstruct realistic free-flowing jackets as shown
in Tab. 4. We believe 4D-DRESS will offer more valuable
insights for research in clothed human reconstruction.
Single-view clothes reconstruction. Clothes reconstruc-
tion has received relatively little attention compared to
full-body human reconstruction. Leveraging the garment
meshes in 4D-DRESS, we introduce the first real-world
benchmark to assess prior art, including BCNet [26], SM-
PLicit [14], and ClothWild [36]. The results of different
clothing types, as shown in Fig. 6, indicate a significant
gap between the reconstructed and real clothing. Firstly, the
clothing sizes produced by these methods are often inaccu-
rate, suggesting a lack of effective use of image information
for guidance. Moreover, the results typically lack geometric
details like clothing wrinkles compared to full-body recon-
struction. We report quantitative results in Tab. 5. We ob-

Figure 7. Video-based human reconstruction. Qualitative
results of video-based human reconstruction methods on 4D-
DRESS. Prior works struggle to reconstruct 3D human with chal-
lenging outfits and cannot recover the fine-grained surface details.

Inner Outer

Method CD↓ NC↑ IoU↑ CD↓ NC↑ IoU↑

SelfRecon [27] 3.180 0.729 0.754 4.027 0.683 0.745
Vid2Avatar [18] 2.870 0.750 0.772 3.014 0.725 0.787

Table 6. Video-based human reconstruction. Results of video-
based human reconstruction methods on 4D-DRESS.

served that the data-driven method (BCNet) performs bet-
ter with inner clothing, while the generative fitting method
(SMPLicit) shows more robustness to outer clothing, such
as coats. However, none of these methods is designed for or
trained on real-world data. The domain gap between syn-
thetic and real data still limits their capability to produce
accurate shapes and fine-grained details. We expect our
benchmark and dataset will draw more research attention
to the topic of real-world clothing reconstruction.

Video-based human reconstruction Leveraging the se-
quential 4D data in our dataset, we create a new benchmark
for evaluating video-based human reconstruction methods.
We applied Vid2Avatar [18] and SelfRecon [27] to obtain
4D reconstructions and compared them with the provided
ground-truth 4D scans. As observed in Fig. 7, both methods
struggle with diverse clothing styles and face challenges in
reconstructing surface parts that greatly differ in topology
from the human body, such as the open jacket. Moreover,
there remains a noticeable discrepancy between the real ge-
ometry and the recovered surface details. Quantitatively,
the existing methods cannot achieve satisfactory reconstruc-
tion results with outer garments, as demonstrated by a
large performance degradation in Tab. 6. We believe 4D-
DRESS provides essential data for advancing video-based
human reconstruction methods, particularly in achieving
detailed geometry recovery for challenging clothing.

6.3. Clothed Human Parsing

We design a benchmark for the image-based human parser.
Concretely, we project each scan frame’s vertex labels to the
multi-view captured images using corresponding camera
parameters and rasterizer, which provide the ground-truth
pixel labels for evaluating the image-based human pars-
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Figure 8. Human representation learning. Qualitative results of the novel pose synthesis of state-of-the-art human representation learning
approaches together with the GT of 4D-DRESS. All Baseline methods fail to learn the large non-rigid surface deformations and are bounded
by the skeletal deformations.

Inner Outer

Method mAcc.↑ mIoU↑ mAcc.↑ mIoU↑

SCHP [30] 0.908 0.832 0.863 0.768
CDGNet [32] 0.922 0.853 0.887 0.790
Graphonomy [16] 0.968 0.859 0.915 0.810

Table 7. Image-based human parsing. Results of image-based
human parsers on 4D-DRESS.

Inner Outer

Method CD↓ NC↑ IoU↑ CD↓ NC↑ IoU↑

SCANimate [42] 0.965 0.854 0.918 1.237 0.828 0.912
SNARF [10] 1.158 0.843 0.907 1.248 0.827 0.930
X-Avatar [44] 1.008 0.861 0.954 1.177 0.841 0.946

Table 8. Human representation learning. Results of human rep-
resentation learning approaches on 4D-DRESS.

ing methods: SCHP [30], CDGNet [32], and Graphon-
omy [16]. In Tab. 7, we report the mean Pixel Accuracy
(mAcc.) and mean Intersection over Union (mIOU) be-
tween the prediction and the ground-truth labels. We con-
ducted our human image parsing experiments on one subset
of our 4D-DRESS dataset, which contains 128 sequences
of 64 outfits (2 sequences for each of the inner and outer
outfits). The qualitative parsing results are shown in Fig. 9.

