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Figure 1: TransFusion: Multimodal fusion transformer for short-term object interaction anticipation. Given a video
sequence of past observations, the object interaction anticipation task aims to predict a set of objects visible in the current
frame that will be interacted with in the future, i.e. in the activation frame that is ∆ frames away from the current prediction
frame. Additionally, the task requires estimating the bounding box, the associated action described by a verb-noun pair, and
the time to contact for each predicted object. We propose TransFusion, a multimodal fusion architecture that uses a language
summaries of past actions to effectively predict future object interactions.

Abstract

We study object interaction anticipation in egocentric
videos. This task requires an understanding of the spatio-
temporal context formed by past actions on objects, coined
action context. We propose TransFusion, a multimodal
transformer-based architecture. It exploits the representa-
tional power of language by summarizing the action con-
text. TransFusion leverages pre-trained image captioning
and vision-language models to extract the action context
from past video frames. This action context together with
the next video frame is processed by the multimodal fu-
sion module to forecast the next object interaction. Our
model enables more efficient end-to-end learning. The large
pre-trained language models add commonsense and a gen-
eralization capability. Experiments on Ego4D and EPIC-

*Authors contributed equally.

KITCHENS-100 show the effectiveness of our multimodal
fusion model. They also highlight the benefits of using
language-based context summaries in a task where vision
seems to suffice. Our method outperforms state-of-the-art
approaches by 40.4% in relative terms in overall mAP on
the Ego4D test set. We validate the effectiveness of Trans-
Fusion via experiments on EPIC-KITCHENS-100. Video
and code are available at: https://eth-ait.github.

io/transfusion-proj/.

1. Introduction

The ability to predict plausible future human-object in-
teractions is important for many assistive technologies. The
task of short-term object interaction anticipation [17, 21] is
defined as predicting which object a user will interact with
next and what action will be performed, given an egocentric
video input. Providing an effective solution would help ar-
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tificial agents to assist humans in their daily activities, e.g.
care robots.

This task is challenging because it requires reasoning
about user intent [8, 35, 42], which is not directly observ-
able. For example, if the video shows the user holding
a vegetable, the most likely next action is to slice it, but
only with a knife and cutting board present. Without those,
there is significantly more uncertainty. Therefore, under-
standing what has happened in the past and what relevant
objects are present is critical for predicting the next object
interaction. We collectively refer to these concepts as ac-
tion context. Existing interaction forecasting methods do
not explicitly model action context and rely on neural net-
works to extract that information from fixed-sized video
chunks [6, 17, 21, 33].

In this paper, we propose to use language summarization
of the past as an explicit representation of action context.
This filters out ambiguities caused by visual clutter. It also
puts focus on objects and actions directly relevant to the
ongoing and likely future activities. For the object inter-
action anticipation, we next introduce a multimodal fusion
approach. Specifically, we introduce a transformer-based
multimodal fusion model, TransFusion. As shown in Fig-
ure 1, it takes language summaries of the action context and
the current single frame of a video as input and predicts fu-
ture object interactions. We employ existing image caption-
ing systems to generate a concise description of past actions
described by pairs of verbs and nouns. We use CLIP [37]
to detect salient objects in the past frames, and deem them
task-relevant. This vision-language model was trained on
pairs of images and captions. The verb-noun pairs together
with the list of salient objects form the summary of the
past action context. Leveraging pre-trained vision-language
models yields more generic representations of the past ac-
tion context and enables us to better generalize towards var-
ious scenarios, in particular those long-tailed ones not well
represented in the dataset.

Our experiments show that our language-based sum-
maries can effectively represent the past action context. We
use two challenging egocentric datasets, Ego4D [21] and
EPIC-KITCHENS-100 (EK100) [10]. Our model improves
interaction prediction accuracy over models pre-trained on
large video datasets by 25.6% on the Ego4D challenge val-
idation set and 40.4% on the test set. TransFusion performs
similarly on EK100 [10]. Such improvements show that
large vision-language models can be useful even for a task
that seems purely visual.
In summary, our contributions are:

• The concept of leveraging concise language-based
summaries of action context.

• TransFusion, a multimodal fusion model for object in-
teraction anticipation that combines action context de-
scriptions and images.

• Experiments on Ego4D show improvements over
state-of-the-art methods on the object interaction an-
ticipation task, in particular in long-tailed classes.

2. Related work
Object interaction anticipation. Several works have been
proposed for human-object interaction prediction. Furnari
et al. [17] first introduced next-active-object (NAO) pre-
diction, which predicts the active/not active label for each
object using their motion trajectories features but it doesn’t
consider action anticipation. Closely related to NAO, Berta-
sius et al. [6] introduced action-objects, which considers
objects that capture the human actor’s visual attention or
tactile interaction. Bertasius et al. use the data from a
stereo camera system in a two-stream network, integrating
RGB and depth information. They show that certain aspects
of human actions can be predicted by exploiting the spatial
configuration of the objects and the actor’s head. Their ap-
proach is not easily scalable, because they need stereo.

In addition to different tasks, Liu et al. [33] propose a
model that improves NAO prediction by incorporating fu-
ture hand trajectory modeling. They obtain impressive re-
sults using 3D CNNs, confirming that hand motion cues and
scene dynamics have important explanatory power in pre-
dicting the short-term future. Nonetheless, their approach
encounters scaling limitations because additional ground-
truth labels for hand trajectories are needed.

More recently, the Ego4D dataset [21] proposed object
interaction anticipation. Apart from locating the NAO, the
task in Ego4D also requires the prediction of associated
nouns and verbs, as well as the time to contact (TTC) for
the future interacted objects. The Ego4D method uses the
current frame and past video frames as input and employs
a two-stage approach to learn noun and box prediction first
and then the verbs and TTC prediction. Compared to their
work, we perform the task in a single pass, by tuning the
multimodal fusion module on top of the extracted RGB and
language features to learn nouns and verbs jointly, resulting
in better performance.
Action anticipation. Besides localizing future object in-
teractions, predicting the next action steps is an equally
important task that AI systems need to perform to inter-
act with humans. A longer prediction timespan requires a
better grasp of the structure behind the succession of ac-
tions. Anticipative Video Transformer (AVT) [19] is one
of the best-performing architectures on the EK100 [11] ac-
tion anticipation benchmark. AVT uses a pre-trained Visual
Transformer [15] as the image feature backbone and attends
to the previously observed video frames to anticipate fu-
ture actions. MeMViT [49] improves AVT by exploiting
a longer temporal context, highlighting the importance of
modeling a long sequence of previous actions. Other model
architectures such as recurrent neural networks [18, 50] and
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multimodal temporal CNNs [26] are also used to model the
temporal contexts. Note that these methods are designed for
action classification using video data and adapting them for
object detection is not trivial.
Vision and language models. Our approach combines vi-
sual and language modalities to improve object anticipation.
Most recent multimodal architectures are based on Trans-
former fusion schemes applied on features extracted by var-
ious encoders [5, 13, 27]. We follow the spirit by employing
self-attention-based modality fusion. Our work differs in
one significant aspect: the language features represent the
past action context. This serves as an additional signal to
disambiguate the actor’s intent given similar visual scenes.
The model has to learn the next action and objects from the
multimodal fusion of language context summaries and vi-
sual cues in a considerably smaller data regime.

More broadly, there are numerous transformer-based
works aimed at learning cross-modal representations be-
tween vision and language [37, 29, 24, 44, 53, 45] us-
ing terabyte-scale datasets crawled from multiple internet
sources. When combined with large language models such
as GPT-2 [38], BERT[14], Sentence-BERT[40], and the T5
variants [39, 9], these vision-language models can be ap-
plied to several downstream tasks such as VQA [3] and im-
age captioning [51, 52]. Similar to other vision-language
models that are trained with large language input, our ap-
proach leverages the state-of-the-art image captioning mod-
els [48] to provide a consistent description of past actions.

3. Language-guided prediction

We use language-based context summaries to represent
the spatial-temporal context formed by past actions and ob-
ject relationships. The context summary offers an explicit
yet compact representation, which allows us to focus on
task-relevant content and filter out unimportant information
from the likely cluttered environment. To this end, we pro-
pose TransFusion, a transformer-based model that leverages
a joint-attention fusion mechanism, to effectively learn from
the past action context to predict object interactions in the
future. In the following, we describe our framework that
takes video clips as input and anticipates the next object
interaction. We begin by defining the object interaction
anticipation task (Sec. 3.1). We then show how to gener-
ate a summary from an egocentric video to represent the
action context provided in the past frames (Sec. 3.2). Fi-
nally, we present our multimodal fusion model TransFusion
(Sec. 3.3).

3.1. Task definition

Given a video V = {f1, · · · , fT } of length T as input,
our goal is to predict the next object interaction O, in the
next video frame fT . We call fT the prediction frame.

