2405.19283v1 [cs.CV] 29 May 2024

arXiv

Programmable Motion Generation for Open-Set Motion Control Tasks

Hanchao Liu*?* Xiaohang Zhan?f

Shaoli Huang?
! BNRist, Tsinghua University

Tai-Jiang Mu'f
2 Tencent Al Lab

Ying Shan?

Constraints in Character Animation

=

trajectory

&

interaction

2 f

velocity keyframe

=t
Y7

combinations

o & X
g
manipulation

contact physics

Prev: Individual Tasks

Task: “walking” + left hand always
touching head (radius=0.1m)

Trajectory control

j 4

1. Distance between left hand and head = 0.1m

®/ @ Motion Programming

total_err = @
for frame in motions:
total_err += |distToPoint(
frame[1_hand*], frame[‘head’]) - @.1]

Human-scene interaction

“walking and turning around”+
inside a square (-1<x<I, -1<z<1)

® / @ Decomposed Constraints 1. All the joints fall inside the square
(-1<x<l, -1<z<1)

x-1.0, @)+max(jo
-joint.z-1.6, @)+max(joint.z-1.0, 8)

Ours: Open-Set Motion Control

“walking” + holding
a heavy ball (diameter=0.4m)

“walking” + holding a ball
(diameter=0.4m)

1. Distance between both hands = 0.4 m
2. No collision between ball and chest
3. Center of gravity falls within the foot region

1. Distance between both hands = 0.4 m
2. No collision between ball and chest

total_err = 0; body_mass = 60; ball mass = 60
for.

total_err = 0

for frane in motions:
dist_err = |distTopoint(frane[1t hand’1)
. X

hand_mid_point =
Frane[1_hand’]
collision_err = max(8.2 + ches kness -
distTopoint(hand_mid_point, frane[‘chest’]), @)
total_err += dist_err + collision_err

nt.x-1.0,)+
+

A

no collision
contacts

K

Figure 1. We introduce Programmable Motion Generation as a solution for open-set human motion control. Unlike previous works
that treat a finite set of motion constraints as individual tasks, we attempt to solve vast and novel tasks in a unified framework. Through
Programmable Motion Generation, an arbitrary controlled motion generation task is effectively solved by simply programming an error
function rather than collecting training data and designing networks. The programming is also able to be implemented automatically.

Abstract

Character animation in real-world scenarios neces-
sitates a variety of constraints, such as trajectories, key-
frames, interactions, etc. Existing methodologies typically
treat single or a finite set of these constraint(s) as sepa-
rate control tasks. These methods are often specialized, and
the tasks they address are rarely extendable or customiz-
able. We categorize these as solutions to the close-set mo-
tion control problem. In response to the complexity of prac-
tical motion control, we propose and attempt to solve the
open-set motion control problem. This problem is charac-
terized by an open and fully customizable set of motion con-

* Work done during an internship at Tencent AI Lab.
T Joint corresponding authors.
taijiang@tsinghua.edu.cn

xhangzhan@tencent.com,

trol tasks. To address this, we introduce a new paradigm,
programmable motion generation. In this paradigm, any
given motion control task is broken down into a combi-
nation of atomic constraints. These constraints are then
programmed into an error function that quantifies the de-
gree to which a motion sequence adheres to them. We uti-
lize a pre-trained motion generation model and optimize
its latent code to minimize the error function of the gener-
ated motion. Consequently, the generated motion not only
inherits the prior of the generative model but also satis-
fies the requirements of the compounded constraints. Our
experiments demonstrate that our approach can generate
high-quality motions when addressing a wide range of un-
seen tasks. These tasks encompass motion control by mo-
tion dynamics, geometric constraints, physical laws, inter-
actions with scenes, objects or the character’s own body

parts, etc. All of these are achieved in a unified approach,
without the need for ad-hoc paired training data collection
or specialized network designs. During the programming
of novel tasks, we observed the emergence of new skills
beyond those of the prior model. With the assistance of
large language models, we also achieved automatic pro-
gramming. We hope that this work will pave the way for the
motion control of general Al agents. Project page: https :
//hanchaoliu.github.io/Prog-MoGen/

1. Introduction

Character animation techniques have extensive applica-
tions in the film and game industry, as well as in robotics
[31]. Recently, relying on large motion capture database,
Al-based human motion generation methods have demon-
strated their potentials when given multi-modal signals like
text [1, 14, 27, 38] or audio [4, 25]. However, in the practi-
cal applications of character animation, it is crucial to con-
sider various constraints of motions, since a character is
never isolated in space. These constraints typically include
joint trajectories, motion dynamics such as velocity or ac-
celeration, key-frames, interactions with scenes and objects,
self-contacts [30], laws of physics, efc., and their combina-
tions.

Artists often use Inverse Kinematics (IK) systems in
Digital Content Creation (DCC) software to modify mo-
tions to meet customized constraints. However, due to the
absence of motion priors, IK cannot ensure spatial valid-
ity among joints or temporal coherence among frames, thus
usually yielding unsatisfactory results. On the other hand,
as shown in Fig. 1, existing Al-based animation methods
typically pre-define single or a finite set of constraint(s)
and formulate it as individual tasks, such as trajectory
and velocity control [6, 19, 21, 41], motion in-betweening
[16, 40, 46], human-scene/object interactions [5, 8, 43, 51],
physics-based animation [34, 35, 47, 52], etc. Under such
task-specific paradigm: first, for each task, the dataset and
the methodology are specifically designed and individu-
ally trained; second, those methods intrinsically cannot deal
with customized constraints or arbitrary combinations of
them, thus being seldom extendable or customizable. We
classify those individual tasks as close-set motion control
problem.

In this paper, to confront the complexity of practical mo-
tion control, we pose a new problem, i.e. open-set motion
control, where the set of motion control tasks is open and
fully customizable. For example, as shown in Fig. 1, the
generated motions of “walking” can be accompanied by
any arbitrary constraint, such as “left hand always touch-
ing head”, “limited in a given square”, “holding a ball”, etc,
without special training data or network designs. To the
best of our knowledge, this problem has never been solved
by previous works.

To address this challenging problem, our key observa-
tions are: (1) a complicated motion control task can be bro-
ken down into several constraints; (2) almost all constraints
can be measured via errors, e.g., using distance as an error to
measure the “contact of both hands” constraint, and (3) the
errors are mathematically additive. Based on these obser-
vations, we propose a new motion generation paradigm, i.e.
programmable motion generation, where an arbitrary con-
trolled motion generation task is unifiedly solved by simply
programming the error function. Specifically, given an arbi-
trary motion control task, we formulate it as combinations
of atomic constraints, and program them into an error func-
tion that measures how much the generated motion follows
those constraints. Taking human-object interaction as an ex-
ample in Fig. 2, given a task that a person is walking while
holding a 0.4 meter diameter ball, we break it down into two
atomic constraints: (1) contact of hands and the ball: the
distance of both hands keeps 0.4 meter; (2) avoiding col-
lision between the ball and the chest: the distance between
the mid-point of both hands and the chest joint is larger than
the radius plus chest thickness. Afterwards, we program the
function to compute the total error. As long as such error
function is differentiable, there are many ways to optimize
a pre-trained motion generation model to minimize the er-
ror. According to our statistics, almost all commonly-used
constraints can be programmed as differentiable functions.
In this way, the motion is optimized to satisfy the constraints
while still inheriting the prior from the pre-trained genera-
tive model.

This paradigm is extendable, e.g., if the ball is heavy,
we can simply add another constraint to keep balance when
walking, i.e., the ground projection point of the overall cen-
ter of gravity should fall within the convex hull formed by
the outline of both feet.

Additionally, to facilitate programming, we provide an
atomic constraint library comprising of common atomic
constraints. We also design a motion programming frame-
work that pre-defines the input, output, as well as usable
logical operations. Under the programming framework, by
combining modules from the library, one can easily build
complex constraints to solve customized tasks, just like
building blocks. The framework and the library also make
automatic programming easier. We instruct a large language
model (LLM) to understand the task description and use the
programming framework and the library to generate code
of the error function. One can choose to automatically pro-
gram for convenience or manually program for controllabil-
ity and interpretability.

