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ABSTRACT

Disconnectivity and distortion are the two problems which must be coped with when processing
360 degrees equirectangular images. In this paper, we propose a method of estimating the depth
of monocular panoramic image with a teacher-student model fusing equirectangular and spherical
representations. In contrast with the existing methods fusing an equirectangular representation
with a cube map representation or tangent representation, a spherical representation is a better
choice because a sampling on a sphere is more uniform and can also cope with distortion more
effectively. In this processing, a novel spherical convolution kernel computing with sampling points
on a sphere is developed to extract features from the spherical representation, and then, a Segmentation
Feature Fusion(SFF) methodology is utilized to combine the features with ones extracted from the
equirectangular representation. In contrast with the existing methods using a teacher-student model to
obtain a lighter model of depth estimation, we use a teacher-student model to learn the latent features
of depth images. This results in a trained model which estimates the depth map of an equirectangular
image using not only the feature maps extracted from an input equirectangular image but also the
distilled knowledge learnt from the ground truth of depth map of a training set. In experiments,
the proposed method is tested on several well-known 360 monocular depth estimation benchmark
datasets, and outperforms the existing methods for the most evaluation indexes.

1 Introduction

Wider field of view means richer visual information. Estimating the depth from a single 360◦panoramic image is an
interesting topic, and until now a lot of researches have reported on it [1, 2, 3, 4, 5, 6, 7]. Since a 360◦panoramic image
is usually represented as an Equi-Rectangular Projection(ERP)[8, 9], this problem is formulated as the estimation of
depth from a single ERP image concretely.

However, when a 360◦panoramic image is represented as an ERP image, the problems of disconnectivity and distortion
arise. While the disconnectivity can be solved easily by padding the left side using the right side image, how to coping
with the distortion is tricky. In the existing methods, combining a cubemap representation [10] with an ERP image is
used cope with this problems [11, 12]. In comparison with the distortion increasing greatly as approaching to poles of
an ERP image, a cubemap representation is made up of six square perspective images.

Although a cubemap representation of a 360◦panoramic image can improve the distortion of an ERP image effectively,
it has its own limitations. First, since a cubemap representation is made up of six square perspective images, padding
operations is necessary when carrying out convolution on the boundaries of each perspective image. Next, theoretically,
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a cubemap representation is not a ideal one for a 360◦panoramic image to cope with image distortion because a
perspective image has its own distortion.

Similarly, tangent representation[13] is proposed to use to cope with the distortion. Tangent representation represents
the panoramic image with any number of perspective images. However, due to the large number of views, there is a
significant amount of redundancy in many regions, and the fusion processing of these repetitive regions will introduce
new issues[14].

It is known that an ideal representation for a 360◦panoramic image is a spherical image because the distortion of a scene
object does not change with its position on a sphere. This isotropic property of a spherical image makes it superior to
other representations. Additionally, on a sphere the problem of disconnectivity is eliminated completely. In this paper,
we estimate the depth of a monocular panoramic image by fusing a spherical representation with an ERP image. A
spherical convolution method is also developed, which enables a spherical convolution is carried out on sphere directly.
Moreover, the feature maps extracted by the spherical convolution is fused with those extracted from the ERP image to
achieve better performance than the existing methods.

Additionally, the existing methods of estimating depth of monocular panoramic image use the known ground truth
of depth map in loss function to update the parameters of neural network during the back-propagation process. On
the other hand, three dimensional structure of environments has its own inherent characteristics, especially for indoor
environment having ceilings, floors and walls.

Based on this idea, we design a teacher-student model to learn the inherent cues of depth images of training set.

In this paper, we train an encoder-decoder structure with depth image input and depth image output to extract the
inherent characteristics of panoramic depth images first, and then using this pretrained model as the teacher model
to supervise the student network learning. The experimental results show that the accuracy of depth estimation is
improved.