As illustrated in Figure 1, the task is to anticipate object
interaction in fT . OT = {oT1 , · · · , oTN} denotes the set of
future object interactions, with N > 1 whenever multiple
objects are interacted with simultaneously. In other words,
multiple oTi can be detected in the prediction frame fT . For
example, N = 2 when one hand is holding two mugs in
a kitchen scene, or the left hand is touching a plant while
the right hand is moving a pot in a garden scene. Each ob-
ject interaction oTi = (bTi , n

T
i , v

T
i , t

T
i ) consists of the object

bounding box bTi , the semantic object label (noun) nT
i , the

action label (verb) vTi , and the time to contact (TTC) tTi .
The task is to predict the next active object location bTi in
the prediction frame fT , the associated action described by
the verb-noun pair (nT

i , v
T
i ), and the time tTi to the point of

contact when the interaction is going to start. The task is set
up such that the actual object interaction takes place after
a buffer time ∆ on frame fT+∆ and the predicted time to
contact tTi = ∆. Ego4D uses ∆ ≥ 0.033s. This requires
anticipating future actions and increases the task difficulty.

3.2. Summarizing the past

Anticipating object interactions in the future requires an
understanding of what happened in the past. We first infer
the per-frame action context from each egocentric video.
This process consists of extracting action descriptions, held
objects and salient objects. These information sources are
aggregated independently across frames and finally for-
warded as the action context to our anticipation model.
Extracting frame-wise action descriptions. Inspired by
the label format used in egocentric video datasets [21, 10],
we aim to describe the past actions by sequences of verb-
noun pairs (e.g. “wash tomato”, “cut tomato”), so-called
action descriptions. For each video frame f , we extract the
action currently performed by the agent, represented by a
single pair (v, n) of a verb v and a noun n.

We use an off-the-shelf image captioning model [48] to
generate multiple full-sentence captions for each frame of
interest, so as to find repeatedly occurring outputs and re-
duce noise: we perform part-of-speech tagging [2] on these
captions and collect candidate pairs consisting of verbs fol-
lowed by nouns within some cutoff distance d ∈ N+

0 . Set-
ting d > 0 allows us to account for additional words ap-
pearing between a verb-noun pair (e.g. “eat apple” from “A
person eating a red apple”) and thereby obtain more valid
candidate pairs from the captions. However, larger cutoff
distances may introduce more spurious detections (e.g. “eat
gathering”, from “A person eating while at a gathering”).
We use d = 4 in our experiments. The most frequent candi-
date pair across the frame’s captions is selected as the verb-
noun action description of this frame. If no valid verb-noun
pair is found, the frame will have no action description.
Extracting frame-wise held objects. As humans use their
hands to interact with most objects, the sequence of objects
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Figure 2: Overview of the TransFusion model. TransFusion takes the prediction frame and the action context summary as
input and predicts the bounding box of the next-active object, the noun-verb pair describing the associated action, and the
time to contact (TTC). Feature maps of different scales are extracted from the visual encoder and then fused via a multimodal
fusion module with the encoded language features. Their output is then processed by a regular feature pyramid network
(FPN), denoted as multi-scale region proposal networks, before being fed into the Faster R-CNN detector.

held by the actor may be indicative of the overall task and
can help the model better infer the immediate next steps.
Motivated by this, we use an existing hand-object inter-
action predictor [12] jointly with an object detector [56]
to look for held objects and their semantic labels in each
frame. Usually, such objects occur only in a subset of
frames (e.g. due to the visibility of hands).
Extracting frame-wise salient objects. Another character-
istic shared by many daily action sequences is that the next
active object is likely to have already appeared in the actor’s
view before the upcoming interaction. The current environ-
ment in the recording may also provide model conditioning.
Therefore, we select a set of salient objects in each frame
as (1) the potential candidates for future active objects and
(2) a proxy of the surroundings.

We use CLIP [37], a pre-trained open-vocabulary zero-
shot classifier, to compute the cosine similarities between
the CLIP image embedding of a frame and the embeddings
of the object categories from the Ego4D domain. We choose
to keep the highest-scoring k objects as the set of salient
objects for a given frame. Note that a small k may fail to
provide sufficient information, while a large k makes cap-
turing the true salient objects more likely, yet introduces
more noise due to false detections. We set k=5.
Aggregating summaries over multiple frames. After the
frame-wise summarization step, we have, for each frame
t, at most one verb-noun pair describing the action at =
(n, v) ∈ AF

t , a set of hand-held objects NF
h,t, and a set

of salient objects NF
s,t. We then apply a cross-frame ag-

gregation scheme to each of the three context representa-
tions {AF

t ,NF
h,t,NF

s,t}, so as to identify contiguous seg-
ments of frames exhibiting the same activity, held or salient
objects, while accounting for individual noisy frames possi-
bly not matching the frame-wise summaries of their neigh-
bors. The aggregation processes the frames in temporal
order. We consider frames belonging to the same atomic
action as an action segment, which is initiated by observ-

ing a number of reoccurrences of some verb-noun pair and
terminated by a lack of its occurrence within a number of
contiguous frames. After the aggregation, we obtain A, the
sequence of all action segments in the video. We conduct
identical aggregation processes to obtain Nh and Ns. For
each prediction frame, we construct its action context from
a number of action segments preceding the frame, and the
corresponding objects from Nh/s.

By aggregating across frames, we thus capture dominant
actions and objects in the past, reduce noise in the gener-
ated action context and represent long timespans of similar
activity by short textual descriptions. The complete action
context is provided to our model by concatenating the tex-
tual representations of the aggregation results of any desired
subset of the three context representations {A,Nh,Ns},
where we drop the index t for convenience. More details
can be found in the Supp. Mat.

3.3. TransFusion: Multimodal fusion

Figure 2 visualizes the architecture of the proposed mul-
timodal TransFusion model. TransFusion employs two dif-
ferent base encoders, for language and image input respec-
tively. The input prediction frame fT is processed by a regu-
lar CNN-based visual encoder [22], producing a set of mul-
tiscale feature maps Fs

V(fT ), with s indicating the scale.
The frame’s action context is encoded by a language en-
coder [40] and yields FL(CL). The feature maps belonging
to different scale levels from the visual encoder are fused
with the encoded language features via a joint-attention
scheme. The result is then processed by a regular feature
pyramid network (FPN) [30] before being forwarded to the
Faster R-CNN [41] detector.
Multimodal fusion. For simplicity, we describe the multi-
modal fusion module for a single input scale s, which we
hence omit from notation. See Figure 3 for a detailed view
of a single Transformer Encoder layer together with the in-
put projection stages. For the visual modality, we first split
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the image into a sequence of tokens. Specifically, the visual
features FV(fT ) ∈ RC×H×W are reshaped to RN×(P 2·C),
where P is the token size and N = H×W

P 2 the number of
tokens. We add unique type embeddings as well as a posi-
tional encoding to each modality. Both visual and language
tokens are first mapped to RD via a linear projection be-
fore being fed to the fusion module in a concatenated form.
The fusion block consists of a regular Transformer encoder
layer replicated M times. Finally, the visual tokens are re-
grouped into their initial shape to compose the feature map
for the feature pyramid network (FPN).
Multiscale fusion. The multimodal fusion block out-
puts multiple feature maps of varying scales: Ffi ∈
RCi×Hi×Wi , where i is the scale index. They are fed into
FPN, which has different parameters for each feature map,
allowing the network to learn specialized features for each
downsampling ratio. The output of FPN is processed by a
Faster R-CNN detector.
Prediction head networks. The Faster R-CNN detector
outputs the bounding box b through a regression layer, an
associated object n and verb v, and time to contact t.
Training objective. We train TransFusion using the stan-
dard Faster R-CNN [41] objective Lbox for bounding box
prediction, which consists of the localization and object-
ness, cross-entropy losses Lnoun and Lverb for noun and
verb prediction respectively, and an L1 loss Lttc for time to
contact prediction. The overall objective is

L = Lbox + Lnoun + Lverb + Lttc. (1)

As defined in Faster R-CNN, Lbox is

Lbox =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) +

λ

Nreg

∑
i

p∗i · Lreg(bi − b∗i ),

(2)
where pi is the predicted probability of a box being classi-
fied as a foreground object (true positive), p∗i is the ground-
truth label; bi and b∗i are the predicted and ground-truth box
coordinates. Nreg is the number of bounding boxes used in
training, Ncls the detection network’s image batch size. We
leave λ = 11 as in the reference implementation.

