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Sit down, bent torso, 
legs folded at knees

Raise two arms Kick, left leg forward, 
right leg retreats

Waltz dance, left foot 
step backward, right 
hand extends

Kick the white ball
(side view)

Kick the white ball 
(front view)

Raise arm, open the door
(rear view)

Figure 1. Diverse motions generated by AnySkill conditioned on various instructions. When provided with an open-vocabulary text
description of a motion, AnySkill is adept at learning natural and flexible motions that closely align with the description, facilitated
by an image-based reward mechanism. Additionally, AnySkill demonstrates proficiency in learning interactions with dynamic objects,
showcasing its versatile motion generation capabilities.

Abstract

Traditional approaches in physics-based motion genera-
tion, centered around imitation learning and reward shaping,
often struggle to adapt to new scenarios. To tackle this limi-
tation, we propose AnySkill, a novel hierarchical method
that learns physically plausible interactions following open-
vocabulary instructions. Our approach begins by developing
a set of atomic actions via a low-level controller trained
via imitation learning. Upon receiving an open-vocabulary
textual instruction, AnySkill employs a high-level policy
that selects and integrates these atomic actions to maximize
the CLIP similarity between the agent’s rendered images
and the text. An important feature of our method is the use of

image-based rewards for the high-level policy, which allows
the agent to learn interactions with objects without manual
reward engineering. We demonstrate AnySkill’s capa-
bility to generate realistic and natural motion sequences in
response to unseen instructions of varying lengths, marking
it the first method capable of open-vocabulary physical skill
learning for interactive humanoid agents.

1. Introduction
Confronted with a soccer ball, an individual might engage
in various actions such as kicking, dribbling, passing, or
shooting. This interaction capability is feasible even for
someone who has only observed soccer games, never having
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played. This ability exemplifies the human aptitude for learn-
ing open-vocabulary physical interaction skills from visual
experiences and applying these skills to novel objects and
actions. Equipping interactive agents with this capability
remains a significant challenge.

Recent physical skill learning methods predominantly
rely on imitation learning to acquire realistic physical mo-
tions and interactions [29, 31]. However, this approach limits
their adaptability to unforeseen scenarios with novel instruc-
tions and environments. Furthermore, neglecting physical
laws in current models leads to unnatural and unrealistic
motions, such as floating, penetration, and foot sliding, de-
spite attempts to integrate physics-based penalties like grav-
ity [58, 64] and collision [13, 57, 66]. Enhancing the gen-
eralizability of physically constrained motion generation is
essential for decreasing reliance on specific datasets and
fostering a more profound comprehension of the world.

On top of generalizability, the ultimate goal is to generate
natural and interactive motions from any text input, known
as achieving open vocabulary, which significantly increases
the complexity of the problem. Several studies have ex-
plored open-vocabulary motion generation using large-scale
pretrained models [11, 19, 37, 43]. However, these models
struggle to produce natural motions, particularly interactive
motions that require understanding broader environmental
contexts or object interactions [11, 19, 43].

We identify a gap in motion generalizability on novel
tasks and interaction capabilities with environments, hypoth-
esizing that this is due to the reliance on improvised state
representations and manually crafted reward mechanisms
in prior works. Inspired by the human ability to learn new
physical skills from visual inputs, we propose utilizing a
Vision-Language Model (VLM) to offer flexible and gener-
alizable state representations and image-based rewards for
open-vocabulary skill learning. We introduce AnySkill,
a hierarchical framework designed to equip virtual agents
with the ability to learn open-vocabulary physical interaction
skills. AnySkill combines a shared low-level controller
with a high-level policy tailored to each instruction, learning
a repertoire of latent atomic actions through generative ad-
versarial imitation learning (GAIL), following CALM [42].
This ensures the naturalness and physical plausibility of each
action. Then, for any open-vocabulary textual instruction, a
high-level control policy dynamically selects latent atomic
actions to optimize the CLIP [35] similarity between the
agent’s rendered images and the textual instruction. This
policy maintains physical plausibility and allows the agent
to act according to a broad range of textual instructions. By
leveraging CLIP similarity as a flexible and straightforward
reward mechanism, our approach overcomes environmental
limitations, facilitating interaction with any object. Despite
the advances, creating natural and interactive actions for
open-vocabulary models remains an ongoing challenge.

Extensive experiments demonstrate AnySkill’s abil-
ity to execute physical and interactive skills learned from
open-vocabulary instructions; Fig. 1 showcases various inter-
active and non-interactive examples. We further prove that
our method outperforms existing open-vocabulary motion
generation approaches in creating interaction motions.

To summarize, our contributions are three-fold:
• We introduce AnySkill, a hierarchical approach that

combines a low-level controller with a high-level policy,
specifically designed for the learning of open-vocabulary
physical skills.

• We leverage the VLM (i.e., CLIP) to provide a novel
means of generating flexible and generalizable image-
based rewards. This approach eliminates the need for
manually engineered rewards, facilitating the learning of
both individual and interactive actions.