6.4. Human Representation Learning

We design a new benchmark for evaluating the human rep-
resentation learning task. Unlike physics-based methods,
this line of work directly takes 3D human scans as train-
ing input and obtains an animation-ready human avatar. We
follow the split strategy mentioned before and evaluate prior
works, SCANimate [42], SNARF [10], X-Avatar [44] on
the novel-pose synthesis. Fig. 8 shows that state-of-the-art
human representation learning approaches cannot correctly
learn the large non-rigid surface deformations (e.g., folded
skirt) due to the strong skeletal dependency and the lack of
modeling for temporal dynamics. This effect can also be

Figure 9. Human parsing comparison. We use the ground-truth
semantic labels to evaluate state-of-the-art human parsing models.
These methods generally failed to predict correct clothing labels
from different view angles.
reflected in Tab. 8 quantitatively where all baseline meth-
ods produce higher errors on the split of more challenging
garments (outer outfits).

7. Discussion
Limitations. Our current pipeline requires substantial com-
putational time. The offline manual rectification process
and garment mesh extraction also demand expertise in 3D
editing and additional human efforts. These factors con-
strain the scalability of our dataset. With a goal of expand-
ing more diverse subjects and clothing, real-time 4D anno-
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tation and rectification/editing will be exciting future work.
Conclusion. 4D-DRESS is the first real-world 4D clothed
human dataset with semantic annotations, aiming to bridge
the gap between existing clothing algorithms and real-world
human clothing. We demonstrate that 4D-DRESS is not
only a novel data source but also a challenging bench-
mark for clothing simulation, reconstruction, and other re-
lated tasks. We believe that 4D-DRESS can support a wide
range of endeavors and foster research progress by provid-
ing high-quality 4D data in life like human clothing.
Acknowledgements. This work was partially supported by
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was supported in part by the Max Planck ETH CLS.
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[50] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian
Dziadzio, Thomas J Cashman, and Jamie Shotton. Fake it
till you make it: face analysis in the wild using synthetic data
alone. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 3681–3691, 2021. 3

[51] Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and
Michael J. Black. ICON: Implicit Clothed humans Obtained
from Normals. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 7

[52] Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and
Michael J. Black. ECON: Explicit Clothed humans Opti-
mized via Normal integration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 7

[53] Lu Yang, Wenhe Jia, Shan Li, and Qing Song. Deep learning
technique for human parsing: A survey and outlook. arXiv
preprint arXiv:2301.00394, 2023. 3

[54] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-
hai Dai, and Yebin Liu. Function4d: Real-time human vol-
umetric capture from very sparse consumer rgbd sensors. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 3

[55] Chao Zhang, Sergi Pujades, Michael J. Black, and Gerard
Pons-Moll. Detailed, accurate, human shape estimation from
clothed 3d scan sequences. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 2, 3, 6

[56] Zerong Zheng, Tao Yu, Yebin Liu, and Qionghai Dai.
Pamir: Parametric model-conditioned implicit representa-
tion for image-based human reconstruction. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
2021. 7

[57] Xingxing Zou, Xintong Han, and Waikeung Wong. Cloth4d:
A dataset for clothed human reconstruction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12847–12857, 2023. 1, 2, 3, 5,
15

12



4D-DRESS: A 4D Dataset of
Real-World Human Clothing With Semantic Annotations

Supplementary Material

Figure 10. Example of 24 rendered views. We render 24 views
to ensure the visibility of each scan vertex and consider the com-
putational cost of human parsing.

8. Implementation Details

8.1. Multi-view Parsing

Multi-view rendering. For each frame k ∈
{1, ..., Nframe}, we render twelve horizontal, six up-
per, and six lower images Iimg,n,k that are uniformly
distributed on a sphere by rasterizing the textured scan
with Pytorch3D [39], where n ∈ {1, ..., Nview = 24}.
Each scan is centralized according to its bounding box
center and then placed at the camera sphere center. The
rendered images have a resolution of 512× 512. Examples
of 24-view rendered images are shown in Fig. 10.

4D-DRESS Graphonomy (LIP)
(-1) other background

(0) skin
torso-skin, face, glove

left-arm, right-arm, left-leg, right-leg
(1) hair hat, hair, sunglasses
(2) shoe socks, left-shoe, right-shoe
(3) upper upper-clothing, dress, scarf
(4) lower pant, skirt
(5) outer coat

Table 9. Label mapping between 4D-DRESS and LIP dataset.
We define 6 label categories based on LIP dataset.