4. Experiments
Dataset. We use the dataset provided for the short-term ob-
ject interaction anticipation task in Ego4D [21]. It contains
various activities ranging from gardening work to cooking
or car parts changing. There are in total 64,798 annotated
video clips of 5 minutes each with frame rate fps = 30.
The dataset has highly imbalanced long tail distributions in-
cluding 87 nouns and 74 verbs (e.g. the “take” class is al-
most 40% of all the verb labels while “mold” appears only
in one video). The train set consists of about 28k samples,
while the rest are roughly equally split between validation
and test . We also experimented with the EK100 dataset [10]
that consists of unscripted, egocentric kitchen activities to-
gether with interaction labels for 300 objects and 97 actions.
Evaluation. As in Ego4D, we use the Top-5 mean Aver-
age Precision (mAP) to evaluate the performance of indi-
vidual predictions. It considers two constraints: The IoU
constraint requires that the predicted boxes are counted as
hits only with intersection over union IoU ≥ 0.5 with the
ground-truth box; the TTC constraint requires that the pre-
dicted time-to-contact ti is close enough to the ground-truth
t̂i, i.e. |ti − t̂i| < Tδ, Tδ = 0.25.

• Noun refers to the Noun-Box Top-5 mAP. In addition
to the IoU constraint, exact matches with the ground-
truth nouns are required.

• Noun-Verb refers to the Noun-Verb-Box Top-5 mAP.
Exact noun and verb matches with the IoU constraint.

• Noun-TTC refers to the Noun-Box Top-5 mAP. Exact
noun matches with the TTC constraint.

• Noun-Verb-TTC (“Overall”) refers to the overall
Top-5 mAP, intersecting exact noun-verb matches with
IoU and TTC constraints.

Note that as detecting the next-active objects is the main
focus of the task, all evaluation metrics are conditioned on
the IoU constraint.
Implementation details. We make use of the pre-trained
Torchvision Faster R-CNN. ResNet-50 [22] is used as the
visual encoder and Sentence-BERT (SBERT) [40] is used
as the language encoder. We freeze ResNet-50 and apply
the multimodal fusion scheme on top. We use the RAdam
[32] optimizer with a weight decay of 2e−4, and an effec-
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Set Model N ↑ N-V ↑ N-T ↑ A ↑

Val
Ego4D [21] 17.55 5.19 5.37 2.07
TF (ours) 20.19 7.55 6.13 2.60

Improvement 15.3% 45.4% 10.6% 25.6%

Test
Ego4D [21] 20.45 6.78 6.17 2.45
TF (ours) 24.69 9.97 7.33 3.44

Improvement 25.6% 47% 18.8% 40.4%

Table 1: Comparison with the state-of-the-art. Our
method TransFusion (TF) outperform Ego4D by a large
margin in all metrics. We report top-5 Noun (N), Noun-
Verb (N-V), Noun-TTC (N-T), and Overall (A).
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Figure 4: Prediction of Noun-Verb in relation to time-to-
contact. Histogram of the time-to-contact labels is shown
in blue bars. Performance measured in Noun-Verb is plotted
as a function of time-to-contact.

tive batch size of 32. Besides the default Faster R-CNN
background class in nouns, we also add it in the verb class
which improves the Noun-Verb mAP by almost 2 points.
We reduce the region proposal network’s sampling batch
size and the detection network’s image batch size and use
data augmentation techniques to reduce overfitting. The
number of verb-noun pairs used in the input is defined as
the context length Lc. On average, an action segment de-
scribed by one verb-noun phrase corresponds to one second
with 30 frames, computed from the GT annotations. Unless
specified otherwise, we use Lc=3.

4.1. Comparison with state-of-the-art

We first compare our method against the state-of-the-art
Ego4D method [21] on the validation and test sets. The
Ego4D method employs a two-stage approach consisting
of a ResNet-based Faster R-CNN detector and a SlowFast
[16] 3D CNN video processing module. The Faster R-CNN
outputs bounding boxes and noun predictions on the pre-
diction frame, without using any video features. The de-
tected boxes are used to perform region of interest (ROI)
pooling [20] on the corresponding SlowFast 3D CNN video
features. The pooled video features predict the verb and the
time-to-contact values.

Table 1 shows that TransFusion significantly outper-
forms the state-of-the-art. This demonstrates the advantages
of modeling action context explicitly for the interaction an-
ticipation task. Figure 4 shows the long tail distribution of
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Figure 5: Classification performance on top/tail cate-
gories. We show the relative and absolute gains of TransFu-
sion over Ego4D for Noun-Only and Verb-Only mAP (with-
out the IOU constraint). Relative improvements are written
on top of the red bars.

Rep. A Nh Ns A+Nh A+Ns All GT
N ↑ 20.09 19.33 19.75 19.03 20.19 20.73 21.71

N-V ↑ 7.16 6.86 7.05 7.12 7.55 7.32 7.86

Table 2: Comparison of different action context rep-
resentations. We evaluate different variations of context
representations on the predicted noun (N) and noun-verb
(N-V), and compare them against ground-truth annotations
(GT) provided by the Ego4D dataset. GT only contains ac-
tion descriptions of verb-noun pairs. Action context repre-
sented by A+Ns achieves the best N-V performance.

the time-to-contact labels in the validation set. We also see
that TransFusion consistently outperforms Ego4D on the N-
V metric. From the results shown in Figure 5, we see that
our method not only outperforms the Ego4D method on top
noun and verb classes but also achieves bigger gains in the
tail classes, demonstrating the generalization ability of us-
ing language-based context summaries. Top and tail buck-
ets represent roughly 50% of the samples, corresponding to
10 noun classes and 5 verb classes.

Figure 6 shows that the Ego4D approach manages to de-
tect the most salient objects in the surrounding, but fails
to reliably associate the bounding boxes to the correct ac-
tion phrase. In contrast, TransFusion is able to correctly
associate the drawer bounding box to ”open drawer” and to
predict the correct action associated with the phone. More
examples are provided in the Supp. Mat.

4.2. Evaluation of action context representation

In Table 2, we ablate different variants of context repre-
sentation and compare against the representation that uses
ground-truth labels (GT) provided by Ego4D, to assess
the quality of our generated context summaries. The ob-
served TTC Average Precision difference was around 2%,
thus omitted from the comparison. We report on the Noun
and Noun-Verb metrics as we expect major differences in
semantic-related tasks.

Experiments show that we achieve results comparable to
GT, and better than the Ego4D results shown in Table 1,

6



GT: open drawer 0.1s GT: take phone 1s

(a) Ego4D: take container
0.78s, take container 0.46s, take
pot 0.42s, take lid 0.46s

(b) Ego4D: take table 0.78s,
take container 0.85s, take com-
puter 0.86s, take phone 1.11s

(c) TF (ours): open drawer
0.56s, open drawer 0.36s, open
drawer 0.44s, take lid 0.6s

(d) TF (ours): take phone 0.87s,
open computer 0.63s, operate
tablet 0.73s, take phone 0.98s

Figure 6: Qualitative results of the proposed approach.
Ego4D results are shown in the top row and TransFusion in
the bottom row. Green denotes the ground truth bounding
box and the labels are on top of each column.

demonstrating the effectiveness of our context representa-
tions. Action descriptions A consistently boost the verb
classification performance. Adding salient objects Ns to
A further improves task performance. The effectiveness of
Nh is limited by the accuracy of hand-object detection (see
Supp. Mat. for details), but it does help to improve the pre-
diction of nouns comparing the results of All and A+Ns.
These together offer a reasonable picture of using language
summaries to represent the action context. In addition, we
notice a domain gap in the choice of words between the
generated labels and the ground-truth ones. In some cases,
even if the description is satisfactory for a human evaluator,
the information may be too vague to be directly useful to
the model. Phrasing differences between the generated cap-
tions and the training corpus of the language encoders may
further help to improve the performance. We use A+Ns to
represent the action context, as a balance between computa-
tional cost and accuracy. Ablations on the hyperparameters
d, the cutoff distance, and k, the number of salient objects
per frame, show that the performance is less sensitive to
their settings. More details can be found in the Supp. Mat.

4.3. Ablation studies

Length of action context. A significant parameter in ob-
taining good performance is the length of action context,
i.e., how many past actions to include in the input. An ade-
quate context length is important to allow the model to pick
up more specific activity patterns. Some activities that have

Language Encoder Token size N ↑ N-V ↑
SBERT/BERT [40, 14] 384 20.19 7.55

SBERT/RoBERTa [40, 34] 768 19.78 7.78
SBERT/RoBERTa* 768 18.16 7.21

GPT-2 [38] 768 18.98 7.08
Flan-T5 [9] 1024 18.26 6.61

Table 3: Language encoder ablations. We compare
SBERT using BERT and RoBERTa backbones, with GPT-
2 and Flan-T5. Token size shows the token output size of
each language encoder. They are projected to a dimension
of 768 before fusion. *Denotes the run without finetuning
the last language encoder layer.

Parameter sharing # Parameters L2 N ↑ N-V ↑
✗ 122 mln 2e-4 20.19 7.55
✓ 171 mln 3e-5 19.18 6.94

Table 4: Multiscale fusion parameter sharing.