• Through extensive experimentation, we demonstrate that
our method significantly surpasses existing approaches in
both qualitative and quantitative measures. Importantly,
AnySkill empowers agents with the ability to engage
in smooth and natural interactions with dynamic objects
across a variety of contexts.

2. Related Work
Physical skills learning emphasizes mastering motions
that adhere to physical laws, including gravity, friction,
and penetration. This domain has seen approaches that ei-
ther employ specific loss functions to address constraints
like foot-ground penetration [60], body-object interac-
tion [1, 5, 8, 15, 21, 34, 47–50, 52, 59, 63, 65], self-
collision [18, 27, 45], and gravity [6, 38, 54], or leverage
physics simulators [16, 24, 31, 32, 42, 46] for more dy-
namic fidelity. Despite these efforts, ensuring fine-grained
physical plausibility, especially in complex interactions, re-
mains a challenge. The integration of reinforcement learn-
ing (RL) [10, 26, 29] and advanced modeling techniques
(e.g., MoE [2, 12, 53], VAE [20, 25], and GAN [10, 41])
alongside CLIP features [19, 37] attempts to improve gener-
alization, yet faces the grand challenge of achieving physical
plausibility in open vocabulary. Our method combines a
shared low-level controller with a high-level policy tailored
to each instruction, ensuring actions are physically realistic
and adaptable to diverse instructions.

Open-vocabulary motion generation creates human mo-
tions from natural language descriptions outside the train-
ing distribution. Leveraging large-scale motion-language
datasets [7, 23, 33], generative models have shown promise
in motion synthesis [14, 36, 44, 62, 64]. However, these
models often struggle with zero-shot generalization or ad-
hering to the laws of physics, limited by their training data
scope. Attempts to address these limitations include sim-
plifying complex instructions with Large Language Mod-
els [17, 19] and employing pretrained VLMs like CLIP for



supervision [11, 22, 43], yet achieving natural and physics-
compliant motions remains a significant hurdle. Our method
builds upon these foundations, seeking to generate interac-
tive and physically plausible motions from open-vocabulary
descriptions, distinguishing itself from approaches like
VLM-RMs [37] by modeling motion priors more effectively.

Humanoid object interaction, a relatively uncharted
territory in physics-based motion generation, has seen sim-
plifications such as attaching objects to characters’ hands
to bypass the complexity of modeling physical interac-
tions [29, 56, 61]. For dynamic interactions, encoding object
states (positions and velocities) into the agent’s observa-
tions has facilitated specific tasks like dribbling [30, 31] and
interacting with furniture [9], albeit requiring precise, object-
specific rewards. This state-based approach is less feasible
in open environments with diverse objects. Alternatively,
vision-based policies [26] have shown potential for broader
applications but are limited by their training domains. Our
approach leverages a VLM for a more generalized motion-
text alignment, avoiding the intricacies of manual reward
crafting for varied interactive tasks.

3. AnySkill
AnySkill consists of two core components: the low-level
controller and the high-level policy, illustrated in Fig. 2.
Initially, we train a shared low-level controller, πL, using
unlabeled motion clips to distill a latent representation of
atomic actions. This process utilizes GAIL [10], guarantee-
ing that the atomic actions are physically plausible.

Subsequently, for each open-vocabulary textual instruc-
tion, we train a high-level policy, πH , tasked with compos-
ing atomic actions derived from low-level controllers. This
high-level policy leverages a flexible and generalizable
image-based reward via a VLM. This design facilitates
the learning of physical interactions with dynamic objects,
obviating the need for handcrafted reward engineering.

3.1. Low-Level Controller

The low-level controller, inspired by CALM [42], enables
the physically simulated humanoid agent to learn a diverse
set of atomic actions. Formally, given an unlabeled motion
dataset M, we simultaneously train a motion encoder E,
a discriminator D, and a controller πLpa|s, zq. Here, a
denotes the action, s the state, and z P Z the latent motion
representation. The state s comprises the agent’s current root
position, orientation, joint positions, and velocities, while
the action a specifies the next target joint rotations.

Training proceeds as follows: A motion clip M from M
is encoded by E to yield the latent representation z “ EpMq.
The controller πLpa|s, zq generates an action a based on the
current state s and latent z. The agent then executes the
action a in the physics-based simulator with a PD controller,
resulting in a new state s1.
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Figure 2. The hierarchical structure of AnySkill. Initially,
the low-level controller (top-left) is trained to encode unlabeled
motions into a shared latent space Z . Subsequently, for each open-
vocabulary text description, a high-level policy is trained. This
policy orchestrates low-level actions to optimize the CLIP simi-
larity between rendered images and the provided text, effectively
composing actions that align with the textual instructions.