In summary, the contributions are as follows:

* We pose the new problem of open-set motion control,
hoping to open up new research areas for pursuing an om-
nipotent and generalizable intelligent agent, and provid-
ing more powerful tools for character animation develop-

https://hanchaoliu.github.io/Prog-MoGen/
https://hanchaoliu.github.io/Prog-MoGen/

(]]]) (
Atomic constraint library E>

(Section 3.2)

Motion Programming:

ompute total error. Input:

®/@)

(Section 3.3)

motions, parameters. Output: total_err

_ _J total_err = @
in
4 : N # first constraint
[\ Constraints dist_err = |distToPoint([€1_hand’], [‘r_hand’]) - 0.4]|
. _ second constraint
Open_set ta’Sk' E> 1. Distance of both hands = 0.4 m E> hand_mid_point = midPoint([“1_hand’], [“r_hand’])
. . . collision_err = max(@.2 + chest_thickness -
. 2. Distance of hand middle ppln[distToPoint(hand_mid_point, [“chest’]),
A person is \and chest > 0.2 m+chest_thlckness) L total_err += dist_err + collision_err
walking while -
optional
holding a 0.4- T
meter diameter M
ball E> Prompt: otion generatlon y
A person is walking. network
" (Section 3.4)

Figure 2. Overview of Programmable Motion Generation. Given an arbitrary task, we formulate it as a combination of motion constraints.
Under our programming framework, by combining modules from our atomic constraint library, it is easy to program the error function to
solve complex tasks just like building blocks. The programming also supports to be performed automatically by LLMs via simply providing
textual descriptions of the task. Finally, the latent code z of a pre-trained motion generation network is optimized to minimize the error
function, thus producing motions in high quality as well as satisfying the constraints. The prompt is optional if we use text-to-motion

network as the pre-trained generative model.

ers and artists.

» To address the above problem, we propose programmable
motion generation, a novel, flexible, customizable and
versatile paradigm and its implementation.

* Extensive experiments show its feasibility and high mo-
tion quality for a wide range of tasks. We also observe
emergence of new skills from novel tasks.

e Its compatibility with LLMs makes automatic execution
of arbitrary open-set tasks possible, showing bigger imag-
ination space in the future.

2. Related Work

Human Motion Generation. Deep learning-based hu-
man motion generation has achieved great progress. Var-
ious network structures are proposed for motion generation
including convolutional auto-encoder [18, 20], variational
auto-encoder (VAE) [37], generative adversarial network
(GAN) [49] and diffusion models [9, 10, 44, 55]. Apart
from generating isolated human motions with text input
[1, 14, 27], many researches focus on generating humans
that interact with the surroundings and common objects
[5, 13, 17, 45, 54]. Note that these approaches usually re-
quire specific network designs for different types of condi-
tioning signals. They are task-specific and usually incorpo-
rate task-specific domain knowledge. In this paper we aim
to find a versatile approach that works on multiple tasks.

Human Motion Editing and Control. There are also
works focusing on editing or adding control to human mo-
tion generation [19, 21, 41, 44]. MDM [44] naturally sup-
ports local trajectory editing for a certain joint in a simi-
lar manner of image inpainting [29]. PriorMDM [41] ex-
tends MDM and further exploits the correlation between
the edited joints and the rest of the body with an additional

finetuning process to alleviate artifacts like foot skating and
motion breaking. However, those inpainting-based meth-
ods only support local trajectory editing and cannot well
handle global trajectories when interacting with surround-
ing scenes and objects. They also fail when dealing with
very sparse control signals [21]. PENN [19] focuses on root
trajectory control but still relies on training with condition-
ing signals.

An alternative solution is to cast motion control as an
optimization problem. Essentially inverse kinematics (IK)
supports arbitrary motion editing, but it cannot guarantee
high motion quality as no prior or learning is involved. The
recent GMD [21] follows classifier guidance but only sup-
ports root trajectory control. The very recent OmniCon-
trol [48] takes trajectories of arbitrary joints as control sig-
nals, but it still only receives trajectories as control signals
and involves network training. In contrast our work studies
a broader and more fundamental problem by allowing any
forms of constraints on arbitrary joints without re-training.
Human Motion Priors. Various forms of human motion
priors are proposed to help generate more plausible hu-
man poses and motions for pose estimation tasks. Tem-
poral consistency priors are applied on velocity and accel-
eration [26, 56], feature space [53], and DCT [2]. Other
forms of learned priors include VPoser [33], MPoser [23],
and adversarial motion priors [11, 23, 36]. Recently a few
motion priors are introduced for motion generation tasks.
The inpainting-based editing [44] uses motion prior learned
from the motion diffusion model (MDM). PriorMDM [41]
further uses frozen MDM as a generative motion prior to
generate long sequences and multi-person interactions. We
also utilize pre-trained MDM as a strong motion prior.
However, we adopt a different approach by imposing con-
straints and guiding it to generate motions that fit the prior.

3. Programmable Motion Generation
3.1. Overview

Given an open-set motion control task, we aim to generate
a motion sequence * € RY*P which contains N frames
of D-dimensional poses. It is usually expressed as the ro-
tation and position of each joint at each frame. As in Fig.
2, we first break down the task to several motion constraints
and the optional condition C. The form of C depends on
the motion generation network we use. For example, when
we use the text-to-motion network, C can be text prompt or
left empty. Afterwards, these constraints are programmed
as an error function F'(-) that quantifies the degree to which
a motion sequence adheres to them. We provide an atomic
constraint library (Section 3.2) and fundamental rules for
motion programming F' (Section 3.3). This process can be
conducted manually, and we also show the potential of us-
ing LLM (e.g. GPT [7]) to automatically write code for F'.

After motion programming, we formulate this motion
control task as an optimization problem:

min F(Gy(z,C),p), (1)

where 0 is the frozen weight of a motion generation model
Gy and p is the parameters affiliated to this task. Our goal
is to optimize the latent vector z for the generative model so
that the generated motion sample © = Gy(z,C) adheres to
those constraints. We present the solution for this optimiza-
tion problem in Section 3.4.

3.2. Atomic Constraints

Theoretically, the total error function F' can be composed of
any error F'(x) that is differentiable with respect to x. Here
we introduce an atomic constraint library in a modular and
systematic way to support various tasks. They are represen-
tative spatial and temporal constraints that serve as building
blocks for the error function F'. For convenience, we denote
the motion of j-th joint as x;, the position of j-th joint in
the global coordinate system as %°° = T (z;), where T
transforms the motion x; to global joint positions and it is
differentiable.

Absolute Position Constraint requires the trajectory xp
of j-th joint to be close to a given trajectory ££°° and i is in
the form of L-n norms, i.e., E(2%°, 21°%) = |25 =2 |,..
Existing trajectory-based motion control tasks [21, 41, 48]
constitute a subset of this constraint. It can also serve as a
regularization term if we do not wish to change too much
from the motion generated by original Gy.

High-order Dynamics Constraint constrains motion dy-
namics of joints instead of positions. A typical example is
to constrain the magnitude and orientation of velocity or ac-
celeration for certain joints. This constraint is in the form
of E(x§)
Zj and Z 'E

S

i;k)) by taking the k-th numerical differential of

Constraint Error Function F
Input: motions, parameters Output: a scalar value

3 def computeTotalError(motions, parameters):

diameter, chest_thickness = parameters

total_err = @

for frame in motions:
dist_err = |distToPoint(frame[‘1_hand’], frame[‘r_hand’]) - diameter|
hand_mid_point = midPoint(frame[‘1_hand’], frame[‘r_hand’])
collision_err = max(diameter / 2 + chest_thickness -

distToPoint(hand_mid_point, frame[‘chest’]), @)

total_err += dist_err + collision_err

return total_err

Programming Modules

Atomic Logical
i Constraints Operations 3
Absolute Relative “=> AND
: position distance E E1+E2 3
High-order Directional OR
: dynamics constraint max(margm E,0) min(E1,E2)
Geometric Keyframe NOT

: constraint constraint max(E-margin, @) -E

Figure 3. The programming framework that pre-defines the input,
output, atomic constraints and the redesigned logical operations
as building blocks for motion programming. The example code
corresponds to the task of “holding a ball”.