Forwarding strategy Copy Simple Residual
N ↑ 20.19 18.97 18.38

N-V ↑ 7.55 7.27 6.96

Table 5: Language feature forwarding strategies.

a more structured nature or certain repeating patterns (e.g.
cooking or repairing a bicycle) are easier to model with an
increased context length compared to more random activ-
ities such as playing basketball. Figure 7 shows that the
overall performance plateaus at Lc = 2 and higher.
Language encoder. A language encoder is used to process
the context summaries in TransFusion. To understand the
impact of different language encoders, we experiment with
multiple LLMs including SBERT with a RoBERTa back-
bone [40, 34], GPT-2 [38], and FLAN-T5 [9] using the val-
idation set. Table 3 summarizes the performance of dif-
ferent language encoders, showing that the SBERT models
perform best. We consider TTC less relevant here. We hy-
pothesize that the difference comes from the training ob-
jectives of language models. SBERT is trained to map se-
mantically similar sentences closer to each other in the em-
bedding space. This is particularly useful when the model
needs to understand descriptions with semantically close
words, e.g. “cut carrots” and “slice carrots”. GPT-2 and
FLAN-T5 are optimized using generative objectives which
makes them overly sensitive to the input word choice. The
run without finetuning (denoted by *) performs worse than
the finetuned equivalent, showing that domain adaptation is
required by the language encoders to adapt to the summa-
rization syntax and activity-specific vocabulary.
Fusion module ablation. We further ablate the Trans-
Fusion design choices and investigate whether the model
can benefit from feature reuse at the different scale lev-
els. Firstly, we investigate the effect of sharing the Trans-
former encoder parameters over the multiscale fusion lev-
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Figure 7: Comparison to video features. TransFusion out-
performs TransFusion-Video over different context lengths
measured by Noun-Verb mAP. TransFusion using GT anno-
tations represents the upper bound.

els. The new setup leads to a decrease in performance as
can be seen in Table 4. Secondly, we experiment with for-
warding the fused language tokens to the latter stages, with
and without residual connections, as an alternative way of
sharing fused features. The base TransFusion implemen-
tation simply copies the encoded language features at each
fusion level (see Figure 3). The results are presented in Ta-
ble 5 where we notice the superior results obtained with the
“copy” strategy as opposed to reusing features from previ-
ous scale levels.

4.4. Comparison to video features

We evaluate whether language summary can better rep-
resent action context than video frames for the object-
anticipation task. To do so, we implement TransFusion-
Video, which takes video features extracted from the
Ego4D SlowFast[16] model as input and uses the identical
fusion module as in TransFusion.

Figure 7 shows that TransFusion consistently outper-
form TransFusion-Video. Lc × 30 frames are taken in
TransFusion-Video. For video features, the domain gap be-
tween pre-train and target datasets seems too large to allow
effective generalization to a diverse dataset such as Ego4D.
We suspect that the feature representations are more entan-
gled due to the need to represent temporal, visual, and se-
mantic aspects simultaneously. With language, the temporal
aspect is directly encoded in the succession of words.

Given a video clip of one second, language can summa-
rize it in two words whereas corresponding video features
take up more than 12 times space (e.g. smaller SBERT [40]
feature of 2 × 384 compared to SlowFast [16] feature of
4 × 2304). Therefore, our language-based context repre-
sentation has the advantage when it comes to longer video
sequences. Computational costs measured in GFLOPs and
latency for both TransFusion and TransFusion-Video mod-
els at both training and inference time are practically iden-
tical. Overall, TransFusion obtains a 21% increase in N-V
performance for a similar computational budget. See the
Supp. Mat. for more details.

Model TF TF-Video TF GT
N↑ 7.03 6.57 11.16

N-V↑ 3.80 3.72 5.65

Table 6: Object interaction anticipation on EK100.
EK100 results using existing ground-truth (GT), generated
summary, and video features. TF stands for TransFusion.

4.5. Validating on EPIC-Kitchens 100

To understand how our proposed model generalizes to
other settings, we further test it on the EK100 [10] dataset.
Since it consists of unscripted cooking activities performed
by different actors, we can assess if our model is capa-
ble of picking up action regularities across different actors.
Because the dataset only provides action annotations but
not object-interaction anticipation labels, we preprocess the
dataset annotations and videos using UniDet [56]. We split
the samples such that the model does not see the clips from
the same video at train and validation, whereas in Ego4D,
the model may encounter this. Notably, compared to
Ego4D which has a single vegetable-fruit class, EK100 has
a richer set of nouns including “salad”, “parsley”, “bean”,
“tomato” etc., and overall a more fine-grained domain. We
train TransFusion with Ego4D pre-trained Faster R-CNN on
EK100 and compare against TransFusion-Video.

Results in Table 6 suggest that TransFusion learns to rep-
resent structured activities effectively with the inclusion of
language features. EK100 videos have a lower resolution
of 256×456, in contrast to 1080×1920 in Ego4D. This has
a negative impact on our generated context summaries, and
the overall gains of TransFusion are more on par with TF-
Video. The results using GT annotations indicate that better
performance can be unlocked using more accurate context
summaries. More details can be found in Supp. Mat.

5. Conclusion and discussion
We propose a multimodal fusion model, TransFusion,

that anticipates object interactions by considering past ac-
tion context represented by language summaries. Our ex-
periments on two challenging egocentric video datasets
demonstrate how language summaries can improve object
interaction anticipation, highlighting the representational
power of language descriptions. While we do not consider
any temporal information, it is possible to integrate motion
cues like optical flow to improve the prediction of time to
contact. We would like to highlight that the proposed ap-
proach is not limited to object interaction anticipation. In
general, language provides a universal interface to comple-
ment the visual input with information encoded in language
models or task-specific pipelines. Future work can leverage
language summary for other video reasoning tasks [54, 55],
or extend it to describe the possible future activities [1, 28]
for long-term interaction anticipation.
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6.1. Method details

Extracting frame-wise action context A visualization of
the frame-wise action context extraction is provided in Fig-
ure 8.

To obtain action descriptions consisting of verb-noun
pairs, we first generate multiple image captions (e.g. “a per-
son cutting wood”) by forwarding diverse prompts to the
task-agnostic and modality-agnostic OFA model [48]. The
exact prompts used are “what does the image describe?”,
“what is the person in this picture doing?”, and “what is
happening in this picture?”.

We then perform part-of-speech tagging on the natural-
language captions using Flair [2], followed by a lemmatiza-
tion using NLTK [7], to extract candidate verb-noun pairs
intended to represent the frame’s action description (e.g.
“cut wood”). We obtain at most one verb-noun pair per pro-
cessed frame by selecting the most frequently found pair. In
the case of ties, we select the pair that was detected first.

The extraction of frame-wise salient objects NF
s is de-

scribed in Section 3.2 of the main paper.

To extract frame-wise held objects NF
h , we first ob-

tain labelless bounding boxes of active objects from EPIC-
KITCHENS VISOR [12] together with labeled object
bounding boxes (of not necessarily active objects) from
[56], as further visualized in Figure 8. To obtain labeled
bounding boxes of active objects, a pair of bounding boxes
detected by UniDet and VISOR is considered to show the
same object if they exhibit an intersection over union (IoU)
greater than a threshold θIoU , where we set θIoU = 0.25.
The labels corresponding to these bounding boxes together
form the set NF

h of held objects for this frame.

As we use UniDet, pre-trained on COCO [31], for object
detection in an off-the-shelf manner without further train-
ing, the domain of the object detector is not aligned with
that of the Ego4D nouns. We thus perform some label merg-
ing to simplify the UniDet detection domain, e.g. merging
“home appliance” and “pressure cooker” into “machine”.
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Figure 8: Illustration of the frame-wise context extraction. Frame-wise context is extracted using off-the-shelf models: an
image captioner for obtaining verb-noun pairs for A, an object classifier to keep the highest-ranking k objects (here k = 3)
for Ns, and a hand-object interaction detector used jointly with an object detector to obtain and subsequently label active
object bounding boxes for Nh. Details can be found in Section 3.2 of the main paper and Section 1.1 of this supplement.
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Figure 9: Illustration of the cross-frame aggregation scheme, as used to construct action descriptions A from AF .
Identical schemes are used to construct Ns and Nh. A sequence of identical frame-wise action descriptions (see Figure 8)
with the term v forms a segment. As the aggregation traverses the frames, the segment is accepted into A once a number Po,A
of occurrences of v have been found with each at most Pℓ,A frames apart from the last, and terminated once no occurrences
have been found within Pℓ,A frames. The preceding Lc segments up to a frame (t) in A form the action description for that
frame.