The discriminator D distinguishes whether the given
ps, s1q originates from the motion M corresponding to z,
is produced by the controller πL following the latent code z,
or is produced by πL following another latent code z1 „ Z .
We train D with a ternary adversarial loss:

LD “ ´EMPM

´

Edπps,s1|zq

“

log
`

1 ´ Dps, s1|zq
˘‰

(1)

` EdM ps,s1q

“

logDps, s1|zq ` log
`

1 ´ Dps, s1|z1 „ Zq
˘‰

` wgpEdMps,s1q

“

||∇θDpθq|θ“ps,s1|ẑq||2
‰

ˇ

ˇ

ˇ
ẑ “ sgpEpMqq

¯

,

incorporating a gradient penalty with coefficient wgp for
stability, where sgp¨q denotes the stop gradient operator.

The encoder E is refined with both alignment and uni-
formity losses to ensure that embeddings of similar motions
are closely aligned in the latent space, while dissimilar ones
remain distinct [51], thus structuring Z effectively.

The controller πL aims to maximize the GAIL reward
from D, calculated as

rLps, s1, zq “ ´ log
`

1 ´ D
`

s, s1
|z

˘˘

, (2)

encouraging the generation of motions that closely resemble
the original motion M associated with latent code z.



3.2. High-Level Policy

Building upon the atomic action repository created by the
low-level controller, the high-level policy’s objective is to
compose these actions, via the control of latent represen-
tation z, to generate motions that align with given text de-
scriptions. With the low-level controller πL fixed, we train
a high-level policy πH for each specific textual instruction,
ensuring that the combined operation of both policy levels
results in motions congruent with the text. The training
process for the high-level policy is outlined in Algorithm 1.

Algorithm 1: Training of the high-level policy
Input: Reference motion dataset M, frozen low-level

controller πL, frozen motion encoder E, simulation
environment ENV, renderer image I, CLIP feature
of the description text fd

1 Z = EpMq initialize motion latent space
2 while not converged do
3 B Ð H; p Ð 0 initialize
4 for horzion length “ 1, ..., n do
5 sample ẑ from Z
6 if horzion length “ 1 then
7 s Ð initialize; z Ð ẑ
8 else
9 s Ð ENVps, aq; z Ð πH

psq

10 end
11 for llc steps “ 1, ..., t do
12 s Ð ENVps, πL

ps, zqq step simulation
13 rH Ð calculate reward with Eq. (3)
14 if HEAD HEIGHT ă 0.15 then
15 s, p Ð 0 reset agent and counter
16 end
17 if similarity is less than last step then
18 p Ð p ` 1 increment counter
19 if p ě 8 then
20 p Ð 0 reset counter
21 reset s with 80% probability
22 end
23 end
24 end
25 update B and πH according to PPO
26 end
27 end

The high-level policy πH is implemented as an MLP,
taking the agent’s state s as input and outputting a latent rep-
resentation z close to the low-level controller’s latent space
Z . It is trained using a composite reward of image-based
similarity and latent-representation alignment. Given state
s and text description d, we render the agent’s image Ipsq

and encode it along with the text using a pretrained, frozen
CLIP model to obtain features fI and fd. The similarity re-
ward is computed as the cosine similarity between fI and fd,
with an additional latent-representation alignment reward to

draw z nearer to the latent distribution of M. The combined
reward is given by:

rH “ ωc ¨
fI ¨ fd
|fI ||fd|

` ωs ¨ expp´4}z ´ ẑ}2q, (3)

where ωc, ωs are weighting factors, and ẑ is a sample from Z .
This image-based reward mechanism enables AnySkill
to achieve text-to-motion alignment for open-vocabulary
instructions. In addition, the image-based representation
naturally encodes the entire environment around the agent,
thus facilitating object interactions without modifying the
encoding or architecture.

3.3. Implementation Details

Low-level controller The architecture of the encoder,
low-level control policy, and discriminator comprises MLPs
with hidden layers sized [1024, 1024, 512]. The latent space
Z is 64-dimensional. The alignment loss is set to 0.1, unifor-
mity loss to 0.05, and gradient penalty to 5. The low-level
controller is optimized using PPO [39] in IsaacGym. The
training process is conducted on a single A100 GPU, oper-
ating at a 120Hz simulation frequency, and spans four days
to cover a dataset comprising 93 unique motion patterns.
Detailed hyperparameter settings of the low-level controller
can be found in Tab. A1.

High-level policy The high-level policy, implemented
as a two-layer MLP with hidden units of [1024, 512], out-
puts a 64-dimensional vector and is optimized using PPO.
Training is conducted on an NVIDIA RTX3090 GPU, tak-
ing approximately 2.2 hours. Operationally, the high-level
policy executes at a frequency of 6Hz, in contrast to the
low-level policy, which operates at a more rapid 30Hz. This
discrepancy in execution rates is strategic; the high-level
policy is invoked every five timesteps, granting the low-level
controller sufficient time to act on a given stable latent rep-
resentation z and execute a complete atomic action. Such
a setup is crucial for preventing the emergence of unnatu-
ral motion sequences by ensuring that each selected atomic
action is fully realized before transitioning. Detailed hyper-
parameters of the high-level policy can be found in Tab. A2.