Geometric Constraints constrain a joint %" on a geo-
metric primitive P in the global coordinate system, such
as a curve or a surface, denoted by E (7", P). As com-
mon cases, we implement distToLine, distToPlane, etc. in
our constraint library. Note that constraining a joint on a
line differs from the aforementioned point-wise trajectory
constraint, and the latter is stricter than the former.
Relative Distance Constraint models relationships be-
tween two joints, e.g., the distance of any two joints is de-
noted by E(2%°,27°"). Similarly, the angle between two
joints also belongs to this category.

Directional Constraint requires a bone consisting of x;
and its parent joint parent(m ;) to point at a given direction
d, denoted by E (:c — parent(z}®), d).

Key-frame Constraint enforces constraint at certain times-
tamps. For this purpose, we can define the aforementioned
constraints at some certain timestamps ¢ only, in the form
of E (Egpagal (¢, %) ,t), where Egyga is any constraint irrel-
evant to time.

One can always write customized constraints to extend
the library if necessary. For example, if we want the
agent to maintain body balance when performing a cer-
tain task, Centor-of-mass Constraint is required. It means
the ground projection point of the overall center of grav-
ity should fall within the convex hull formed by the outline
of both feet. It is quite extendable by using your imagina-
tion. For example, what if the agent is subjected to some
additional external forces while maintaining balance, such
as pull force or centrifugal force?

3.3. Motion Programming

To further facilitate programming, we provide a motion pro-
gramming framework consisting of the following rules.
Input and output. The input consists of “motions” and
“parameters”. The “motions” is a list of dictionaries con-
taining information of joints. The “parameters” includes
task-related constants. The output is a scalar value repre-
senting the total error.

Logical operations. We redesign some of the logical oper-

ations in standard programming language to better support

motion programming.

e “>” implemented by max(margin — E,0), means the
error should be larger than a given margin. It is commonly
used in obstacle avoidance.

e “<” implemented by maxz(E — margin,0), means the
error should be less than a given margin.

e “AND” implemented by /1 + F», means both constraints
are satisfied.

* “OR” implemented by min(E7, E3), means one of the
constraints is satisfied.

e “NOT” implemented by —F, means the error should be
as large as possible. It is used to keep the agent as far
away as possible from some geometric objects.

Other programming rules. Conditions like “if-elif-else”

and loops like “for” are supported. It means we allow the

constraints to be triggered by some customized conditions,
and repeatedly applied to different frames and joints. At
last, the error function is required to be differentiable to the
input motion.

A template of the error function is shown in Fig. 3.

3.4. Latent Noise Optimization

As for the optimization in Eq. (1), we utilize a pre-trained
motion diffusion model (MDM) [44] in our experiments as
the prior model. Specifically, we adapt MDM to its DDIM
[42] form so that the latent noise z is a single vector. We use
Adam [22] as the optimizer in all the experiments, though
other optimizers such as L-BFGS are also supported.

The human motion has invariance in translation and ro-
tation on the horizontal plane. For tasks with constraints
related to horizontal positions or rotations, we can relax the
constraint by transforming it to an equivalent constraint us-
ing spatial transformation. This reduces the difficulty for
the original optimization problem. For example, the con-
straint “touching a vertical plane whose equation is z = 10”
is firstly transformed to “touching a vertical plane whose
equation is z = 07; after optimization, the motion is then
transformed back to satisfy the original constraint.

4. Task and Applications

In this section, we show how to combine atomic constraints
to constitute a wide range of open-set motion control tasks

and applications. For each task category we present several
specific sub-tasks for the later evaluation.

4.1. Motion Control with High-order Dynamics

The tasks related to velocity or acceleration can be solved
via high-order dynamics constraints. We conducted the fol-
lowing specific task in our experiments:

Task HOD-1: specifying the velocity (both magnitude and
orientation) for several key-frames. This task uses “high-
order dynamics constraint” and “key-frame constraint”.

4.2. Motion Control with Geometric Constraints

Geometric constraints are common in the real world such as
hand touching a wall, feet on a balance beam. These tasks
are supported by calling geometric constraints. They are
significantly different from trajectory control tasks which
are required to specify the exact joint positions at each
timestamp. Geometric constraints, as looser constraints, are
more suitable for such tasks like hand touching a wall that
do not need to pre-define the trajectories. Note that the con-
straint relaxation strategy can be applied in these tasks. The
representative tasks in our experiments include:

Task GEO-1: walking with hand touching a vertical wall.
Task GEO-2: walking with feet on a balance beam.

4.3. Human-Scene Interaction

Tasks related to human-scene interactions can be solved by
combining multiple constraints and logical operations. The
representative tasks conducted in the experiments include:
Task HSI-1: constraining the head heights on the first, cen-
tral and last frames. This task uses “geometric constraint”
and “key-frame constraint”.

Task HSI-2: head avoiding an overhead barrier on a spec-
ified key-frame. This task uses “geometric constraint”, “<
operation”, and “key-frame constraint”.

Task HSI-3: constraining a human to walk inside a square
area. This task uses “geometric constraint”, “< operation”
and “> operation”.

Task HSI-4: avoiding an overhead barrier specified by its
position on the z-axis. This task uses “geometric constraint”
and “< operation”.

Task HSI-S: constraining a human to walk in a narrow gap
between two walls specified by the x-axis. This task uses

LEINTS

“geometric constraint”, “< operation” and “> operation”.

4.4. Human-Object Interaction

Humans usually interact with objects by hands in actions
like holding, carrying and some other body parts like hips
in actions like sitting. These tasks can be solved via combi-
nations of constraints and logical operations. The represen-
tative tasks in our experiments include:

Task HOI-1: moving an object from one place to another.
Both starting and end positions for the controlled hand are

Task HSI-1: head height constraint

Method ‘ Foot Skate | Max Acc. | ‘ C.Err. | Unsucc. Rate | ‘ FID | Diversity = R-prec. (Top3) 1
MDM (Unconstrained) [44] | 0.086 0.097 | 0.118 0.718 | 0.545 9.656 0.610
MDM Edit [44] 0.094 0.148 0.109 0.645 0.554 9.656 0.614
IK 0.093 0.414 0.012 0.088 0.545 9.653 0.610
IK+Reg. 0.269 0.121 0.012 0.088 0.782 9.509 0.603
Ours 0.075 0.094 \ 0.012 0.088 0.556 9.611 0.597

Table 1. Comparison with other methods with constraints sampled from groundtruth HumanML3D test set. The constraints are imposed
on the first, central and last frames. MDM (Unconstrained) serves as a numerical reference. The failure of any single indicator (marked in
red) means the failure of the entire task. Baseline methods always fail in certain metrics while ours performs generally well on all metrics.

Task HSI-2: avoiding barrier

Task HSI-3: walking inside a square

Method ‘ Foot Skate | Max Acc. | C.Err. | ‘ Foot Skate | Max Acc. | C.Err. |
MDM (Unconstrained) [44] ‘ 0.096 0.126 0.454 ‘ 0.096 0.126 0.301
IK 0.132 1.919 0.047 0.139 0.292 0.015
IK+Reg. 0.589 0.361 0.047 0.215 0.128 0.015
Ours \ 0.189 0.150 0.097 | 0.125 0.093 0.012
‘ Task GEO-1: hand touching wall ‘ Task HOI-1: moving object
Method ‘ Foot Skate | Max Acc. | C.Ermr. | ‘ Foot Skate | Max Acc. | C.Err. |
MDM (Unconstrained) [44] | 0.096 0.126 0233 | 0.029 0.026 1.701
MDM Edit [44] 0.161 0.147 0.141 0.029 0.032 1.739
PriorMDM [41] 0.350 0.197 0.185 0.327 0.213 1.884
IK 0.147 0.187 0.010 0.408 0.919 0.011
IK+Reg. 0.536 0.117 0.010 0.405 0.037 0.011
Ours ‘ 0.110 0.104 0.023 0.114 0.068 0.028

Table 2. Comparison with other methods on unseen tasks. MDM Edit and PriorMDM cannot address these tasks natively. We adapt them
with ad-hoc tricks to fit these tasks. MDM (Unconstrained) serves as a numerical reference. The failure of any single indicator (marked
in red) means the failure of the entire task. Baseline methods always fail in certain metrics while ours achieves good balance on motion

quality and reaching the given constraints.

specified. This task uses “absolute position constraint” and
“key-frame constraint”.