Human image parser (PAR). We apply the pre-trained
Graphonomy [16] to each rendered image Iimg,n,k and save
the label results as a new image Ipar,n,k. Concretely, we
manually classify the 20 classes of Graphonomy labels into
6 classes that are used in our dataset: skin (0), hair(1),
shoes(2), upper(3), lower(4), and outer(5) clothes. The cor-
responding labels between Graphonomy (LIP) and ours are
shown in Tab. 9. Specifically, we map the background la-
bel from Graphonomy to our setting with a label value -1,
and the color code of white. These background labels will
return 0 in the vote function fpar,n(p, l).

Optical flow transfer (OPT). To establish connections
with previous frames, we project previous frame vertex la-
bels to multi-view labels Ilab,n,k−1 using the same ren-
dering cameras and rasterizer from Pytorch3D. Then, we
warp these previous multi-view labels to the current frame
Iopt,n,k using the optical flow vectors predicted by the
RAFT [46] model. The vertex labels at the first frame do not
involve this process thanks to our first-frame initialization
(see Sec. 8.3). Concretely, each pixel label with location
p within Ilab,n,k−1 will be warped to a new pixel location
p + v at the current frame, through the optical flow vector
v = RAFT (Iimg,n,k−1, Iimg,n,k, p). The new labels at the
current frame are determined by voting. If there is no cor-
responding label found in the previous frame, the new label
will be set to -1.

Segmentation masks and scores (SAM). We use Seg-
ment Anything Model [29] to segment each rendered im-
age Iimg,n into a group of masks Mm,n without any ex-
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Figure 11. Example of SAM predictions. The input image is the first view (upper-left) of Fig. 10. We filter out the segmentation masks
that contain background, full body, and only small regions (marked as red).

Figure 12. Example of manual rectification. An annotator se-
lects a region in the rendered images and gives a correct label.
The label is projected to 3D and used for correcting the 3D ver-
tices through a second round of graph cut optimization.

tra prompts, where m ∈ {1, ...,Mmask,n}. Then we com-
pute the score function S(l,Mm,n) within each mask for
each label by fusing the votes from the image parser and
optical flow, normalized by the area of the mask. Fig. 11
depicts the predicted segmentation masks from a rendered
image. A pixel p within the rendered image Iimg,n may be-
long to multiple segmentation masks. In this case, the SAM
vote function fsam,n(p, l) is calculated by summing all the
scores of masks that contain this pixel.

8.2. Graph Cut Optimization

The energy Eq. (5) in the main paper is optimized through
the graph cut algorithm (alpha-expansion). The vertex-wise
unary energy is normalized among all labels and then added
to the edge-wise binary energy. The weights are empirically
set as λp = 0.5, λo = 0.5, λpo = 1.5, λs = 1, and λb = 1.

8.3. Manual Rectification Process

Manual rectification on segmentation masks. In our
dataset, each scan mesh has around 80k vertices. Manu-
ally annotating their vertex labels on the 3D scans is very
expensive and time-consuming. Thus, we introduce a man-
ual rectification process within the 2D image space. Af-
ter the first graph cut optimization, we render vertex labels
to multi-view images, from which we let an annotator cor-
rect labels with the segmentation masks and a painting tool.
More specifically, the annotator is asked to identify an in-
correctly labeled region by checking the multi-view images
and labels. Once an incorrect labeling is found, the annota-
tor will look for its corresponding segmentation masks for
label correction. If such a mask does not exist, the anno-
tator will manually paint the region using a painting tool.
Finally, the images with rectified labels are projected to
3D vertices and are formulated as the manual vote func-
tion fman,n(p, l). The energy Eman,n term will be added
to the second round of graph cut optimization, with a large
weight wman = 10. We note that for each 150-frame 4D
sequence, the rectification process takes about 30 minutes
on a desktop with an RTX 2080Ti GPU whereas the human
parsing and the graph cut optimization take two and one
hour, respectively. An example of our rectification process
is shown in Fig. 12.

First-frame initialization of vertex labels. To ensure a
good label initialization, the motion sequences always start
from the A pose, which is easier for human parsing and
pose registration. We obtain the first-frame vertex labels
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Figure 13. Ablation study and baseline comparison on the BEDLAM dataset. We conducted ablative experiments on the synthetic
BEDLAM dataset where ground-truth semantic labels are available.

using the edge-wise binary energy and the multi-view unary
energy calculated only from the image parser (Epar) and
manual rectifications (Eman).