To further refine the training process and motion quality,
an early termination strategy is employed to circumvent po-
tential pitfalls of the high-level policy becoming trapped in
suboptimal local minima. Specifically, the environment is
reset with an 80% probability following eight successive re-
ductions in CLIP similarity, or deterministically if the agent’s
head height falls below 15cm. This approach significantly
enhances training efficiency and the fidelity of the generated
motions, ensuring a balance between exploration and the
avoidance of poor performance traps.

Rendering We use IsaacGym’s default renderer, po-
sitioning the camera at (3m, 0m, 1m) while the agent is
initialized at the origin. To maintain the agent at the focus



(a) (b)

(c) (d)

Figure 3. Atomic actions from the trained low-level controller.
Each subfigure depicts the green agent demonstrating the reference
motion from the dataset, while the white agent illustrates the corre-
sponding learned atomic action.

of our visual feedback, we dynamically adjust the camera’s
orientation each timestep to align with the agent’s pelvis
joint. To encode the rendered images into a feature space
compatible with our learning objectives, we employ the
CLIP-ViT-B/32 model checkpoint from OpenCLIP [3],
leveraging its robust representational capabilities.

State projection Given the computational demands of
rendering images and extracting their CLIP features, we
streamline the training process by introducing an MLP that
projects the agent’s state vectors s directly to CLIP image
features. This projection MLP is fine-tuned with an MSE
loss against 104 million agent states accumulated during
the high-level policy training. By substituting the render-
and-encode steps with this MLP, we achieve a significant
speedup, enhancing training efficiency by approximately
10.4 times, thereby mitigating the bottleneck associated with
real-time image rendering and feature extraction.

4. Experiments

In this section, we detail the motion dataset curation
for AnySkill’s low-level controller training (Sec. 4.1),
evaluate AnySkill’s open-vocabulary motion generation
against others (Sec. 4.2), analyze the text enhancement im-
pact on effectiveness (Sec. 4.3), showcase physical interac-
tion examples (Sec. 4.4), and compare our reward design
with existing formulations (Sec. 4.5).

4.1. Training of Low-Level Controller

Dataset To enrich the low-level controller with diverse
atomic actions, we assembled a dataset of 93 distinct mo-
tion records, primarily sourced from the CMU Graphics
Lab Motion Capture Database [4] and SFU Motion Capture
Database [40]. This collection spans various action cate-
gories, including locomotion (e.g., walking, running, jump-
ing), dance (e.g., jazz, ballet), acrobatics (e.g., roundhouse
kicks), and interactive gestures (e.g., pushing, greeting), all
retargeted to a humanoid skeleton with 15 bones. We also ad-
justed any motions that lacked physical plausibility, ensuring
the dataset’s fidelity for effective imitation learning.

Training stabilization Adversarial imitation learning’s
instability, influenced by the volume and distribution of train-
ing data, can skew the density distribution in latent space,
limiting the diversity of atomic actions for high-level policy
selection. To mitigate this, we categorized motion records
into 3 primary and 4 secondary groups by action scale and in-
volved limbs. Details of the category division are described
in Appendix A.2. By adjusting training data weights, we
increased the likelihood of less frequent action groups, en-
suring the variety of learned atomic actions; see also Fig. 3
and Fig. A7.

4.2. AnySkill Evaluation

Given the nascent field of open-vocabulary physical skill
learning, we benchmark AnySkill against the two fore-
most similar methods in open-vocabulary motion generation:
MotionCLIP [43] and AvatarCLIP [11], which also utilize
CLIP similarity for generating human motions. To further
understand the efficacy of our approach, we introduce a vari-
ant of our method, “Ours (no ET),” which operates without
the early termination strategy.

AvatarCLIP MotionCLIP AnySkill

Figure 4. Qualitative comparisons on open-vocabulary motion
generation. From top to bottom, the descriptions are “sit down,
bent torso, legs folded at knees”, “legs off the ground, wave hands”,
and “coiling the arm, throw a ball”. We showcase the most repre-
sentative frames that best align with the descriptions.



(a) dance and turn around

(b) sit down, bent torso, legs folded at knees

(c) coiling the arm, throw a ball

(d) legs off the ground, wave hands

(e) raise two arms

Figure 5. Qualitative results of generated motion by AnySkill. Displayed are specific text descriptions and the corresponding motions
generated by AnySkill, as evaluated in the user study. Motion sequences progress from left to right.

For this evaluation, we selected 5 open-vocabulary text
descriptions requiring comprehensive body movement and
not covered in AnySkill’s training data. To assess the
generated motions, we engaged 24 MTurk workers to rate
them on task completion, smoothness, naturalness, and phys-
ical plausibility, using a scale from 0 to 10. Moreover, we
computed the CLIP similarity score between the rendered

images and the text descriptions for each method as an ob-
jective measure. The motions generated by each method,
including qualitative comparisons, are showcased in Fig. 4,
with an in-depth look at AnySkill’s outputs presented in
Fig. 5. Beyond the five actions presented, additional actions
are shown in Appendix B.4

We present the results of the human study and quantita-



Table 1. Quantitative evaluation of high-level policy.