Task HOI-2: carrying a large ball with its diameter spec-
ified. This task uses “relative distance constraint” and “>
operation”.

4.5. Human Self-Contact

Moreover, we handle human self-contact by applying rel-
ative distance constraint on those joints that are in contact
with each other. The task in our experiment is:

Task HSC-1: walking with a hand always touching the
head. This task uses “relative distance constraint”.

4.6. Physics-based Generation

Lastly, our framework supports complex physics-based
generation. For example, given the mass of each bone for a

body and using center-of-mass constraint, we can generate
physically plausible motions that conform to the physical
law of gravity. The tasks conducted in our experiments are:
PBG-1: standing with single foot and keep balanced. This
task uses “absolute position constraint” and “center-of-mass
constraint”.

PBG-2: carrying a heavy ball and keeping balanced at the
same time. This task uses “relative distance constraint”,
“center-of-mass constraint” and “> operation”.

5. Experiments

As our open-set motion control problem deviates from stan-
dard text-to-motion generation [14] and trajectory-based
motion control [41], we evaluate our method on a set of
pre-defined sub-tasks defined in Section 4. Details for each
sub-task are provided in the supplementary material.

Geometric constraint

Task: “walk”
+ both feet on a balance beam

L is a line
total_err = 0
for frame in motions:
total_err 4= distToLine(frame[‘r_foot’], L)
+distToLine(frane[<1_foot’], L)

Human-scene interaction

“walk” + through the gap
between two walls(-0.2<x<0.2)

total_err = ©
for frane in motions:
for joint in frame:
total_err += max(-joint.x-0.2,0)+
max(joint.x-0.2,)

Human-object interaction

“pick an object from 4 and move it to B”
+.4(0,0.5,0.2), B(2,0.5,0.2)

pA = (0,0.5,0.2); pB = (2.0,0.5,0.2)

t_st = 0; t_ed = n_frames - 1

frame_st=notions[t_st]; frame_ed=notions[t_ed]

total_err = distToPoint(frame_st[1_hand’],pA)+
distTopoint(frane_ed[“1_hand’],pB)

Velocity constraint

“walk” + velocity specified at first,
middle and last frames

t0=0; tl=n_frames//2; t2=n_frames-1

v0=(0,0,0.05); v1=(0.05,0,0); v2=(0,0,-0.05)

total_err = |getVel(motions[t@][‘pelvis’])-ve|+
| getVel(motions[t1][‘pelvis®])-vi|+
|getvel(motions[t2][‘pelvis’])-v2|

D

-

~

Geometric constraint Human-scene interaction

“walk” “walk” + avoiding overhead barrier
+ right hand always touching a wall between(2<z<3) with height 1.3m
P is a plane total_err=0; barrier_h=1.3; barrier st=2; barmr,ea:z

for frame in moti
for idx in [“hea
Joint_height = dx].y; walk_dist = frame[idx].z
if barrier_st <= walk dist <= barrier_ed:
total_err += max(joint_height+body_width-barrier_h, @)

total_err = @
for frame in motions:
total_err += distToPlane(frame[‘r_hand’], P)

ine’]:

Human self-contact

“walk” + left hand
always touching head (radius=0.1m)

Physics constraint

“balance on a leg with arms stretched”
+ center of gravity on right foot

total_err = 0; t0 = 0; framed = notions[te]
for frame in motions:
fixed_err = distToPoint(franc[‘r_foot’],framee[‘r_foot’])
physics_err = distToPoint(
projToGround(massCtr(rane)), frane[‘r_foot’])
total_err += fixed_err + physics_err

total_err = @
for frame in motions:
total_err += |distToPoint(frame[“1_hand’],
frame[‘head’])-0.1]

Figure 4. Qualitative examples of our method for diverse open-set motion control tasks. The task, error function code and generated motion
are demonstrated for each example. The code labeled with GPT marker is generated by GPT given the task description in text.

5.1. Evaluation Metrics

For measuring non-semantic motion quality, we use foot
skating ratio (Foot Skate) proposed in [21] to measure
the motion coherence and over-smoothing artifacts, and use
maximum joint acceleration (Max Acc.) max{z?*"} in
a generated sample to measure frame-wise inconsistency.
For semantic-related motion quality, we adopt commonly-
used Frechet Inception Distance (FID), Diversity and R-
Precision as in [41]. Moreover, we use constraint error
(C. Err) in MAE to measure how well the generated mo-
tion satisfies the given constraints. The unsuccess rate is
defined as the percentage of the generated samples which
fail to meet all the constraints within 5 cm threshold. Note
that the semantic-related metrics require that the imposed
constraints also come from the groundtruth data distribu-
tion. Therefore, for unseen constraints we only evaluate on
non-semantic motion quality metrics and constraint errors.

5.2. Baselines

We compare our method with several baseline methods. (1)
Inverse Kinematics (IK). The optimization process is per-
formed on the motion z instead of backpropagating to the

latent noise z. (2) Inverse Kinematics with regularization
(IK+Reg.). The L2-norm regularization |z[; 1) — x[]2 is
added to help alleviate the frame inconsistency. (3) Motion
editing of Motion Diffusion Model (MDM Edit) [44].
We first use MDM to generate trajectories for both root
joint and controlled joint that meet the given constraint and
then perform inpainting using these trajectories. However,
as retrieving joint positions directly leads to invalid bone
lengths, we choose to recover the final result from joint ro-
tations with a skeleton template. (4) PriorMDM finetuned
control [41]. It builds on MDM Edit and further finetunes
the model parameters to capture the relationship between
the clean controlled joint and the remaining joints.

5.3. Implementation Details

We use the official weight of MDM [44] pre-trained on
HumanML3D [14] and keep it frozen. We use its DDIM
version with a step of Typy = 100, which makes our la-
tent noise optimization faster. For a fair comparison, all
the baseline methods also use the same DDIM model. We
find that optimizing with learning rate 0.005 and 100 opti-
mization steps generally works well for a majority of tasks.
More details are provided in the supplementary material.

5.4. Results and Evaluation

Quantitative Evaluation. We evaluate on tasks with both
known constraints (Table 1) and unseen constraints (Ta-
ble 2). As in Table 1, we show high-quality and coherent
motion over baselines including IK and MDM Edit meth-
ods, which always fail in some certain metrics (marked
in red background in the table). Similarly, comprehensive
evaluation on four unseen sub-tasks (Table 2) shows that our
method achieves good balance between motion quality and
constraint errors. Especially, IK produces inconsistent mo-
tion (failed in Max. Acc.) when the added constraints are
sparse, and generates over-smooth motion (failed in Foot
Skate) if imposing regularization terms for frame consis-
tency. Inpainting methods are not able to produce motions
that are faithfully constrained.

Qualitative Evaluation. In Fig. 4, we demonstrate the
versatility of our approach by solving a series of open-set
tasks described in Sec. 4. Our method generates high qual-
ity and visually coherent motions under various constraints.
Moreover, our method performs well for tasks with both
single and complicated multiple constraints. Especially,
inpainting-based methods are unable to deal with inequal-
ity constraints and those constraints in which all body joints
need to be edited, such as center-of-mass constraint.
Motion Control for Unseen Tasks. If we construct a set
of unseen constraints that are new to the generation model,
our method is still able to generate quite reasonable actions.
For example, for “walking between two walls”, the arms are
brought together and the shoulders are shrank to adapt to
the narrow space. This suggests that the proposed approach
intriguingly demonstrates a certain level of proficiency in
fostering the emergence of new skills for motion generation.
Motion Programming by LLM. Apart from manually pro-
gramming the task into constraints, in Fig. 4 we show the
potential for an LLM with reasoning ability to translate task
description into constraints and code the error function F’,
which is similar to [15, 50]. We observe that GPT under-
stands concept like fouching wall by picking the correct
distToPlane constraint, and picks correct inequality oper-
ations for tasks like avoiding overhead barrier and walking
inside a square. More evaluation is in the supplementary.