9. Additional Parsing Experiments

9.1. 4D Parsing on Synthetic Datasets

We conducted controlled 4D parsing experiments on two
synthetic datasets, CLOTH4D [57] and BEDLAM [7],
where the cloth meshes are simulated from cloth templates
on top of the parameterized body models. Since within
these synthetic datasets, some inner body and cloth vertices
are always invisible from the outside, we report our label-
ing accuracy only on the vertices that are visible from our
24 views of rendered images.

Baseline comparison. We first compare our 4D human
parsing method with a template-based baseline method [38]
that utilizes a semantic SMPL+D template to first track the
clothed human shape, and then project the template labels
to neighboring scan vertices. Since ClothCap [38] didn’t
release their 4D parsing code, we implemented their pars-
ing method following their descriptions. We first register
the SMPL+D model to all frames. Then we initialize the
first frame template label using the nearby scan vertex la-
bels obtained through our first-frame initialization process.
At each frame, we update the template labels using the
body prior, previous frame prior, and the Gaussian Mixture

Model trained from the vertex colors of each labeled cate-
gory. Finally, the scan vertex labels are assigned from the
nearest template label. The quantitative parsing results from
this baseline method are shown in the main paper. Here, we
show more qualitative results in Fig. 13.

The main issue of this template-based baseline method
is fitting the SMPL+D template to loose human outfits. The
spatial mismatch between template and loose garments gen-
erates incorrect labels, especially in the open area of the
jackets. Besides this, precisely updating the template labels
using the Gaussian mixture model of labeled vertex colors
is also difficult, especially in front of garments that have
similar colors. The limited template resolution also results
in noisy boundary labels at the higher-resolution clothed
human meshes. The parsing accuracy from this baseline
method is below 90% for all synthetic outfits.

Ablation studies. We then compare our 4D human pars-
ing method (without manual rectifications) with several
ablations of the multi-view parsing inputs (PAR Only,
PAR+OPT, PAR+OPT+SAM), as shown in Fig. 13. Similar
to Fig. 3 in the main paper, we observed similar qualitative
results on the synthetic datasets.

9.2. 4D Parsing on Other Datasets

Our 4D human parsing method takes the input as scan mesh
sequences and multi-view videos and thus can be applied to
the existing real-world 4D human datasets, such as BUFF,
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Figure 14. Data provided in the 4D-DRESS dataset. We provide high-quality 4D textured scans. For each scan, we annotate vertex-level
semantic labels, thereby obtaining the corresponding garment meshes and fitted SMPL(-X) body meshes.

Figure 15. 4D human parsing on other real-world datasets.

Figure 16. 4D human parsing with new labels.

X-Humans, and ActorsHQ, as shown in Fig. 15.

9.3. 4D Parsing with New Labels

The six classes in our 4D-DRESS are strategically defined
to ensure a consistent benchmark evaluation for clothing
simulation and reconstruction. We showcase the general-
ization ability of our parsing method with new labels in
Fig. 16, by effectively distinguishing a belt from pants and
socks from shoes. Initiated during the first-frame initial-
ization, these new labels can integrate into the 4D parsing
pipeline. However, refining labels for these smaller clothes
and objects may entail additional manual efforts for rectifi-

Figure 17. Vertex-level semantic annotations. Our dataset con-
tained precise vertex-level semantic labels of clothing categories.

cation.

10. Additional Dataset Description
10.1. Data Capturing Steup

We captured our dataset with a volumetric capture sys-
tem [12] equipped with 106 synchronized cameras (53 RGB
and 53 IR cameras). The sequences are filmed at 12 MP, 30
FPS, and within an effective capture volume of 2.8 m in di-
ameter and 3 m in height. Each frame consists of a mesh
with 80k faces and a texture map.

10.2. Dataset Contents

Our 4D-DRESS dataset provides the following data, exam-
ples are shown in Fig. 14:
• 4D textures scans. High-quality 4D textured scans of 32

subjects, 64 human outfits (32 Inner and 32 Outer), with
520 motion sequences and 78k frames in total.
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Figure 18. Visualization of 4D-DRESS outfits distance. The
mean distance distribution from garment outfits to SMPL bodies.

Figure 19. Visualization of 4D-DRESS outfits distance. The
mean distance distribution from garment meshes to SMPL bodies.