Success Ò Natural Ò SmoothÒ PhysicsÒ CLIP SÒ

AvatarCLIP [11] 4.29 4.74 5.79 5.74 21.11
MotionCLIP [43] 3.16 4.93 5.72 5.83 21.16

Ours (w/o ET) 5.05 4.88 5.68 5.31 21.89
Ours (w/o text-enhance) 3.06 4.48 5.19 5.96 20.76
Ours (w/ VideoCLIP [55]) 2.37 4.90 5.65 6.41 21.35
Ours (full) 6.16 6.23 6.51 6.93 24.18

tive metrics in Tab. 1, demonstrating that AnySkill sig-
nificantly surpasses current methods across all evaluated
metrics. The ablation study underscores the importance of
incorporating early termination into the training process. For
additional comparative and qualitative results, see Fig. A5.

4.3. Text Enhancement

AnySkill excels at open-vocabulary skill acquisition, out-
performing existing models. Its performance, however, is
contingent on the specificity and scope of text descriptions.
Performance drops with vague descriptions or for tasks re-
quiring prolonged execution due to reliance on image-based
similarity for rewards. For example, “do yoga” encompasses
a broad range of poses, complicating convergence on a spe-
cific action. Similarly, for extended actions like “walk in a
circle,” the model may not fully complete the task, as image-
based rewards provide insufficient directional guidance.

To counteract these limitations, we introduced an auto-
mated script utilizing GPT-4 [28] to refine and clarify textual
instructions, enhancing specificity and reducing potential
motion interpretation ambiguity. This refinement process sig-

(a) (b) (c)

Figure 6. Qualitative evaluation of text description en-
hancement. We compare motions generated with original Hu-
manML3D [7] descriptions (top row) against those from our en-
hanced descriptions (bottom row). Text descriptions are (a) “wave
hi” and “raised arm bent at the elbow”; (b) “Waltz dance” and

“left foot step backward, right hand extends”; (c) “kick” and “left
leg forward, right leg retreats”.

Figure 7. Agent and rendered mesh. The simulation of our agent
and the interacting object (left) alongside their visualization (right).

nificantly improves AnySkill’s execution accuracy. Fig. 6
compares the original and refined texts alongside their gener-
ated motions; see Appendix B.1 for more qualitative results.

Moreover, we refined text descriptions from the Hu-
manML3D [7] and BABEL [33] databases, amassing 1,896
unique, enhanced text instructions. For comprehensive de-
tails on the refined texts and their impact on motion genera-
tion, refer to Appendix A.1.

4.4. Interaction Motions

AnySkill demonstrates the superb capability to interact
with dynamic objects, for instance, a soccer ball and a door.
To capture these interactions accurately during training, we
manually adjust the camera positions, focusing on the door
and soccer ball. The alignment between the simulation en-
vironment and the rendered visualizations is showcased in
Fig. 7. The qualitative assessments, as seen in Fig. 8, along
with the quantitative evaluations in Tab. 2, confirm that
AnySkill efficiently learns to interact with a variety of
objects without necessitating any modifications to its learn-
ing algorithm or reward design. Our tests primarily involve
interactions with a single object, yet extending AnySkill
to engage with multiple objects concurrently is anticipated to
be straightforward. Further interactive motions with various
objects are available in Appendix B.4 and Fig. A8.

Table 2. Quantitative evaluation of interaction motions.

Success Ò Natural Ò SmoothÒ PhysicsÒ CLIP SÒ

Interaction w. object 5.42 -0.74 5.62 -0.61 5.34 -1.17 5.45 -1.48 24.49 +0.35
Interaction w. scene 4.53 -1.63 4.47 -1.76 5.01 -1.50 5.41 -1.52 22.41 -1.73

4.5. Reward Function Analysis

We evaluate 4 recent reward functions image- and physics-
based RL and compare them with ours using cosine similar-
ity. These include VLM-RMs [37], which adjusts the CLIP
feature of text to exclude agent-specific details; CLIP-S [67],
applying a modified CLIP similarity as the reward; Video-
CLIP [55], calculating mean-pooled CLIP features across
frames for temporal coherence; and ASE [32], adding a
velocity reward for desired agent movement.



(a) kick the white ball

(b) move the white ball

(c) raise arm, open the door

Figure 8. Interaction motions generated by AnySkill. Displayed are interaction sequences by AnySkill: two with a soccer ball (a-b)
and one with a door (c), progressing from left to right.

Using these rewards, we train AnySkill on identical
descriptions and assess motion quality via a user study sim-
ilar to the one described in Sec. 4.2, with results presented
in Tab. 3 and Appendix B.3. Our approach surpasses the
baseline methods in most metrics, demonstrating the effec-
tiveness of our reward function. Notably, AvgPool scores
highly in smoothness, benefiting from averaging alignment
scores over time.