To evaluate the proposed approach, we conducted experiments on the 3D60[15], Matterport3D[16], and
Stanford2D3D[17] datasets. The results demonstrate that our method surpasses existing approaches on the
Matterport3D[16] and Stanford2D3D[17] datasets and achieves competitive performance on the 3D60[15] dataset. In
summary, the contributions of this paper are as follows:

• In contrast with the existing methods fusing an ERP representation with a cubemap representation or a
tangent representation, a Segmentation Feature Fusion(SFF) methodology is designed to combine spherical
representation with the equirectangular representation to improve the performance of depth estimation.

• To realize the spherical representation, we design a new spherical kernel to carry out spherical convolution on
a sphere, which solves the problems of disconnectivity and distortion of an ERP image effectively.

• We propose an encoder-decoder network to exploit the inherent cues of depth images of training set and
supervise the backbone network learning in a distilled knowledge way. Our proposed teacher-student model
is different from the existing methods which only use depth map as ground truth in the loss function of the
network output at training phase.

2 Related Work

2.1 Monocular 360 depth estimation

Monocular 360 depth estimation is an extension of monocular depth estimation that focuses on predicting depth
information in a 360-degree panoramic view by utilizing a single image as input. For example, [6] explored the spherical
view synthesis to learn monocular 360-degree depth via a self-supervised method. [7] builds a two-stage pipeline for
omnidirectional monocular depth estimation. [5] predicts the depth directly on the spherical mesh without projection
preprocessing and achieved a good results. To address the spherical distortion in ERP images, [1] employed deformable
convolution to adapt the sampling grids in response to geometric distortions within panoramic images. Moreover, [3]
adaptively combines convolution kernels with varying dilations to expand the receptive field.

[2] devised a distortion-aware deformable convolution filter for testing purposes, a filter that can be trained using
conventional perspective images. Differently, [4] represents the scene as compact vertical slices of a sphere and predict
depth with convolution layers. These methods have demonstrated the feasibility of applying convolution directly on
ERP images to eliminate distortions.

Recently, there has been a growing interest in utilizing fusion-based approaches to cope with the distortion. [11]
proposed to effectively combines the cubemap and ERP features from both the encoder and decoder stages. Furthermore,
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Figure 1: Overview of our network

[12] proposed a new framework for fusing features from different projections: ERP and Cubemap and demonstrate that
the ERP features are more important for final ERP format depth prediction tasks. Differently, [18] designed a Cubemap
Vision Transformers to extract distortion-free global features from the panorama and fuse them at multiple scales. For
tangent patches based fusion methods, [19] proposed to estimate the depth from tangent patches and fuse the tangent
patches to an ERP image. [20] introduce Local2Global Transformer, which aggregates local information within a panel
and panel-wise global context. overhead. [21] introduced a panoramic transformer designed to exploit tangent patches
within the spherical domain. [14] combined CNN and transformer to learn the holistic contextual information from the
ERP and tangent patches and adopts a classification model for depth value prediction. [22] propose an equirectangular
geometry-biased transformer.

In contrast with the closest researches[11, 12, 14], we propose a novel approach that fuses ERP and spherical represen-
tations. This integration can mitigate the defectives caused by ERP representation most effectively.

2.2 Spherical convolution

Spherical convolution is characterized by capturing and preserving the spatial information from panoramic images.
Recently, [23] designed a Kernel Transformer to transfer the convolution kernels from perspective images to ERP images.
[24] proposed to use spherical convolution to deal with the problem of weight sharing failure caused by video projection
distortion. [25] employed spherical convolution to distill spatial-temporal 360 information. cite30 presented a spherical
CNN that constructed by representing the sphere as a graph, and utilized the graph-based representation to define the
standard CNN operations. These methods have provided evidence for the effectiveness of spherical convolutions in
processing information from panoramic image. [26] design a distortion-aware Transformer to modulate ERP distortions
continuously and self-adaptively. [27] proposed to utilizes a spherical polyhedron to represent omni-directional views
to minimizes the variance of the spatial resolving power on the sphere surface.