Cross-frame aggregation See Figure 9 for an illustration
of the cross-frame aggregation scheme, restricted to A for
simplicity. An identical scheme is used to extract Ns and
Nh.

For a given frame on which to predict, we mark the 150
(Ego4D) resp. 120 (EPIC-KITCHENS) previous frames to
be processed by the context extraction models using a stride
of 3 frames. The videos in the Ego4D dataset use 30 FPS,
while for EPIC-KITCHENS we subsample the videos to 24
FPS. We thus process the preceding 5 seconds for each pre-
diction frame in both datasets. Yet, it is possible for a pre-
diction frame to make use of action context obtained from
more than 5 seconds in the past through the inclusion of

action context computed for previous prediction frames.
After processing the individual frames, we separately

post-process each action context category c ∈ {A,Nh,Ns}
(noun-verb pairs, held objects, and salient objects) via
a cross-frame aggregation scheme to merge consecutive
frames with identical terms into segments. Note how
working with language summaries allows us to opt for
this simple duplicate elimination scheme, whereas video or
embedding-based input is often repetitive and not straight-
forward to deduplicate.

More specifically, let Vc represent the vocabulary of cat-
egory c, as detailed in the next subsection. For instance,
VNs

is the domain of nouns in the Ego4D short-term object
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Model Filtering NO ↑ N ↑ N-V ↑
A+Ns ✓ 33.20 19.63 7.36
A+Ns ✗ 32.38 19.27 7.20

A ✓ 32.41 18.67 7.16
A ✗ 30.82 18.05 6.61

Table 7: Evaluation of filtering of extracted verb-noun
action descriptions. We evaluate the performance obtained
on the Ego4D validation set when training using filtered
verb-noun pairs with nouns restricted to the Ego4D noun
domain, and when using unfiltered verb-noun pairs. The
results show that the filtered versions achieve better perfor-
mance scores than their unfiltered counterparts.

interaction anticipation dataset.
The aggregation progresses through the video in a tem-

poral manner, maintaining vectors of active and past seg-
ments. Unless a segment with the given term v ∈ Vc is
already active, a series of occurrences of v in a sequence
of frames that is at least Po,c long, with consecutive oc-
currences at most Pℓ,c frames apart, lead to a segment be-
ing accepted into the list of active segments. Note that the
segment is considered to start with the first occurrence that
contributed to its acceptance, and is terminated once v has
not occurred in the last Pℓ,c frames. For a given context
length Lc to be used when constructing the action context
for a prediction frame, we construct a context of at most
Lc non-overlapping active and/or past segments. Segments
containing more occurrences of their respective term elimi-
nate overlapping segments of different terms with fewer oc-
currences.

To construct the action context for a given prediction
frame and action context category c, we distinguish between
the current context, and the past context, with a context
length of Lc resulting in 1 current and Lc−1 past segments
for A and Nh. For Ns, we do not consider past segments.
Instead, we operate only using currently active segments, as
salient objects change quickly throughout video frames and
we are interested in summarizing the recent environment of
the actor for this action context category.

We set Po,A = 1, Po,Nh
= 7, Po,Ns

= 10. We further
use Pℓ,A = Pℓ,Nh

= Pℓ,Ns
= 7. For the experiments

in Table 1, LA = 3. For those in Table 2, Table 11 and
Table 12, LA = 4. In all cases, LNh

= LNs
= 3.

Action context vocabularies For the verb-noun action
description pairs A, we denote the vocabulary VA =
VA,verb × VA,noun. We restrict VA,noun and VNs

to the
domain of the 87 noun classes used in the Ego4D dataset
by eliminating all verb-noun pairs with nouns outside this
domain during the cross-frame aggregation. To increase
the number of frames for which action descriptions can be
found, VA,noun additionally contains a small set of generic

A Ns Nh SlowFast

t (ms) 340 200 280 200
M (GB) 5.5 3.0 5.4 9.5

Table 8: Feature generation costs for a context unit. We
compare the time and the GPU memory requirements for
generating each of the language inputs and the SlowFast
features. Note that the generation of A, Ns and Nh can
be parallelized, and we only utilize A + Ns for our final
model.

words such as “something” and “object”, as these occur fre-
quently in the captions generated by OFA.

As seen in Table 7, restricting VA,noun in this manner
yields better performance for both A and A + Ns models.
We hypothesize that using a broad vocabulary might inhibit
the model’s ability to learn regularities in the language in-
put, given the limited number of training samples available.
VNh

is the domain of UniDet object classes, while VA,verb

consists of the lemmatized versions of all verbs in the output
domain of OFA.

6.2. Computational cost and hyperparameters

Computational cost The computational cost of generat-
ing language and video features is reported in Table 8. To
obtain the language features, our final model configuration
using A + Ns needs only about 140ms more time per frame
than when using SlowFast features, while requiring less
GPU memory: 8.5 instead of 9.5 GB. In this calculation,
we consider the systems to generate the action context lan-
guage features to be running in parallel. We consider the
two methods to have similar costs.

Hyperparameter sensitivity We additionally present the
effect that different context generation hyperparameters
have on the quality of the generated action context. For
Ns, Table 9 shows the effect of k, the number of candidate
salient objects that are kept per frame, using 3 metrics. Pre-
cision in Table 9 denotes the fraction of all inferred salient
objects which are the respective frames’ ground-truth NAO
noun, while recall denotes how often the ground-truth noun
appears in its frames’ inferred salient objects. Similarly,
Table 10 illustrates the effect of d, the maximum distance
between verbs and nouns when extracting candidate verb-
noun pairs from the natural-language image captions dur-
ing A context construction. The number of exact hits
in Table 10 represents how often the generated noun/verb
matches the ground-truth Ego4D NAO noun/verb. The av-
erage GloVe [36] similarity in both tables is computed by
averaging and then normalizing the 300-dimensional GloVe
vector representation of the salient objects (for Ns, Table 9)
resp. verbs/nouns (for A, Table 10) in the context descrip-
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k Precision Recall Ø GloVe sim. Frame coverage
1 0.2582 0.2566 0.4221 57.69 %
2 0.1892 0.2715 0.3656 82.13 %
3 0.1550 0.3106 0.3371 89.82%
4 0.1370 0.3374 0.3198 92.80%
5 0.1275 0.3477 0.3113 93.93 %

Table 9: Influence of parameter k on generated Ns ac-
tion context. Increasing k leads to better frame coverage
(fraction of frames for which AF is non-empty) and in-
creased recall of the generated Ns on the Ego4D valida-
tion set, but reduces their precision and GloVe similarity to
the ground-truth next active object nouns. As we consider
recall and frame coverage to be more important than preci-
sion, and noisy detections are likely to be eliminated by the
subsequent cross-frame aggregation, we choose k = 5.

tion, and computing their dot product with the normalized
GloVe embedding of the ground-truth noun/verb. It rep-
resents a less strict matching evaluation to account for the
possibility of synonyms to the ground-truth: the closer the
generated descriptions are, the higher the final average simi-
larity is. Frame coverage shows how many frames we retain
at least one salient object/verb-noun pair for after the cross-
frame aggregation: larger numbers are better here since we
reduce the risk of skipping important action steps. The av-
erage Glove similarity remains virtually the same for k ≥ 3.

Sensitivity of NF
h to noise from hand-object interaction

and object detectors To obtain a descriptive NF
h for a

given frame, both involved models, the hand-object interac-
tion (HOI) detector and the object detector, must produce
satisfactory results which can additionally be matched to
each other. Specifically, the HOI detector must avoid omis-
sions, false positives, undersegmentations and oversegmen-
tations of active objects. The bounding boxes of active ob-
jects are obtained by taking the outer limits of the segmen-
tation. The object detector must detect the active object and
additionally assign it a correct label. Lastly, the bounding
boxes produced by both models must sufficiently overlap so
that the label inferred by the object detector can be assigned
to the object segmented by the HOI detector. Examples of
NF

h we deem useful to the prediction task are visualized
in Figure 18. We further showcase some failure cases of
the HOI detector in Figure 19 and of the object detector in
Figure 20. These failures lead to missing or incorrect NF

h .

7. The TransFusion model
The fusion module is based on the query-key-value

(QKV) attention mechanism popularized by the Trans-
former [47] architecture. Such an attention aggregation
scheme can loosely be interpreted as computing a weighted

d Hits (N) Hits (V) Ø GloVe sim. * Frame coverage
1 10.61% 3.42% 0.3348 75.18 %
2 13.12% 3.29% 0.3567 78.85 %
3 15.69% 3.05% 0.3752 79.41 %
4 16.99% 3.15% 0.3850 79.64 %
5 9.67% 2.65% 0.3426 81.11 %

Table 10: Influence of parameter d on generated A ac-
tion context. We observe a sudden drop in the fraction
of ground-truth correspondences for both nouns and verbs
of A on the Ego4D validation set when transitioning from
d = 4 to d = 5, likely caused by the introduction of spu-
rious verb-noun pair detections. We hence choose d = 4.
*Average between cosine similarity of A-noun to ground-
truth noun and A-verb to ground-truth verb, measured using
GloVe embeddings.

average of the value vectors v for each of the query vectors,
where the weight is given by the compatibility between the
query and key vectors: q and k. The final compatibility
score is obtained after applying softmax on the pairwise dot
products as described in Equation 3.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

This attention mechanism is applied multiple times in
parallel through a set of attention heads, each one with a
distinct set of parameters, such that the attention mecha-
nism is allowed to focus on different input subspaces. The
output is finally concatenated and projected to the initial
token dimension. The multihead functionality is laid out in
Equations 4 and 5.