• Vertex-level annotations. We offer accurate vertex-level
annotations through our 4D human parsing pipeline. An
example of our label quality is shown in Fig. 17. Using
these labels, we also provide multi-view images with se-
mantic labels in 2D.

• Parametric body models. We register precise SMPL and
SMPL-X body models for each frame.

• Garment meshes. We extract 3D garment meshes based
on the vertex labels.

10.3. Clothing Distribution

We compute the mean distances from the outfits to the reg-
istered SMPL body surfaces. The inner and outer outfits
exhibit distance ranges of up to 7.12 cm and 14.76 cm, re-
spectively, over all frames. The distribution of the distance
on the SMPL body is shown in Fig. 18. In the 10% most
challenging frames that have a larger Chamfer distance be-
tween scan mesh and SMPL mesh, the distance range in-
creases to 20.09 cm for outer outfits. We further visualize
the mean distances of each garment category, as shown in
Fig. 19. The average Chamfer distance between the clothed
human scans and SMPL body meshes are 3.30 cm and 5.28
cm for the inner and outer outfits in our 4D-DRESS dataset,
and 2.21 cm in the X-Humans dataset [44].

11. Experimental Details

11.1. Clothing Simulation

4D-Dress provides diverse garments and challenging hu-
man pose sequences, which serves as a great asset for future
research in clothing simulation. Unlike the synthesized gar-
ment templates with smooth surfaces and simple topologies,
we provide templates extracted from scans, with realistic

wrinkles and complex structures. Using these templates,
we evaluated the performance of recent unsupervised cloth
simulators, including PBNS [4], Neural Cloth Simulator
(NCS) [5] and HOOD [17], and a baseline method, linear
blend-skinning. We quantitatively and qualitatively com-
pared the generated garments with our scanned garments.
We also demonstrated the potential of HOOD by simply op-
timizing the material parameters, which again confirmed the
value of our dataset. In the following sections, we elaborate
on each step of our experiments.

11.2. Template Extraction

Current clothing simulation algorithms rely on a predefined
garment template, deforming it to generate realistic simula-
tions under various poses. They typically utilized synthe-
sized garment templates, with unnaturally smooth surfaces
and basic topologies. In our work, we provided templates
directly extracted from real-world scans, offering a more re-
alistic foundation for deformation.

Firstly, we select from pose sequences the frames closest
to the canonical pose, in other words, “T-pose”. We also
make sure that the body in this frame is static and garments
are in rest status. Then we apply inverse LBS to convert
the scans into exact canonical pose. After extracting gar-
ment meshes from the unposed scans, we made some man-
ual efforts to recover the garment shape in Blender [13].
Specifically, we erased unwanted faces, solved penetrations
between clothing and body, and smoothed rigid wrinkles
and coarse boundaries. Synthesized templates used by cur-
rent simulators usually have 4-5k vertices. We observed in
experiments that too many vertices in the template are com-
putationally expensive for simulation and may erode per-
formance. Therefore, we downsampled each template to
30-50%, which now has 3-8k vertices in total depending on
each garment’s surface area, while keeping them in their
original shapes. To use lower garments in simulators, like
pants and lower skirts, pinned vertices are compulsory for
them to stay on the body. We extract the loop around the
waist as pinned vertices and provide their indexes.

11.3. Evaluation Details

In the clothing simulation benchmark, we compared four
different clothing simulators: LBS, PBNS [4], NCS [5], and
HOOD [17]. The training and evaluation of each method
were conducted using the SMPLX model, which provides
more details in visualization. The final evaluation is done
on four types of garments(Upper, Outer, Dress, and Lower),
with each having 2 garments and 6 sequences in total. For
qualitative evaluation, we employed Chamfer distance and
stretching energy, scaling vertex positions by a factor of 100
to use centimeters as the unit.

The Chamfer distance, shown in equation 7, is computed
by summing the squared distances between nearest neigh-
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Figure 20. Garment templates used for clothing simulation. We
extract four types of Garment templates from T-pose scans.

bor correspondences of two-point clouds. We denote the
sampled points on simulation and ground-truth meshes as
X and Y , respectively, with N∗ representing the amount of
sampled points, set to 100,000 in our experiment.

dCD =
1

Nx

∑
x∈X

min
y∈Y

∥x−y∥22+
1

Ny

∑
y∈Y

min
x∈X

∥x−y∥22 (7)

The stretching energy, widely used in mass-spring-based
simulators, is computed as equation 8, where Ne is the total
number of edges, ei and ēi are the lengths of the edge i in
the current frame and the template respectively.