5.5. Analysis

Effect of motion prior. As in Fig. 5, in the task of walk-
ing inside a square, our method generates valid poses while
IK and IK+Reg. produce invalid ones. Moreover, this type
of whole-body inequality constraint cannot be handled by
inpainting-based methods like MDM Edit and PriorMDM.
In the task of head height constraint, IK generates inco-
herent motion, and IK+Reg. generates over-smooth motion
with massive foot skating. Our method generates coherent
motion while adhering to the given constraint.

To show the effect of bone length preserving, we fur-

Task: “walking and turning around” + inside a square (-1<x<l1, -1<z<1)

;"‘

Task: “walking” + head height for the keyframe = 0.8 m

WL

-

Figure 5. Effect of our motion prior. Top row: Ours generates
valid poses while IK and IK+Reg produce invalid ones. Bottom
row: IK generates incoherent motion and IK+Reg generates over-
smooth motion with massive foot skating. Our method generates
coherent motion while adhering to the given constraint.

Method Bone Length Incorrect Ratio
MDM (Unconstrained) 0.048
MDM Edit (Position) 0.525
Ours 0.051

Table 3. Comparison of effect on bone length preservation in the
task head height constraint. The inpainting-based method fails to
preserve correct bone lengths if recovering from local joint posi-
tions. Ours well preserves bone lengths for the generated motions.

ther analyze the correctness of neck lengths in the gener-
ated motions for the task head height constraint in Table 1.
As shown in Table 3, we can preserve bone lengths even if
we recover from local joint positions. The inpainting-based
method MDM Edit struggles with local joint positions con-
verted from global trajectories. The denoising process can-
not remedy sparse and invalid inpainting signals, therefore
generating motions with invalid bone lengths.

6. Conclusion

In this work, we present the new problem of open-set mo-
tion control. We propose a new paradigm for this problem,
namely programmable motion generation. The key idea is
to formulate an arbitrary task as an error function built from
atomic constraints and logical operations and use it to guide
a pre-trained motion generation model to generate motion
that meets these constraints. In the future work, we will ex-
tend the current framework to whole-body generation which
allows more details, and study how to enable automatic con-
straint generation in large and rich semantic scenes.
Acknowledgements This work was supported by the National Science
and Technology Major Project (2021ZD0112902), the National Natural
Science Foundation of China (62220106003), and the Research Grant of
Beijing Higher Institution Engineering Research Center and Tsinghua-
Tencent Joint Laboratory for Internet Innovation Technology.

References

(1]

(2]

3

—

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Chaitanya Ahuja and Louis-Philippe Morency. Lan-
guage2pose: Natural language grounded pose forecasting.
In 2019 International Conference on 3D Vision (3DV), pages
719-728. IEEE, 2019. 2, 3

Ijaz Akhter, Tomas Simon, Sohaib Khan, Iain Matthews, and
Yaser Sheikh. Bilinear spatiotemporal basis models. ACM
Transactions on Graphics (TOG), 31(2):1-12, 2012. 3
Mazen Al Borno, Martin De Lasa, and Aaron Hertzmann.
Trajectory optimization for full-body movements with com-
plex contacts. IEEFE transactions on visualization and com-
puter graphics, 19(8):1405-1414, 2012. 15

Simon Alexanderson, Rajmund Nagy, Jonas Beskow, and
Gustav Eje Henter. Listen, denoise, action! audio-driven
motion synthesis with diffusion models. ACM Transactions
on Graphics (TOG), 42(4):1-20, 2023. 2

Joao Pedro Aradjo, Jiaman Li, Karthik Vetrivel, Rishi Agar-
wal, Jiajun Wu, Deepak Gopinath, Alexander William Clegg,
and Karen Liu. Circle: Capture in rich contextual environ-
ments. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 21211-21221,
2023. 2,3

Okan Arikan and David A Forsyth. Interactive motion gen-
eration from examples. ACM Transactions on Graphics
(TOG), 21(3):483-490, 2002. 2

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877-1901, 2020. 4, 14
Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai,
Minh Vo, and Jitendra Malik. Long-term human motion
prediction with scene context. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 23—
28, 2020, Proceedings, Part I 16, pages 387-404. Springer,
2020. 2

Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao
Chen, and Gang Yu. Executing your commands via motion
diffusion in latent space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 18000-18010, 2023. 3

Rishabh Dabral, Muhammad Hamza Mughal, Vladislav
Golyanik, and Christian Theobalt. Mofusion: A framework
for denoising-diffusion-based motion synthesis. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9760-9770, 2023. 3

Andrey Davydov, Anastasia Remizova, Victor Constantin,
Sina Honari, Mathieu Salzmann, and Pascal Fua. Adversarial
parametric pose prior. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10997-11005, 2022. 3

Erik Girtner, Mykhaylo Andriluka, Hongyi Xu, and Cristian
Sminchisescu. Trajectory optimization for physics-based re-
construction of 3d human pose from monocular video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13106-13115, 2022. 15

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Chris-
tian Theobalt, and Philipp Slusallek. Imos: Intent-driven
full-body motion synthesis for human-object interactions. In
Computer Graphics Forum, pages 1-12. Wiley Online Li-
brary, 2023. 3

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,
Xingyu Li, and Li Cheng. Generating diverse and natural 3d
human motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5152-5161, 2022. 2,3, 6,7, 12

Tanmay Gupta and Aniruddha Kembhavi. Visual program-
ming: Compositional visual reasoning without training. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14953-14962, 2023. 8
Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and
Christopher Pal. Robust motion in-betweening. ACM Trans-
actions on Graphics (TOG), 39(4):60-1, 2020. 2

Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun
Saito, Jimei Yang, Yi Zhou, and Michael J Black. Stochas-
tic scene-aware motion prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 11374-11384, 2021. 3

Daniel Holden, Jun Saito, and Taku Komura. A deep learning
framework for character motion synthesis and editing. ACM
Transactions on Graphics (TOG), 35(4):1-11, 2016. 3
Daniel Holden, Taku Komura, and Jun Saito. Phase-
functioned neural networks for character control. ACM
Transactions on Graphics (TOG), 36(4):1-13, 2017. 2,3
Shuaiying Hou, Congyi Wang, Wenlin Zhuang, Yu Chen,
Yangang Wang, Hujun Bao, Jinxiang Chai, and Weiwei Xu.
A causal convolutional neural network for multi-subject mo-
tion modeling and generation. Computational Visual Media,
10(1):45-59,2024. 3

Korrawe Karunratanakul, Konpat Preechakul, Supasorn
Suwajanakorn, and Siyu Tang. Guided motion diffusion for
controllable human motion synthesis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2151-2162, 2023. 2,3,4,7, 12

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Muhammed Kocabas, Nikos Athanasiou, and Michael J
Black. Vibe: Video inference for human body pose and
shape estimation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5253-5263, 2020. 3

Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton,
C Karen Liu, Julien Pettré, Michiel van de Panne, and Marie-
Paule Cani. A survey on reinforcement learning methods in
character animation. In Computer Graphics Forum, pages
613-639. Wiley Online Library, 2022. 15

Jing Li, Di Kang, Wenjie Pei, Xuefei Zhe, Ying Zhang,
Zhenyu He, and Linchao Bao. Audio2gestures: Generating
diverse gestures from speech audio with conditional varia-
tional autoencoders. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11293—
11302, 2021. 2

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

Zongmian Li, Jiri Sedlar, Justin Carpentier, Ivan Laptev,
Nicolas Mansard, and Josef Sivic. Estimating 3d motion and
forces of person-object interactions from monocular video.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8640-8649, 2019. 3
Junfan Lin, Jianlong Chang, Lingbo Liu, Guanbin Li, Liang
Lin, Qi Tian, and Chang-Wen Chen. Being comes from
not-being: Open-vocabulary text-to-motion generation with
wordless training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 23222-23231, 2023. 2,3