2.3 Knowledge distillation

Knowledge distillation aims to enable the student model to mimic the behavior and performance of the teacher model.
Knowledge distillation is first proposed by [28].

It is worth noting that [29] proposed that semantically similar inputs tend to elicit similar activation patterns in a trained
network. Moreover, [30] demonstrated that knowledge distillation can be a powerful tool for reducing the size of
large models without compromising their performance. These methods provide ample evidence of the effectiveness
of knowledge distillation, in the field of deep learning. Moreover, some methods[31, 32, 33] have proved that the
teacher-student model learning at the latent feature level is a feasible and effective approach.

In this paper we propose a network to exploit the inherent cues of depth images of training set and supervise the
backbone network learning in a distilled knowledge way. Our proposed teacher-student model is different from the
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existing methods[34, 35, 36] which only use depth map as ground truth in the loss function of the network output at
training phase.

3 Proposed Methods

3.1 Overview

The proposed framework introduces a novel approach for monocular panoramic depth estimation. 1 shows the
framework, which incorporates an ERP-based teacher-student model and employs spherical convolution for distortion
elimination.

In our network, an ERP image serves as the input, and the predicted depth is output. The encoder utilizes a ConvNeXt-
base pretrained model[37] to extract features from the input with channel numbers of [128, 256, 512, 1024]. Similarly,
the spherical convolution encoder applies the proposed spherical convolution method to extract distortion-free high-
dimensional features of corresponding sizes and channels in shallow networks. Besides, a skip connection structure
(similar to [12])

is applied to enhance the interaction between the encoder and decoder and enrich the high-dimensional information of
the image. Following an encoder-decoder architecture, the teacher network takes the ground truth depth image as input.
In contrast to conventional depth estimation methods, our framework harnesses the benefits of knowledge distillation
networks by employing a teacher network trained with ground truth to extract the inherent characteristics of the depth
image. In decoder stage, the interpolation-based upsampling method is used to upsample the obtained features. Notably,
We utilize a sub-pixel convolution[38] for final upsampling layers, which can minimize the impact of excessive manual
factors on the results and enhance the spatial details.

3.2 Spherical convolution

3.2.1 Spherical kernel

One crucial aspect of performing convolution on a sphere is setting up the appropriate convolution kernel. Different
with planar convolutions, convolution on a spherical surface possesses a distinctive characteristic: the kernels, whether
rectangular or Gaussian, do not undergo translation but instead rotation on the sphere. Therefore, the problem of
defective rotational invariance of convolution kernels on the sphere cannot be ignored. A sphere is inherently a perfectly
axis-symmetric shape, and it appears as a circle from any viewpoint(See 2(a)). The existing methods can be classified
as three approaches: 1. Using a conventional square kernel for the generated plane tangent to the central point of
a spherical model. 2.using the points of a discrete spherical image originating from a geodesic dome. 3. network
training for the offset of sampling points. Different from them, our sampling is directly carried out on a sphere, which
eliminates the problems of disconnectivity and distortion in contrast to an ERP image representation, results in a more
natural circular kernel in contrast to a square kernel applied to a tangent plane, and a relatively more uniform sampling
in contrast to a discrete spherical image originated from a geodesic dome. And more reliable compared to methods
that depend on network predictions. Inspired by conventional feature point detection[39], we introduced a circular
convolution kernels. In contrast to computing rectangular convolution kernels from tangent planes[40][26], circular
kernels align more closely with the essence of a sphere and have the ability to extend beyond image boundaries. Any
point on the sphere can be considered as the center of an infinite number of circles. Therefore, we choose a point on the
sphere and the closest outer circle around it as the convolution kernel(See 2(a)).