Table 3. Comparisons of the reward design.

SuccessÒ NaturalÒ SmoothÒ PhysicsÒ CLIP SÒ

VLM-RMs [37] 3.15 4.36 5.35 5.17 19.46
CLIP-S [67] 3.80 5.41 5.98 6.21 19.78
AvgPool [55] 5.09 5.96 6.55 6.70 20.25
+ vel. rew. [32] 2.73 4.42 5.35 5.22 18.39

Ours 6.16 6.23 6.51 6.93 24.18

5. Conclusion
We introduced AnySkill, a novel hierarchical framework
for acquiring open-vocabulary physical interaction skills,
combining an imitation-based low-level controller for mo-
tion generation with a robust, flexible image-based reward
mechanism for adaptable skill learning. Through qualitative

and quantitative assessments, AnySkill is the first method
capable of extending learning to encompass unseen tasks
and interactions with novel objects, opening new venues in
motion generation for interactive virtual agents.

Future directions AnySkill’s potential and limita-
tions are closely linked to the CLIP model’s capabilities,
guiding its current success and defining its challenges. As
noted in Sec. 4.3, reliance on image-based rewards restricts
AnySkill’s effectiveness in scenarios with prolonged dura-
tions or visual ambiguity. Future work aims to address these
issues by enhancing the model’s understanding of temporal
dynamics, integrating sophisticated multimodal alignment
strategies, and incorporating interactive feedback loops.

The current need to develop a specialized policy for
each new task—requiring substantial training time and
resources—highlights a direction for future work: transform-
ing AnySkill into a more universally applicable frame-
work. This evolution will streamline the process of skill
acquisition, dramatically reducing the time and resources
required to master new interactive abilities. By achieving
this, we anticipate enabling AnySkill to learn an array of
skills in a unified, efficient manner, significantly broadening
the scope of applications for interactive virtual agents and
making sophisticated motion generation more accessible.
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A. Data
This section offers a detailed account of the data’s origins
and the methodologies employed for its processing.

A.1. Text Data

Text descriptions sourced from publicly available online
datasets are often marked by redundancy, ambiguity, and
insufficient detail. To address these issues, it is necessary
to preprocess the descriptions to render them more practical
and usable. For generating practical text descriptions, we
implemented a three-tiered process leveraging GPT-4 [28].
This encompasses filtering text to discard non-essential
details, scoring text for assessing utility, and rewriting text
to improve clarity and applicability. Our goal is to identify
text descriptions that significantly contribute to mastering
open-vocabulary physical skills from a robust pre-existing
dataset, and to standardize the collection of text instructions.

Filter text Initially, we compiled 89,910 text entries
from HumanML3D [7] and Babel [33], discovering substan-
tial repetition, including exact duplicates, descriptions of
akin actions (e.g., “A person walks down a set of stairs” vs.

“A person walks down stairs”), frequency-related repetitions
(e.g., “A person sways side to side multiple times” vs. “A
person sways from side to side”), and semantic duplicates
(e.g., “The person is doing a waltz dance” vs. “A man
waltzes backward in a circle”).

To address this issue, we initiated a deduplication pro-
cess, first eliminating descriptions that were overly brief
(under three tokens) or excessively lengthy (over 77 tokens).
We then utilized the LLAMA-2-7B MODEL with its 4096-
dimensional embedding vector for further deduplication. By
computing cosine similarities between each description pair
and applying a 0.92 similarity threshold, descriptions exceed-
ing this threshold were considered repetition. This procedure
refined our dataset to 4,910 unique descriptions.

Scoring text After filtering out duplicates and semanti-
cally similar actions, we encountered issues like typographi-
cal errors, overly complex descriptions, and significant am-
biguities in the remaining texts. These problems rendered
the descriptions unsuitable for generating actionable human
motion skills despite their uniqueness.

To further refine our text instructions, we evaluated the
remaining descriptions for their suitability in model process-
ing and practical motion generation. Our evaluation, detailed
in Fig. A1, focused on fluency, conciseness, and the speci-
ficity of individual human poses within a brief sequence of
frames. Descriptions that were direct and descriptive, con-
taining clear verbs and nouns, were preferred over those
with a sequential or ambiguous nature. Using a standard-
ized scoring process, we ranked the action descriptions by
their scores. After addressing issues in an initial round of
scoring, a second evaluation was conducted to fine-tune our
selection, as mentioned in Fig. A2. This led to the exclusion

Score Prompt I

You are a language expert. Please rate the following
actions on a scale of 0 to 10 based on their use of
language. The requirements are:

1. The description should be fluent and concise.
2. The description should correspond to a single hu-

man pose, instead of a range of possible poses.
3. The description should describe a human pose at a

short sequence of frames instead of a long sequence
of frames (this requirement is not mandatory).