Libin Liu and Jessica Hodgins. Learning basketball dribbling
skills using trajectory optimization and deep reinforcement
learning. ACM Transactions on Graphics (TOG), 37(4):1-
14,2018. 15

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11461-11471, 2022. 3

Lea Muller, Ahmed AA Osman, Siyu Tang, Chun-Hao P
Huang, and Michael J Black. On self-contact and human
pose. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9990-9999,
2021. 2

Yusuke Nishimura, Yutaka Nakamura, and Hiroshi Ishig-
uro. Long-term motion generation for interactive humanoid
robots using gan with convolutional network. In Companion
of the 2020 ACM/IEEE international conference on human-
robot interaction, pages 375-377, 2020. 2

Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin,
Chen Change Loy, and Ping Luo. Exploiting deep generative
prior for versatile image restoration and manipulation. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
44(11):7474-7489, 2021. 15

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive body capture: 3d hands,
face, and body from a single image. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10975-10985, 2019. 3

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel
Van De Panne. Deeploco: Dynamic locomotion skills using
hierarchical deep reinforcement learning. ACM Transactions
on Graphics (TOG), 36(4):1-13,2017. 2, 15

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
Van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans-
actions On Graphics (TOG), 37(4):1-14, 2018. 2, 15

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
ized physics-based character control. ACM Transactions on
Graphics (ToG), 40(4):1-20, 2021. 3

Mathis Petrovich, Michael J Black, and Giil Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 10985-10995, 2021. 3

10

(38]

(39]

(40]

(41]

(42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

Mathis Petrovich, Michael J Black, and Giil Varol. Temos:
Generating diverse human motions from textual descriptions.
In European Conference on Computer Vision, pages 480—
497. Springer, 2022. 2

Abhinanda R Punnakkal, Arjun Chandrasekaran, Nikos
Athanasiou, Alejandra Quiros-Ramirez, and Michael J
Black. Babel: Bodies, action and behavior with english la-
bels. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 722-731, 2021.
15

Jia Qin, Youyi Zheng, and Kun Zhou. Motion in-betweening
via two-stage transformers. ACM Transactions on Graphics
(TOG), 41(6):1-16, 2022. 2

Yoni Shafir, Guy Tevet, Roy Kapon, and Amit Haim
Bermano. Human motion diffusion as a generative prior.
In The Twelfth International Conference on Learning Rep-
resentations, 2023. 2,3,4,6,7,12, 13

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2020. 5

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.
Neural state machine for character-scene interactions. ACM
Trans. Graph., 38(6):209-1, 2019. 2

Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel
Cohen-or, and Amit Haim Bermano. Human motion diffu-
sion model. In The Eleventh International Conference on
Learning Representations, 2022. 3,5, 6,7, 12

Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin,
and Bo Dai. Towards diverse and natural scene-aware 3d
human motion synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2046020469, 2022. 3

Dong Wei, Xiaoning Sun, Huaijiang Sun, Bin Li, Shengxi-
ang Hu, Weiqing Li, and Jianfeng Lu. Understanding text-
driven motion synthesis with keyframe collaboration via dif-
fusion models. arXiv preprint arXiv:2305.13773,2023. 2
Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A
scalable approach to control diverse behaviors for physi-
cally simulated characters. ACM Transactions on Graphics
(TOG), 39(4):33-1, 2020. 2, 15

Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and
Huaizu Jiang. Omnicontrol: Control any joint at any time
for human motion generation. In The Twelfth International
Conference on Learning Representations, 2023. 3, 4

Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng
Fang, Chenjing Ding, Weihao Gan, Yichao Yan, Xin Jin, Xi-
aokang Yang, et al. Actformer: A gan-based transformer
towards general action-conditioned 3d human motion gener-
ation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2228-2238, 2023. 3
Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu, Xilun
Zhang, Yaru Niu, Tingnan Zhang, Fei Xia, Jie Tan, and Ding
Zhao. Creative robot tool use with large language models.
arXiv preprint arXiv:2310.13065, 2023. 8

Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan
Gui. Interdiff: Generating 3d human-object interactions
with physics-informed diffusion. In Proceedings of the

[52]

[53]

[54]

[55]

[56]

IEEE/CVF International Conference on Computer Vision,
pages 14928-14940, 2023. 2

Ye Yuan, Jiaming Song, Umar Igbal, Arash Vahdat, and Jan
Kautz. Physdiff: Physics-guided human motion diffusion
model. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 16010-16021, 2023. 2
Siwei Zhang, Yan Zhang, Federica Bogo, Marc Pollefeys,
and Siyu Tang. Learning motion priors for 4d human body
capture in 3d scenes. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11343—
11353,2021. 3

Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke,
Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards
controllable human-chair interactions. In European Confer-
ence on Computer Vision, pages 518-535. Springer, 2022.
3

Zixiang Zhou and Baoyuan Wang. Ude: A unified driv-
ing engine for human motion generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5632-5641, 2023. 3

Alexandra Zimmer, Anna Hilsmann, Wieland Morgenstern,
and Peter Eisert. Imposing temporal consistency on deep
monocular body shape and pose estimation. Computational
Visual Media, 9(1):123-139, 2023. 3

11

A. Experiment Details
A.1 Tasks for Quantitative Evaluation

We design two evaluation protocols for sub-tasks in Section
4. The first protocol is task with known constraints, which
means the added constraints are sampled from existing hu-
man motion datasets, i.e., HumanML3D test set [14] in our
experiments. In this way, in addition to non-semantic mo-
tion quality metrics and constraint errors, we can evaluate
on semantic-related motion quality as well since we have
groundtruth motions. The second protocol is task with un-
seen constraints, which means the added constraints do not
come from existing motions and are designed by ourselves
to evaluate the generation capability on real open-set motion
control tasks. We experiment on one sub-task for known
constraints in Table 1 in the main text, and four sub-tasks
for unseen constraints in Table 2 in the main text.

Task with known constraints. For Task HSI-1 head height
constraint in Table 1, we constrain the head height for three
specified key-frames, i.e., first, middle and last frames to
be equal to that in the motions sampled from HumanML3D
test set. The text prompt and motion length for generation
are also obtained from that motion sample. The constraint
error for evaluation is the mean absolute error (MAE) av-
eraged over the three key-frames. We follow PriorMDM
[41] for evaluating metrics including FID, R-precision and
Diversity, and follow GMD [21] for evaluating Foot skat-
ing ratio. The quantitative evaluation is conducted on 544
generated samples.

Task with unseen constraints. In Table 2, for Task HSI-2
avoiding overhead barrier, we constrain the head height to
be lower than 0.5 m for the middle frame and higher than
1.5 m for the first and last frames to ensure normal standing
poses at the beginning and the end. We also constrain the
heights for both feet to be close to the ground. Note that
this is a challenging task due to the low head height, and the
combined constraints prevent trivial generations like step-
ping on stairs or always lying on the ground. The constraint
error for evaluation is defined as MAE for the head height
and foot heights.

For Task HSI-3 walking inside a square, we constrain
the walkable areatobe asquare —1 <z < 1, -1 < z < 1.
The constraint error for evaluation is defined as the per-joint
MAE averaged over x- and z-axis and all frames.

N Nj
1
)~ oy 23 3 ®
J t=1 j=1 dimeD
max(— x?ffdim —-1,0) + max(xg-’;fdim -1,0)

where D includes x-axis and z-axis and N is the number
of joints.

For Task GEO-1 hand touching wall, we constrain the
left hand (joint 20) always on a vertical plane. The plane is

12

randomly sampled with its distance to the origin no greater
than 3. The constraint error for evaluation is defined as the
mean distance between the controlled hand and the given
plane averaged over all frames.

For Task HOI-1 moving object, we constrain on the
global positions of the left hand (joint 20) at the first and
last key-frames. We specify a set of beginning and end hand
positions. The constraint error for evaluation is defined as
the mean distance between the hand and the goal averaged
over the two key-frames.