Estr =
1

Ne

∑
i

∥ei − ēi∥2 (8)

We provide more details on implementing each method:
LBS blends joint transforms with skinning-weights. For
each garment template, we find the nearest body node on
the canonical SMPLX human, and get the skinning weights
on this point. Then, we follow the same forward LBS pro-
cess in SMPLX to get deformed template meshes.

PBNS and NCS, both are deformation-based methods,
predict vertex-wise deformation on the template and em-
ploy LBS to transform the deformed garment into desired
poses. Given their ”One model for one garment” nature, we
trained each garment from scratch. We also used identical
AMASS sequences mentioned in the NCS paper to ensure
fairness. As both PBNS and NCS developed using SMPL,
we made slight adjustments to the data-loading pipeline to
ensure their compatibility with SMPLX. And we assigned
zero poses to joints that are exclusive in SMPLX.

Meanwhile, we also kept the same training settings used
in their original papers. For PBNS, default parameters
were used, and each garment underwent training for 20-
50 epochs to ensure convergence. For NCS, a batch size
of 2048 was employed across all training instances, as sug-
gested in their paper. In the case of tight garments, default

parameters were maintained with a temporal window size
of 0.5 and 10 iterations for blend weights smoothing. In
the case of loose garments like outerwear and dresses, we
made slight parameter adjustments for stable training, typi-
cally using a temporal window size of 0.75 and 1, with 50
iterations for blend weights smoothing, as suggested by the
author in a GitHub issue.

HOOD, as a simulation-based method, predicts physi-
cally realistic fabric dynamics and is agnostic to garment
topology. Hence, we directly used a pre-trained pub-
licly available model to evaluate our garments. Unlike the
deformation-based methods, which convert the template in
canonical pose to any pose instantly, HOOD predicts gar-
ment motion frame by frame. Therefore, to apply our
canonical template for simulating each sequence, we have
to convert the template into the pose of the first frame. In the
HOOD paper, they used LBS to convert templates, which
works for tight synthesized garments. However, for our
real-world garments, it usually results in large stretching
on mesh, especially around joint areas. Therefore, alter-
natively, we insert extra frames from the canonical pose to
the first frame and simulate the prolonged sequence to get a
natural transform from the canonical pose. The first poses
for all sequences in our dataset are in A-pose. Generally,
we insert 30 frames to transfer from canonical to A-pose,
which makes it slow enough for the garment to stay in rest
status with minimum dynamics.

11.4. HOOD*: Material Optimization

HOOD provides 4 local material parameters for each vertex,
including µ and λ evaluating the ability of stretching and
area preservation, mass m computed from the fabric den-
sity, and the bending coefficient kbending penalizing folding
and wrinkles. For each edge, there are three material pa-
rameters, including µ, λ, and kbending . Assuming we have
v vertices, e edges, and coarse edges in total, we define the
material parameters as M ∈ R4v+3e.

In the fine-tuning process, we freeze the pre-trained
HOOD model H and only update material parameters M.
Using all 6 sequences of each garment for training, we feed
them into model f to get simulated outputs. Then, with
Ground Truth garment mesh G, we compute Chamfer dis-
tance and stretching energy, as described in equation 9.

L = LCD(f(M,H), G) + wLEstr(f(M,H), G) (9)

We used the stretching energy from HOOD and set w as
1 in our experiments. Chamfer distance LCD is described in
equation 10, measuring the average distance between sim-
ulation and ground-truth garment. We use V∗, (∗ ∈ [s, g])
to represent the simulated and ground truth vertices and use
N∗ as the total number of vertices.
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Figure 21. Additional qualitative results for clothing simulation. Left are templates used for simulations. Right are simulations and
ground-truth scans. HOOD presents more dynamic while getting overly stretched. HOOD* matches well with ground truth.

LCD =
1

Ns

∑
x∈Vs

min
y∈Vg

∥x− y∥2 + 1

Ng

∑
y∈Vg

min
x∈Vs

∥x− y∥2

(10)
For each garment, we trained with Adam Optimizer with

a learning rate of 5e-4. And it usually takes 50 epochs to
converge. Generally, HOOD* gets a much lower distance
compared to ground truth mesh quantitatively, and also per-
forms more natural fabric dynamics qualitatively.
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