MultiHead(Z) = Concat(head1, ..., headh)W
O (4)

headi = Attention(QWZ
i ,KWZ

i , V WZ
i ) (5)

In the following, we state the equations for the visual and
language features’ tokenization and projection, embedding
addition, and concatenation operations prior to feeding the
result to the TransFusion module for a single scale level.

V f = patchify(V fi) ∈ RN×P 2·c (6)

V f = V fWp;Wp ∈ RP 2·c×D (7)

Lf = LM(X); lf ∈ RLA×D (8)
V f += V femb + Posemb (9)
Lf = Lf + Lfemb (10)
Lf = Dropout(Lf) (11)
V f = Dropout(V f) (12)
Z = Concat(V f, Lf) (13)
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where V femb ∈ RD, Posemb ∈ RN×D, Lf represent the
tokenized language features and V f represent the tokenized
visual features.

As described in Section 3, the TransFusion model con-
sists of multiple transformer encoder layers applied in suc-
cession. This mechanism is replicated on multiple input
scales to enhance the corresponding visual features. A sin-
gle transformer encoder layer employs Layer Normalization
[4], MLP blocks, multihead QKV self-attention, a Dropout
module[43], and the GELU[23] non-linearity. The func-
tioning is described in equation 14, where we drop the scale
level indices for simplicity.

Z ′ = LN(MultiHead(Dropout(Z)) + Z)

Z ′ = MLP (Dropout(GELU(Z ′))) + Z ′

Z ′ = LN(Z ′)

(14)

8. Implementation details
For the majority of our runs, we use a learning rate of

1e-4. For training the backbone encoders, we additionally
decay the learning rate by 5 to better synchronize with the
fusion module dynamics that start from random initializa-
tion.

We augment the data by altering both height and width
resolutions while ensuring their downsampled shapes are
divisible by the patch sizes. The following height-width
pairs are used for most of the experiments: 480-596, 544-
640, 640-768, 704-896, 768-896, 800-1200. Before rescal-
ing the images, they are cropped randomly in a relative
range of 0.9 for both height and width. This way, we pre-
serve about 80% of the original visual area and reduce the
chances of evicting GT boxes. The images are flipped hor-
izontally with a probability of 50%. We apply a moderate
amount of color jittering: we alter the brightness in a rela-
tive range of [−0.15, 0.15], the contrast in [−0.1, 0.1], and
the hue in [−0.05, 0.05]. For reference, Ego4D resizes the
image height to 800 pixels while limiting the width to 1333
pixels. By the choice of height and width ratios, both ap-
proaches also provide a weak form of aspect ratio augmen-
tation.

We use a 1D sinusoidal positional embedding for the vi-
sual tokens. The patch dimensions used per level are the
following: high-resolution ResNet-50 runs use patch pro-
jection sizes of 4, 4, 2, 1 for the FPN stages. Smaller patches
tend to give better performance, but increase the computa-
tional cost of the self-attention mechanism that scales with
the square of the number of tokens. We also apply 0.1−0.2
(depending on the language model size) language token
dropout and 0.1 visual token dropout before the transformer
fusion layers, which slightly improves validation perfor-
mance. Each of our models is trained on a single NVIDIA
A100 GPU with 80GB of VRAM.

During development, we observed that the TransFusion
architecture reaches high confidence in predicting fore-
ground objects with a corresponding local minimum of the
loss before learning to effectively fuse the visual and lan-
guage modalities. This diminished the final classification
performance for better box localization. Hence, we reduced
the region proposal network’s sampling batch size and the
detection network’s image batch size from 256 and 512
to 64 and 128 respectively. penalizing the model less for
foreground-background mismatches. This reduces the de-
pendence on visual features, which are already adapted for
object detection tasks. We also perform multiscale augmen-
tation by resizing the shortest edge between 480 and 800
pixels, random-relative cropping, color jittering, and im-
age horizontal flipping to enable a longer learning stage and
more effective feature fusion.

9. Evaluation of action contexts
Correlation of model performance with language input
Table 2 provides a high-level comparison of the perfor-
mance obtained using different types of action context lan-
guage input. In Table 11, we further experiment with pro-
viding our models trained on A+Ns and Ns different types
of action context during inference. Specifically, we com-
pare between (1) using the original action context class(es)
each model was trained with as language input, (2) using
the object to be interacted with next, taken from the ground-
truth labels, as language input, and (3) an ablation where we
omit all language input.

Ideally, our models trained with Ns and A + Ns input
should be able to make use of salient objects enumerated in
the language input to better disambiguate between multiple
possible next active objects (NAOs). The ground-truth NAO
forms a reasonable “best-case” version of the Ns inputs: we
would expect an increase in the models’ performance if the
NAO is highlighted to the model as the only salient object
in the prediction frame. Indeed, as evidenced in Table 11,
both the model trained on Ns and that trained on A + Ns

perform better when receiving the ground-truth NAO as in-
put, than when receiving the salient objects Ns from the
context generation models. On the other hand, the perfor-
mance drops when the models do not receive any language
input. We would like to point out that the performance
of the language-aided models does not suffer significantly
when omitting language input, suggesting that the models
learn to benefit from the provided action context rather than
becoming dependent on it.

We further conduct a comparison of our model’s perfor-
mance on samples for which the ground-truth NAO appears
in the generated language input against that on samples for
which it does not and calculate the absolute and relative fre-
quencies of the ground-truth NAO’s appearance. We show-
case the results in Table 12. The aforementioned consid-
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Lang. used during training Lang. used during inference NO ↑ VO ↑ N ↑ N-V ↑
A+Ns next active obj. (GT) 37.40 11.65 21.86 8.05
A+Ns A+Ns 33.20 12.00 19.63 7.36
A+Ns ∅ 29.51 10.72 17.49 6.46

Ns next active obj. (GT) 35.42 9.24 20.78 7.33
Ns Ns 33.33 10.61 19.62 7.13
Ns ∅ 29.73 8.65 17.83 6.18
∅ ∅ 31.26 10.64 17.71 6.14

Table 11: Performance of various action context combinations at train and inference time. Comparison of performance
obtained on the Ego4D validation set with models trained on A and A+Ns, as well as a visual-only model. For the

language-aided models, we experiment with forwarding the ground-truth next active object labels, passing the intended
action context to the model, and using no language input (∅). Experimental results show that having the ground-truth NAO

labels can further improve the model performance, and that even in the absence of language input (A+Ns & ∅), our
language-aided model performs competitively to a model trained without language input (∅ & ∅).

A Nh Ns A+Nh A+Ns GT
Abs. 4,662 1,119 5,390 5,184 7,484 11,576
Rel. 27.0% 6.49% 31.3% 30.1% 43.5% 67.2%
NO ↑ 32.41 31.16 33.33 32.72 33.20 37.33
NO+ ↑ 41.31 47.42 44.24 40.60 44.60 43.71
NO− ↑ 30.52 30.97 31.09 31.60 31.22 30.78

Table 12: Performance analysis based on the occurrence of next active object labels in language context. Absolute
(Abs.) and relative (Rel.) frequency of the occurrence of the ground-truth next active object class in different types of action

context on the Ego4D validation set, together with the performance of models trained on these action context types.
Performance is measured in terms of Noun-Only mAP and separately for the full validation set (NO), the subset where the

ground-truth next active object class appears in the language summary (NO+), and the subset where it does not (NO−). The
results show the benefit of the next active object appearing in the language input.

erations strongly suggest that the models benefit from the
Ns action context specifically due to its ability to highlight
salient objects in the actor’s environment.

Counterfactual analysis We showcase how changing the
action context alters the predictions of the model on vari-
ous prediction frames from the Ego4D dataset’s validation
set. Figure 10 together with Figure 17 illustrate the differ-
ence in the predictions of an Ns-trained model when using
language input consisting of the ground-truth class name
(left column), compared to using the class name of another
object in the image or a similar-looking object (right col-
umn). We visualize the top 4 highest-scoring bounding
boxes, along with the bounding box capturing the ground-
truth next active object (in green) and the language input to
the model, visible on the bottom left of the images. The
visualizations indicate qualitatively that TransFusion learns
to effectively condition its predictions on action context en-
coded as language summaries to anticipate future object in-
teractions.