For the first three tasks, i.e., Task HSI-2, HSI-3 and
GEO-1, the text prompts and motion lengths are sampled
from a selected set of samples from HumanML3D test set,
mainly involving the action walking. The sample ids are
listed below: 000130, 000178, 000285, 000337, 000363,
000600, 000665, 000679, 000759, 000998, 000099,
000696, 000700, 003703, 001161, 001617, 001848,
003193, 003437, 004455 and their mirrored ones. For Task
HOI-1, we manually compose a set of text prompts related
to action moving such as a person moves an object from a
place to another place. The quantitative evaluation for each
unseen task is conducted on running 32 generated samples.

A.2 Baseline Details

Unconstrained MDM. The original motion representation
for MDM [44] contains both local joint positions and joint
rotations. For simplicity we recover global joint positions
(joint positions in the global coordinate) from local joint
positions. The unconstrained MDM only serves as a nu-
merical reference.

IK and IK+Reg. We implement IK as an ablated ver-
sion of our method, in which the gradient VF' is back-
propagated to motion x instead of the latent vector z. We
also consider a variant IK with regularization (IK+Reg.), in
which we add a L2-norm regularization term on all joints
Lyeg = |2[i41) — (3|, where i is the temporal index. This
results in a combined error function Leonstraint + Wlyeg.
We empirically set the regularization weight w = 1.0. We
obtain global positions from joint rotations with a human
skeleton template with fixed bone lengths. Like our method,
IK and its variants can also handle arbitrary open-set control
tasks, so we compare with IK and IK+Reg. in all quantita-
tive and qualitative experiments.

Inpainting-based methods. MDM Edit and PriorMDM
finetuned control are inpainting-based methods. They sup-
port motion control tasks by assigning exact joint trajecto-
ries. However, they cannot natively handle tasks described
by constraints, especially, inequality constraints. Moreover,
PriorMDM needs to finetune the network for controlling a
specified joint and only finetuned models for hand, foot and
root trajectories are provided [41]. For the above reasons,
we only compare with MDM Edit on trajectory control-
based tasks, i.e., Task HSI-1, Task GEO-1 and Task HOI-1,

and we compare with PriorMDM on Task GEO-1 and Task
HOI-1, which only involves hand trajectory control.

In their original papers, MDM Edit and PriorMDM fine-
tuned control only support inpainting with root trajectories
and valid local joint positions. Since the constraints for
tasks defined in Section 4 are majorly represented in global
coordinates, we adapt MDM Edit and PriorMDM control
to handle control signals in global positions. Specifically,
we first generate a sample and take its root trajectory. We
then use ad-hoc tricks to generate a trajectory for the control
joint in global positions that satisfies the given constraint
and further convert it to local positions given the root tra-
jectory. Finally we inpaint both the root trajectory and the
local trajectory of the control joint. Similar to IK, as recov-
ering from local joint positions yields invalid bone lengths
(see Table 3 in the main paper), we obtain the global mo-
tion from joint rotations using a human skeleton template
with fixed bone lengths. Also, for PriorMDM we use model
blending [4 1] for inpainting both root trajectory and control
joint trajectory.

The ad-hoc tricks are designed as follows: for Task HSI-
1 and HOI-1, we directly set the key-frame positions with
the required constraint. For Task GEO-1, we project the
generated hand trajectory onto the given plane to obtain the
new hand trajectory in the global positions.

A.3 Implementation Details

Following unconstrained MDM, we also recover global po-
sitions from local joint positions. Since the error function
for each task may vary, while optimizing with learning rate
0.005 and 100 optimization steps generally works well for
a majority of tasks, we may also increase the initial learn-
ing rate to up to 0.05 for faster convergence in some cases.
Besides, we may add regularization term using absolute po-
sition constraint to preserve desired motion characteristics
for root trajectory or body parts in some cases.

Constraint relaxation. We only apply constraint relaxation
on Task GEO-1, Task GEO-2 and Task HOI-1, which in-
volves absolute position constraints of point, line and plane.
It takes advantage of translation invariance of motion for
fast convergence and compensates for the limited horizon-
tal space coverage of root trajectories in the original mo-
tion prior. For Task GEO-1, we relax the plane constraint
by fitting the generated hand trajectory on an optimal ver-
tical plane. For Task GEO-2, we relax the line constraint
by fitting the foot trajectories on an optimal line. For Task
HOI-1, we relax the required beginning and end points
A, B to fall on the line connecting the beginning and end
points generated by the model fl, B and keep their middle

points the same, i.e., Ayejqr = P+ \ﬁ::ﬁl ‘AEBl s Brelaz =
P+ é:il ‘AgBl , where P = (121 + B)/Q

In practice, we update the constraint using the aforemen-

13

Task GEO-1: hand touching wall

Method Foot Skate Max Acc. C.Err.
IK w/o relax. 0.375 0.209 0.210
IK w/ relax. 0.187 0.147 0.010
Ours w/o relax. 0.094 0.129 0.118
Ours w/ relax. 0.110 0.104 0.023
Task HOI-1: moving object
Method Foot Skate Max Acc. C.Err.
Ours w/o relax. 0.078 0.077 0.069
Ours w/ relax. 0.114 0.068 0.028

Table Al. Effect of constraint relaxation. Constraint relaxation
helps better reach constraints related to horizontal positions for
optimization-based methods.

Task HSI-1: head height constraint

Method Foot Skate Diversity FID C.Err.
MDM (Unconstrained) 0.086 9.656 0.545 0.118
Ours (Ns = 1) 0.075 9.611 0.556 0.012
Ours (Ns = 5) 0.072 9422 0.648 0.002

Table A2. Effect of initial point search. Ns denotes the number of
searches. Using a random initial point search leads to significantly
smaller constraint error. It provides a solution for generating mo-
tions that better adhere to the given constraint.

tioned relaxation strategy every K steps and minimize the
constraint error for x using the updated constraints. In this
way the whole optimization process can be implemented as
relax-and-minimize loops. For a fair comparison, IK and
IK+Reg. also use constraint relaxation for experiments in
Table 2 in the main paper.

A.4 Experiment Details for Bone Length Preserving

We provide more experimental details for Table 3 in the
main paper. For the generated motions in Task HSI-1 in
Table 1, we investigate the neck length (bone length be-
tween joint 12 and 15) at the key-frames where the head
height constraint is imposed. We empirically set a range
between 0.08-0.025 and 0.08+0.025, and the neck length
which falls outside this range is considered as incorrect
bone length. The bone length incorrect ratio is defined as
the ratio of key-frames with incorrect neck lengths in all the
generated key-frames. We find that unconstrained MDM
and our method have low incorrect ratio even if we directly
recover global positions from local joint positions. How-
ever, if we recover motions generated by MDM Edit from
local joint positions, the incorrect ratio becomes very large,
indicating that a great percentage of the generated samples
are of invalid human layouts. For this reason, we choose

to recover global motion from joint rotations for inpainting-
based methods MDM Edit and PriorMDM.

A.5 Additional Analysis

Effect of constraint relaxation. As in Table Al, the
constraint relaxation strategy significantly reduces the con-
straint error for goal reaching tasks on the horizontal plane,
such as task hand touching wall and moving object. While
the constraints are better satisfied, we observe slight de-
crease in motion quality, which is indicated by Foot Skate.
Also, it is shown that the constraint relaxation is a general
optimization strategy since there is a significant decrease in
the constraint error for IK as well.

Effect of initial point search. The initial noise z may affect
the final constraint error if the initialized motion is too far
away from reaching the constraints. A straightforward way
would be to sample random noise z in several runs and pick
the result with the smallest constraint error. We conduct
experiment on Task HSI-1 using the same setting as Table
1 in the main paper and compare the results of Ng = 1
and Ng = 5. Here Ng denotes the number of initial point
searches. The results are shown in Table A2. We observe
that using a random initial point search leads to significantly
smaller constraint error but at the cost of diversity and FID
scores. It provides a solution for generating motions that
better adhere to the given constraint.

Diversity of generated motions. By optimizing the latent
vector of generated motions to conform to the motion prior,
our method can generate diverse motions under the same
constraint. For example, in the task of left hand always
touching head, apart from single hand touching the face,
we observe that constraining only one hand can also give
rise to the touching of another hand. (see Fig. 1 and Fig. 4
in the main paper).