4. If the description contains sequential logic, rate it
lower. ”Walk in a circle” is a kind of sequential
logic.

5. Except for the subject, the description should have
only one verb and one noun.

6. If the description is vivid(like ”dances like Michael
Jackson”), rate it higher.

Here are some examples you graded in the last round:
• 6 - A person is swimming with his arms.
• 3 - Sway your hips from side to side.
• 7 - A person smashed a tennis ball.
• 4 - A person is in the process of sitting down.
• 5 - A person brings up both hands to eye level.
• 9 - A person dances like Michael Jackson.
• 2 - A person packs food in the fridge.
• 5 - A person flips both arms up and down.
• 8 - Looks like disco dancing.
• 3 - Kneeling person stands up.
• 1 - A person does a gesture while doing kudo.
• 6 - A person unzipping pants flyer.
• 0 - then kneels on both knees on the floor.
• 2 - A person is playing pitch and catch.
• 1 - A person gesturing them walking backward.
• 4 - A person seems confident and aggressive.
• 1 - A person circles around with both arms out.
• 5 - A person prepares to take a long jump.
• 6 - A person jumps twice into the air.
• 0 - Turning around and walking back.

Now, please provide your actions in the format ’x -
yyyy,’ where ’x’ is the score, and ’yyyy’ is the original
sentence. Please note that Do not change the original
sentence.

Figure A1. Score Prompt I. This prompt focuses on filtering text
descriptions for fluency, conciseness, and specificity, particularly
targeting individual human poses within a short sequence of frames.

of descriptions within certain score ranges (0-0.92, 0.98-
0.99), resulting in a curated dataset of 1,896 unique action
descriptions optimized for model training.



Score Prompt II

You are a language expert. Please rate the following
actions on a scale of 0 to 10 based on the ambiguity of
the description. Examine whether this action descrip-
tion corresponds to a unique action. If the description
corresponds to fewer actions, like ”wave with both
arms”, rate it higher. If the description corresponds to
abundant actions, like ”do yoga”, rate it lower.

• 7 - grab items with their left hand.
• 8 - hold onto a handrail.
• 9 - do star jumps.
• 5 - arms slightly curled go from right to left.
• 3 - sit down on something.
• 9 - kick with the right foot.
• 7 - stand and put arms up.
• 9 - cover the mouth with the hand.
• 8 - stand and salute someone.
• 2 - break dance.
• 6 - spin body very fast.
• 7 - open bottle and drink it.
• 2 - do the cha-cha.
• 5 - do sit-ups.
• 4 - slowly stretch.
• 6 - cross a high obstacle.
• 7 - grab something and shake it.
• 4 - lift weights to get buff.
• 8 - move left hand upward.
• 7 - walk forward swiftly.

Now, please provide your actions in the format ’x -
yyyy,’ where ’x’ is the score, and ’yyyy’ is the original
sentence. Please note that Do not change the original
sentence.

Figure A2. Score Prompt II. This prompt selects for direct and
richly detailed action descriptions, prioritizing clarity with a distinct
verb and noun over descriptions based on sequential or complex
logic.

Rewrite text In the final refinement phase, we address
the specificity of action descriptions, crucial for accurately
generating motions. Vague descriptions, such as ’jump rope’,
can lead to ambiguous interpretations and various motion
realizations, challenging the model’s training due to the
similarity of rewards for different motions. This observation
is consistent with other motion generation studies utilizing
CLIP [11, 43].

To enhance the clarity and effectiveness of the reward
calculation, we rephrase and detail the descriptions. For
instance, ’jump rope’ is clarified to ’swinging a rope around
your body’, with further details like ’Raise both hands and
shake them continuously while simultaneously jumping up

with both feet, repeating this cycle’. Additionally, we break
down actions into more discrete moments, such as ’legs off
the ground, wave hand’, to improve the reward function’s
precision. Our methodology for this textual refinement is
detailed in Fig. A3.

Rewrite Prompt

Describe an action of instruction for a humanoid agent.
The description must satisfy the following conditions:

1. The description should be concise.
2. The description should describe a human pose in a

single frame instead of a sequence of frames.
3. The description should correspond to only one hu-

man pose, instead of a range of possible poses,
minimize ambiguity.

4. The description should be less than 8 words.
5. The description should not contain a subject like

”An agent”, ”A human”.
6. The description should have less than two verbs

and two nouns.
7. The description should not have any adjectives, ad-

verbs, or any similar words like ”with respect”.
8. The description should not include details describ-

ing expressions or fingers and toes.

For example, it’s better to describe “take a bow” as
“bow at a right angle.”

Figure A3. Rewrite Prompt. This prompt is designed for rephras-
ing action descriptions to enhance clarity and incorporate additional
details, aiming to improve the specificity and effectiveness of the
generated motions.