10. Comparison with state-of-the-art

In this section, we provide more details on the experi-
ment setup reported in the main paper. The TTC values are
obtained using the provided Ego4D model checkpoint while
keeping our original box, noun, and verb predictions. For
the language encoder, we use SBERT 384 and for the vi-
sual encoder, we use the frozen Ego4D ResNet-50 weights.
We discount the classification loss for the background class
prediction by 0.8 such that the model focuses more capacity
on the actual object categories.

Validation-test performance variance We observe some
noticeable variance between the validation and test set per-
formance, both for our model and the Ego4D method. We
believe that this is caused by multiple factors, such as 1)
only one validation fold being used during the training of
the two models. Performing k-fold cross-validation pro-
vides a more reliable estimate of the true model perfor-
mance, at the cost of a significantly larger computation time.
2) even when using a single validation fold, a reasonable
performance estimate can be obtained. In our case, we iden-
tify a noticeable class distribution shift when moving from

17



Figure 10: Examples from the counterfactual analysis experiment. We show the changes in our model’s predictions
when altering the language input from wrench to table on the top row, and dumbbell to shoe on the bottom row. Additional,

similar visualizations are available in Figure 17.

the training to the validation set. It is plausible that a similar
distribution shift occurs between the validation and test set.

10.1. Additional comparisons

We provide additional insights on how our method per-
forms compared to that of Ego4D, highlighting the effec-
tiveness of our approach and the suitability of using lan-
guage descriptions to summarize the action context.

Model performance as a function of label distribution
We evaluate the performance of the two models separately
for the most frequent and for the tail class categories. This
comparison confirms the effectiveness of our method: we
register consistent improvements for both frequent and rare
categories: over 15% and 22% for nouns and 132%, 161%
for verbs respectively. This is very encouraging, seeing as
improving performance in low-tail classes is a challeng-
ing aspect for many prediction tasks and the adoption of

language descriptions could provide further breakthroughs.
The results are presented in Table 13 and Table 14. We re-
port the classification-only results (without conditioning on
a correct box prediction) because we want to highlight the
substantial classification improvements owed to improved
semantic understanding. The corresponding metrics are de-
noted as NO and VO respectively.

Model NO ↑ Top-10 NO ↑ Tail NO ↑
Ego4D 28.70 27.58 26.45

TransFusion 33.80 31.84 32.37
Improvement 18% 15% 22%

Table 13: Noun-only mAP for top 10 and tail noun cate-
gories on Ego4D dataset. We observe consistent gains over
the full class spectrum, in particular in tail classes.
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Model VO ↑ Top-5 VO ↑ Tail VO ↑
Ego4D 5.22 10.11 4.38

TransFusion 12.00 23.54 11.46
Improvement 129% 132% 161%

Table 14: Verb-only mAP for top 5 and tail verb categories
on Ego4D dataset. We observe consistently strong gains
over the full class spectrum, in particular in tail classes.

Model performance dependence on bounding box size.
We additionally present a performance comparison based
on the size of the ground-truth bounding box. We divide the
ground-truth labels into 3 categories according to their area,
each one containing a third of the total validation samples.
The results for the Box-Noun mAP metric are shown in Ta-
ble 15. We again notice consistent improvements across the
different categories, which show that our method is flexi-
ble enough to perform well on difficult cases such as small
bounding boxes or tail classes. This is encouraging because
improving on these corner cases usually requires a lot of ef-
fort. The TransFusion model using language action context
summaries achieves this without any special design choices
aimed towards improving this objective.

With respect to the Box-Noun-Verb mAP, we notice reg-
ular gains of about 1.5 points over the Ego4D methods
(hence, this result is omitted from the table). This suggests
that the verb label prediction is more dependent on under-
standing the scene and action context in a holistic manner.

Model Ns ↑ Nm ↑ Nl ↑
Ego4D 6.39 15.20 21.82

TransFusion 7.91 18.65 22.75
Improvement 23% 22% 4%

Table 15: Box-Noun mAP for small (Ns), medium (Nm)
and large (Nl) boxes. Box-Noun-Verb mAP improvement
is about 1.5 points for each of the categories hence it is
omitted. Our method improves detection and classification
results on difficult cases with small bounding boxes, com-
plementing the hard-to-encode visual cues.

11. Architecture ablation

11.1. Learning scale-specific features

Shared multiscale fusion weights. An alternative take to
combat overfitting is to share model weights over multiple
similar inputs, such that they are forced to learn more gen-
eral data representations. We apply this principle by reshar-
ing the transformer fusion weights over the multiple input
scales. Because this setting imposes additional constraints
on the fusion weights, we increase the fusion module’s ca-
pacity by 33% (such that it still fits on one of our GPUs)

and reduce the L2 weight decay to 3e-5 to allow more op-
timization freedom. Using this setup, we register a notable
decrease in performance. We perform multiple runs, but do
not manage to score more than 7 MAP Box-Noun-Verb and
19.2 MAP Box-Noun on the validation set (approximately
.5 and 1 absolute point difference). This indicates that using
shared fusion weights at multiple scales is counterproduc-
tive for our task and that the model learns different repre-
sentations at different feature map scales, all needed for ef-
fective prediction. The other hyperparameters are kept fixed
as in section 8, with a context length of 3 used for A.

Forwarding language features. Instead of copying the
language encoder outputs for every scale-level fusion, we
forward the corresponding fused tokens to the latter stages.
Additionally, we also append residual connections between
the language features tokens at the successive multiscale
levels to allow the model to more easily retain some of
the initial information. The results are presented in Ta-
ble 5 where we notice the improved results obtained with
the ”copy” strategy as opposed to reusing features from pre-
vious scale levels. This further supports our hypothesis that
each scale level operates with distinct, specialized represen-
tations and that reusing ones from different scales are detri-
mental to model performance. For this experiment, we use
the parameters described in section 8 with a context length
of 3, including salient objects.

11.2. Language modeling loss

We also investigate including an additional language
model loss to further accelerate the action description learn-
ing. Specifically, we include an additional loss term, Llm =
1
2 (LlmN

+ Llms) in the final optimization objective

L = Lbox + Lnoun + Lverb + Lttc + Llm (15)

The target categories for this loss are the ground-truth noun
and verb labels; LlmN

and Llms
are regular cross-entropy

losses. The difference between Lnoun, Lverb and Llm is
that the latter term is applied on the mean-pooled fused lan-
guage tokens at each multiscale fusion level (i.e. the trans-
former encoder outputs). The former ones work on the ROI-
pooled bounding-box features in the Faster R-CNN predic-
tion heads. The experimental results however did not show
any improvement when including Llm, which instead de-
creased the final Box-Noun-Verb performance. We believe
that this task in itself can be quite challenging. Without
considerably increasing the model capacity, performing it
concomitantly with the detection-based objectives can neg-
atively impact the target model’s performance.
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12. Video features and context length
12.1. Computational cost analysis

Figure 11 illustrates the inference computational cost
of TransFusion using action context summaries and
TransFusion-Video and their marginal difference. Given a
video clip of one second, language can summarize it in two
words whereas corresponding video features take up more
than 12 times space (e.g. smaller SBERT feature of 2×384
compared to SlowFast feature of 4 × 2304). Besides, the
Ego4D 2nd stage SlowFast model has 33 million parameters
and is trained end-to-end while the small SBERT encoder
has 22 million parameters out of which we finetune only
1.7 million. for Lc=3, the TransFusion model has 122M
trainable parameters, 11777 GFLOPs and an inference la-
tency of 457 ms. TransFusion-Video has 124M parameters,
11697 GFLOPs and an inference latency of 433 ms. Train-
ing costs reveal a similar picture, with 2000 GFLOPs and
250ms latency increase for both models. Overall, Trans-
Fusion obtains a 21% increase in N-V performance for a
similar computational budget.
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Figure 11: Computational cost comparison to video fea-
tures. Comparison between TransFusion using context
description summaries (Summary) and TransFusion-Video
(Video). The differences between the two methods are neg-
ligible and they scale similarly with the input context length.

12.2. Additional comparison details

To further confirm our findings, we perform an addi-
tional run with a video context length of 6, which covers
more than 100 frames before the prediction moment. We
find that this does not bring any additional performance
boost compared to the runs presented in Figure 5 from
the main section. It registers a top-5 Box-Noun mAP per-
formance of 18.83 (more than 1 point below the average
summary-based run) and 6.40 Box-Noun-Verb mAP (also
about 1 point lower). This generally agrees with results pre-
sented by the Ego4D paper in their Table 39, where the im-
provements from increasing the number of SlowFast clips
suffer slightly diminishing returns. While this work is not
an exhaustive comparison of different types of video feature
extractors, SlowFast features are still considered effective

enough to be used for the latest works, including the Ego4D
2nd-stage, hence we consider them a relevant baseline. Fi-
nally, when contrasted with the language encoder run with-
out finetuning presented in Table 3, the difference in Box-
Noun-Verb mAP is 0.8 points (or about 12%). This indi-
cates the benefit of using language descriptions even when
not finetuning the language encoder. To perform the context
length comparison, we use the default parameters presented
in section 8.