B. Details for Motion Programming by LLM

Our programmable motion generation framework also
makes automatic programming possible with the aid of
large language models (LLM). As in Fig. B1, in order to
generate code for the error function F', we first feed instruc-
tions to GPT [7] with the rules and ingredients for motion
programming, e.g., input arguments and functions in the
atomic constraint library. After that, one can feed the textual
description for an arbitrary open-set motion control task to
GPT. In Fig. B1 we show the textual input fed to GPT as
well as the raw code output by GPT for Task GEO-1, HSI-
3 and HSI-4 in the main paper. We observe that an LLM
can pick correct atomic constraints, logical operations (e.g.
“>” “<”), and procedural operations (e.g. if-else clauses)
for given tasks. Note that the code blocks labeled with GPT
markers for Task GEO-1 and Task HSI-4 in Fig. 4 in the
main paper are slightly modified in the coding style to make

14

Evaluation tasks

walking with hand always touching face.

walking inside a square.

carrying a ball.

carrying a heavy ball.

walking with feet on a straight line.

walking with hand touching a wall.

walking in a gap between two walls.

walking to avoid an overhead barrier.

picking object from A to B.

walking with velocity constraint on three frames.
standing and keeping balanced with single foot.
walking with head height constraint on three frames.
lying on a bed.

sitting on a chair.

kicking a ball in the last frame. v
walking with both hands in contact. v
jumping over a barrier.

pointing to a direction with left arm. v
dancing with specified velocity magnitude on three frames. v
twisting for two circles.

ENENENENENEN ANEN

NN

Table A3. Evaluation on motion programming by LLM. Tasks that
are successfully handled by LLM are labeled with v'.

them consistent with other manually written code, without
changing the code logic.

More evaluation. As in Table A3, we design 20 unique
tasks (including those presented in the main paper), and
evaluate the success rate of LLM programming via compar-
ing to manual programming. With little prompt engineer-
ing, the success rate turns out to be 14/20. In failure cases,
it typically picks incorrect inequality logical operations, or
provides excessive and incorrect physical constraints. Nev-
ertheless, we find that LLM comes up with novel constraints
beyond manual programming, e.g. tilt angle constraint for
the action balancing.

C. Discussion and Limitations

Sources of error. As we propose a general framework for
open-set motion control tasks, the performance of individ-
ual modules can be further improved. First, we observe
some unrealistic poses and motion artifacts in our gener-
ated motions. Since the FID score shows that our results
have similar quality to unconstrained MDM (See Table 1 in
the main paper), a possible solution is to enlarge the pre-
trained model together with more training data. Also, for
complex tasks, either an end user or an LLM may have diffi-
culty of crafting detailed and appropriate constraints, which
is likely to lead to unnatural motions. Second, the constraint
error sometimes remains big compared to IK, for example,
for the unseen Task HSI-2. Although it is reasonable that IK
directly optimizes on motion z and thus has less difficulty

for reaching the constraint, we will further investigate better
optimization approaches to solve this issue. Possible solu-
tions include (1) combining optimized and IK-based motion
in the denoising process, (2) relaxing on the parameters of
the generation model and involving it in the optimization
process like [32], and (3) searching for more suitable opti-
mizers.

Moreover, the action semantics for the generated motion
is observed to change slightly in the experiments, e.g. for
Task HSI-1. This calls for more suitable generation models
and optimization strategies that can better adhere to the text
condition.

Coverage of the proposed constraint library. We exam-
ine the coverage of our proposed library for daily motions
on BABEL-120 dataset [39]. We find that nearly 16% of
the actions involve periodic, rotational or symmetric move-
ment, whose control is not directly supported by our library.
We plan to further add frequency-domain, rotational and
symmetric constraints into our library.

Comparison with reinforcement learning and trajectory
optimization. We note that RL-based [24, 34, 35] and
trajectory optimization approaches [3] also build composi-
tional reward or goal functions for specialized motion con-
trol tasks, and we here provide a discussion for these ap-
proaches: (1) Based on our experiments, the error function
design in this work is not as difficult as reward design in re-
inforcement learning (RL), not only because the error func-
tion only handles the constraints, but the optimization in
latent space is easier to converge than RL training, since the
pre-trained model already provides a neat and smooth man-
ifold as the optimization space. (2) The pre-trained genera-
tion model is easier to accommodate more motion skills and
scale up with more data. This is the main consideration for
us towards solving open-set tasks. RL usually requires spe-
cific design to support diverse tasks [47]. (3) It is easier than
RL to control the semantics via text condition. (4) RL and
ours are complementary. RL has better physics-grounded
qualities. (5) Compared to trajectory optimization, optimiz-
ing latent code better preserves semantics imposed by text
condition. Besides, optimizing latent code may be more
advantageous for composing novel types of actions since it
acts like semantic interpolation in the data distribution. Tra-
jectory optimization normally optimizes on one reference
motion [12, 28].

Time performance. Currently it costs a few minutes for
each customized task, but is still much better than previous
works that require collecting new data and training new net-
works. We have not focused a lot on improving optimiza-
tion efficiency in this work, which might be a direction in
the follow-up works. Although not applicable to real-time
generation, it is suitable for off-line content creation due to
its high customizability.

15

Instruction

Hi, I'd like to give you a task description and you are required to write python code for me. Specifically, the input argument is "Motion",
it is a list of dictionaries where the index represents the frame and each dictionary stores the 3D coordinates of all human body joints. |
will also give you a task description containing constraints of human motions. Then you need to write python code to compute the total
error of the input human motion following my given constraints. The function you can use is as below: "DistToPoint", "DistToLine",
"DistToPlane", which compute the distance between a point to the other point, a line, and a plane respectively, and "max(margin-
Motion, 0)", "max(Motion-margin,0)", which provide the inequality constraints for motion. Do you understand the rule?

Task GEO-1
a person is walking with his right hand always touching a vertical wall.
def compute_error(Motion, wall):

total_error = 0
for frame in Motion:

right_hand_position = frame['right_hand’]
distance = DistToPlane(right_hand_position, wall)

total_error += distance
return total_error

Task HSI-3

a person walks inside a square. The square can be represented as -1<x<1, -1<z<1

def compute_total_error(motion):
total_error = 0.0
for frame in motion:
for joint in frame.values():
X = joint['x’]
z = joint['z’]
if x < -1 or x > 1:
error = max(abs(x) - 1, @)
total_error += error
if z< -1or z > 1:
error = max(abs(z) - 1, 9)
total_error += error
return total_error

Task HSI-4

a person walks forward. The height of the barrier is 1.3m. The person should lower his head and spine in order not to collide with this
barrier. The walking distance can be represented as the z-axis of the head and spine joint, respectively. The barrier is set between 2m
and 3m for the walking distance. The actual head height should also include body_width, and the same for spine height.

def compute_total_error(motion, barrier_start, barrier_end, barrier_height, body width):
total_error = 0.0
for frame in motion:
head_height = frame['head']['y'] + body_width
spine_height = frame['spine']['y'] + body_width
head_distance = frame[‘head']['z’]
spine_distance = frame['spine’]['z’]
if barrier_start <= head_distance <= barrier_end:
head_error = max(head_height - barrier_height, 0)
total_error += head_error
if barrier_start <= spine_distance <= barrier_end:
spine_error = max(spine_height - barrier_height, 0)
total_error += spine_error
return total_error

Figure B1. Motion Programming by LLM. After feeding the instruction to GPT, we provide the textual description for an arbitrary open-set
motion control task. GPT will output code for the corresponding error function. We observe that GPT understands concept like touching
wall by picking the correct distToPlane constraint, and picks correct inequality operations for tasks like avoiding overhead barrier and
walking inside a square.

16

	. Introduction
	. Related Work
	. Programmable Motion Generation
	. Overview
	. Atomic Constraints
	. Motion Programming
	. Latent Noise Optimization

	. Task and Applications
	. Motion Control with High-order Dynamics
	. Motion Control with Geometric Constraints
	. Human-Scene Interaction
	. Human-Object Interaction
	. Human Self-Contact
	. Physics-based Generation

	. Experiments
	. Evaluation Metrics
	. Baselines
	. Implementation Details
	. Results and Evaluation
	. Analysis

	. Conclusion