A.2. Motion Data

For the study, we curated 93 motion clips, organizing them
by movement type and style into a structured dataset. We
delineated movements into three categories: move around,
act in place, and combined; and styles into five categories:
attack, crawl, jump, dance, and usual. The clips were then
classified into these eight categories, with a weighting sys-
tem applied based on the inverse frequency of each category
to enhance the representation of less common actions. For
motions that spanned multiple categories, their weights were
averaged based on their inverse frequency values. This ap-
proach aimed to ensure a balanced action distribution within
the dataset, emphasizing the inclusion of rarer actions to
avoid overrepresentation of any single action type. The cat-
egorization and its impact on the dataset distribution are
illustrated in the diagram available in Fig. A10.
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Figure A4. Rewards before and after text enhancement. The red
curve depicts reward trends following text enhancement, contrast-
ing with the pre-enhancement trends shown by the green curve.

B. Experiments

This supplementary section expands on the experimental
analyses from Sec. 4, focusing on the text description. Be-
yond the quantitative metrics addressed in the main docu-
ment, we explore the changes in reward function dynamics
pre- and post-text refinement across various instructions.
This includes a detailed comparison of CLIP similarity
scores during training to critically evaluate the effectiveness
and design of different reward functions.

B.1. Text Enhancement

Utilizing the text enhancement strategy described in Ap-
pendix A.1, we have refined action descriptions from exist-
ing open-source datasets, reducing ambiguity and enhancing
clarity and applicability. To gauge the impact of these refined
descriptions on training efficacy, we track and compare the
reward feedback during the training phases.

Selecting four instructions at random from our dataset
for illustration, we compare reward trends before and after
text enhancements—represented by green and red curves,
respectively, in our graphs. This comparison reveals that
refined instructions consistently yield superior reward trajec-
tories from the start, showing a swift and steady ascent to a
performance plateau. This indicates that text enhancement
notably improves policy training efficiency and convergence
speed. Specifically, for intricate actions like Yoga (as shown
in the top right figure of Fig. A4), refined instructions result
in a more stable and gradual reward increase, signifying
improved training stability and model performance.
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Figure A5. The CLIP similarity calculated by different reward
designs.

B.2. Implementation Details

B.3. Reward Function Analysis

To evaluate and compare various reward function designs,
we use cosine similarity between image and text features as
a uniform metric, accommodating the differing numerical
scales inherent to each reward design. As depicted in Fig. A5,
we represent five reward functions using distinct colors, with
our method marked in purple.

Aligning with discussions in the main text (Fig. 5), we
examine four instructions from our user study for a detailed
comparison. Our findings indicate that our method uniformly
improves image-text alignment throughout training, achiev-
ing consistent convergence. While some methods exhibit
comparable performance on select instructions, they gener-
ally show less consistency, with initial gains often receding
over time. In contrast, our approach demonstrates robustness
against the variabilities of open-vocabulary training, leading
to stable and reliable performance improvements.

To assist readers in replicating our work, we have in-
cluded a comprehensive breakdown of hyperparameter set-
tings in Tabs. A1 and A2.

B.4. Interaction Motions

Within the main text, we highlighted AnySkill’s profi-
ciency in mastering tasks involving interactions with diverse
objects, underscoring its capability to adapt across a spec-
trum of interaction scenarios. For experimental validation,
we deliberately chose a range of objects, both rigid (e.g.,
pillars, balls) and articulated (e.g., doors, chairs), to demon-
strate the method’s versatility. The quantitative analyses of
these object interactions, as detailed in Appendix B.2, af-
firm the flexibility of our approach. Our system is shown to
adeptly navigate a variety of action requirements, as speci-



(a) kick the white chair

(b) move around the white chair

(c) strike the pillar

Figure A6. Additional results of interaction motions.

Table A1. Hyperparameters used for the training of low-level
controller.

Hyper-Parameters Values

dim(Z) Latent Space Dimension 64
Encoder Align Loss Weight 1
Encoder Uniform Loss Weight 0.5
w gp Gradient Penalty Weight 5
Encoder Regularization Coefficient 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size 4096
γ Discount 0.99
Learning Rate 2 ˆ 10´5

GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 300

fied by different text descriptions, maintaining efficacy even
when faced with repetitive initial conditions or identical ob-
jects.

Table A2. Hyperparameters used for the training of high-level
controller.

Hyper-Parameters Values

w gp Gradient Penalty Weight 5
Encoder Regularization Coefficient 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size 4096
γ Discount 0.99
Learning Rate 2 ˆ 10´5

GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 300



(a) (b)

(c) (d)

Figure A7. Atomic actions from the trained low-level controller.
In each subfigure, the green agent shows the reference motion from
the dataset, and the white agent shows our learned atomic action.



Figure A8. Real-time scene interaction. We employed both indoor and outdoor scenes within IsaacGYM. Throughout the training process,
we conducted real-time rendering and obtained feedback on physical interactions.



(a) wave hands up and down

(b) jump high

(c) left leg forward, right leg retreats

(d) raise one arm, put the other hand down

(e) raise hands above head, bend body

(f) hit a tennis smash with arm

Figure A9. More results of open-vocabulary physical skills.
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Figure A10. The distribution of actions and their corresponding categories.
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