13. EPIC-KITCHENS 100
Dataset preparation The SlowFast features for the
EK100 dataset are extracted with an 8x8 ResNet-101 Slow-
Fast backbone pre-trained on the Kinetics 400 dataset [25],
using a stride of 16 frames and a window size of 32 frames.
This replicates the extraction procedure for the Ego4D-
provided features to ensure comparability. We emphasize
that the EK100 dataset only provides low-resolution images
of 256x456 (that we upsample to 480x640; sizes given in
height-first notation) which makes the prediction task even
more difficult. A certain degree of noise in the ground-
truth bounding boxes generation can be expected. In some
cases, there are multiple matching object detections; hence
we use the model confidence score to break ties and choose
the bounding box with the largest value.

On average, the EK100 scenes are much more cluttered
and more difficult to interpret than the Ego4D ones because
of the several objects that could be interacted with in a
kitchen. Kitchen scenes represent only 11% of the Ego4D
dataset and we do not expect our model to excel in those en-
vironments more than the others, hence we consider EK100
to be a different benchmark.

Evaluating the generated action context features Ta-
ble 17 shows a comparison of the action contexts generated
for EK100 and Ego4D datasets. We show the exact num-
ber of noun and verb hits (i.e. how often the generated de-
scriptions contain the ground-truth noun-verb annotations)
and the noun and verb GloVe similarity (i.e. the dot prod-
uct between the generated and ground-truth noun/verb 300-
d GloVe vectors). On average, according to the presented
metrics, the context descriptions generated for Ego4D are
closer to the respective ground-truth annotations, which
translates into better overall performance. A large decrease
in the caption quality is due to the decrease in input im-
age resolution. The models we rely on such as OFA [48]
or UniDet [56] are known to perform better with larger in-
put resolutions. We quantify this decrease in performance
by downsampling Ego4D from 1920x1080 to 456x256 to
match the EK100 resolution and comparing the generated
Ns versions. We register a 23% decrease in exact hits and
a 10% decrease in average GloVe similarity, which are sig-
nificant enough to reduce the performance of our system.
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Figure 12: t-SNE embedding of the noun categories for
the two datasets. A sizeable cluster of the EK100 nouns
can be noticed on the right, while the Ego4D noun cate-
gories are more grouped towards the left. This shows the
domain gap between the two datasets for noun categories.
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Figure 13: t-SNE embedding of the verb categories for
the two datasets. The verbs are more uniformly spread and
cover approximately the same space, which makes transfer
learning easier.

Language encoder choice According to our experiments,
the choice of language encoder is also important for EK100,
where the larger SBERT/RoBERTa language encoder seems
to be better suited. We hold that this is due to the fine class
differences that must be understood by the model: salad
vs. parsley, drink vs. bottle, bean vs. nut, and lemon vs.
fruit. This requires a more expressive and powerful lan-
guage encoder to pick up the finer details, whereas a coarse
understanding was enough for Ego4D, since its classes are
more semantically distinct. The results shown in Table 16
confirm this hypothesis. We obtain a 0.15 Noun-Verb in-
crease when switching from the small SBERT/BERT to
SBERT/RoBERTa version and a .6 Noun increase. Com-
pared to Ego4D, this represents an overall improvement of
over 10% in Noun mAP when using the larger language en-
coder. Especially for the noun domain these differences are
representative and suggest that correctly predicting the noun
category is more difficult on EK100 than on Ego4D.

Dataset Language Encoder N ↑ N-V ↑

Ego4D
SBERT/BERT 20.19 7.55

SBERT/RoBERTa 19.78 7.78
Rel difference -2% 3%

EK100
SBERT/BERT 6.52 3.72

SBERT/RoBERTa 7.03 3.8
Rel difference 8% -2%

Table 16: Language encoder comparison. We compare
the effectiveness of SBERT using BERT and RoBERTa
backbones on Ego4D and EK100 datasets. Overall using
a larger language encoder is more beneficial for EK100 be-
cause of the fine grained domain.

To support our claims, we visualize the clustering of the
noun and verb categories after applying the t-SNE dimen-
sionality reduction method [46] on the corresponding 300-
dimensional GloVe [36] embeddings. In Figure 12, we no-
tice a sizeable cluster of the EK100 nouns on the right-hand
side, while the Ego4D nouns tend to be clustered on the
left-hand side. We also notice the small distance in the em-
bedding space for the noun classes (especially the EK100),
which reinforces the difficulty of separating them. Verb
clustering is presented in Figure 13, where we can observe
a much larger overlap between the two datasets’ classes and
theoretically, easier separability given the larger distances
between them.

14. Qualitative results
We present in Figure 14 and Figures 15 & 16 a quali-

tative comparison between our method and that of Ego4D,
using a context length of 3 for action verb-noun pairs A
and 3 salient objects Ns for our language-aided model. The
green bounding box represents the ground truth location of
the next object interaction. The white text represents the in-
put action summary context description: the first row repre-
sents the salient objects and the second the captioned action
descriptions. We show the top-4 most confident bounding
box predictions and their associated noun, verb, and TTC
estimates.
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Exact Noun Hits Exact Verb Hits Noun GloVe similarity Verb GloVe similarity
Ego4D 22% 8.6% 0.483 0.575
EK100 12.3% 12.7% 0.386 0.524

Table 17: Action context language features comparison between EK100 and Ego4D. On average, according to the pre-
sented metrics, the context descriptions generated for Ego4D are closer to the respective ground-truth annotations, which
translates into better overall performance.

open drawer, 0.1s paint wall, 2.33s take phone, 1.0s

Ego4D

Ours

Figure 14: Qualitative examples of Ego4D and TransFusion (ours) predictions. The ground-truth action label and TTC
is represented on top of each column. The bright green bounding boxes denote the ground-truth location of the next object
interaction. Action contexts used as language input in TransFusion are shown at the bottom in white. On average, our model
manages to get more accurate predictions.
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take wire, 1.07s take metal, 1.17s sand wood, 1.23s

Ego4D

Ours

take screwdriver, 0.63s dip brush, 0.43s take wood, 1.53s

Ego4D

Ours

Figure 15: Additional qualitative examples of Ego4D and TransFusion (ours) predictions (I). The ground-truth action
description and TTC are represented at top of each column. The bright green bounding boxes denote the ground-truth location
of the next object interaction. Context summaries used in TransFusion are shown at the bottom in white. On average, our
model manages to get more accurate predictions. More examples are shown in Figure 16.
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put screw, 1.63s mask iron, 0.3s tie wire, 0.2s

Ego4D

Ours

cut plant, 1.67s open cabinet, 0.3s smooth wall, 1.1s

Ego4D

Ours

Figure 16: Additional qualitative examples of Ego4D and TransFusion (ours) predictions (II). See Figure 15 for details.

24



Changing the model predictions by
changing the language input from

brush (top) to paper (bottom)

Changing the model predictions by
changing the language input from
vegetable (top) to knife (bottom)

Changing the model predictions by
changing the language input from

car (top) to paint (bottom)

Changing the model predictions by
changing the language input from
tablet (top) to computer (bottom)

Changing the model predictions by
changing the language input from
bicycle (top) to wrench (bottom)

Changing the model predictions by
changing the language input from

dough (top) to food (bottom)

Figure 17: Additional qualitative examples of predictions when changing the language input. Our model modifies the
predicted labels and locations dynamically based on the input language context descriptions. We show the input language

context in white, in the bottom left corner of each image.
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GT (red box), NF
h obj. (blue box) Hand interaction detector output Object detector output

Figure 18: Successful detections of held objects for Nh construction. We show the ground-truth next-active object in red,
hand bounding boxes in purple, active object bounding boxes in yellow, the bounding boxes of the inferred held objects,
selected from those detected by the object detector and having a sufficiently high IoU with an active object bounding box

from the hand interaction model, in blue, and the extracted held object context NF
h in the bottom left corner of each image.
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GT (red box) Hand interaction detector output Object detector output

Figure 19: Failures of hand-object interaction detector during Nh construction. The hand-object interaction detector
produces an oversegmentation (top) or does not detect the object (bottom). See Figure 18 for details.

GT (red box), NF
h obj. (blue box) Hand interaction detector output Object detector output

Figure 20: Failures of object detector during Nh construction. The object is misclassified (top) or not detected (bottom).
See Figure 18 for details.
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