When performing convolutions on a sphere, it is necessary to take into account the curvature and topological structure
of the sphere, which increases the complexity of the convolution process. With an increase in latitude spacing, the
impact will become more pronounced. However, by selecting the closest outer circle as the convolution kernel, it can
preserve the geometric properties of the image and minimizing the boundary effects. A circle encompasses infinite
points, it is difficult for practical calculations. Considering that planar convolutions typically employ 3x3 convolution
kernels, we select eight equidistant points on the circle, along with the central point, as the spherical convolution kernel,
as depicted in 2(a). In contrast to traditional discrete spherical sampling methods, which may sacrifice local detail to
ensure global coverage, our method independently computes the convolution kernel for each point based on its adjacent
points. This approach eliminates the requirement for a global discrete grid, leading to higher precision and making it
more suitable for pixel-level prediction tasks.

Computing the coordinates(x, y, z) of all pixels of an H×W ERP image projected onto a sphere, along with the
corresponding coordinates on the outer circle, is a complex and time-consuming task. Therefore, we propose to define a
basic spherical pattern, as illustrated in 2(a). Specifically, the outer circle is chosen as the basic spherical pattern at the
North Pole of the sphere due to its unique geometric properties with coordinates (0, 0, 1).
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Figure 2: (a) Generation process of spherical convolution kernel. With a defined universal rotation matrix, spherical
convolution kernels corresponding to different positions can be generated, which greatly reduces the computational
cost. (b) Visualizing convolution kernels at the poles and equator positions in ERP images, which enable us to tackle
distortion issues in distinct regions.

An ERP image with H×W is projected onto a unit sphere(r = 1), the distance between any two adjacent points on the
equator is 2π

W . Given the uniqueness of the sphere and the aspect ratio of the ERP image being 1:2, it follows that the
distance between any two points on any circle centered at the sphere’s center is also 2π

W . As shown in 2, in the X−Z
view, let α denote the distance between any point on the circle and the Z-axis and α is 2π

W . The coordinates of the basic
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spherical pattern are as 1 shows:

p1 = (0, 0, 1)

p2, p6 = (0.sin(α)r,±cos(α)r)

p3, p9 = (±sin(
π

4
)sin(α)r, cos(

π

4
)sin(α)r, cos(α)r)

p4, p8 = (±sin(α)r, 0, cos(α)r)

p5, p7 = (sin(
π

4
)sin(α)r,±cos(

π

4
)sin(α)r, cos(α)r)

(1)

where p1 denotes the North Pole point: Mid , while p2· · · p9 represents the points forming the base-spherical pattern
Left, Leftup, Up, Rightup, Right, Rightdown, Down and Leftdown respectively.

As 2 and 2(a) shows, by applying a same procedure of rotating the basic spherical pattern with a consistent rotation
matrix R, we can effectively reposition the pattern on the sphere through spherical rotations. The employment of
consistent rotation facilitates the generation of the convolution kernel at different positions, while ensuring that the
distribution of points on the outer circle adheres to the original distribution of the basic spherical pattern in sphere. As
shown in 2(b), the proposed spherical convolution kernel takes on different shapes in different regions of the image.

p′1
p′2
...
p′9

 = R


p1
p2
...
p9

 (2)

Where p1′, p2′· · · p9′represents the nine points that make up the spherical kernel: Mid′, Left′, Leftup′, Up′, Rightup
′,

Right′, Rightdown
′, Down′, Leftdown

′. Note that the process does not induce any deformation to the spherical
kernel.

3.2.2 Rotated matrix computation

It is imperative to ensure a consistent rotation pattern is used when rotating from the North Pole point to a given point
on the sphere. Following 3, a point(x, y, z)on the sphere can be represented by (θ, φ):

θ = arccos (z) , φ = arctan2(y, x) (3)

where θ ∈ [0, π] denotes the inclination between the positive half-axis of the Z-axis and a specific point, while
φ ∈ [0, 2π) represents the azimuthal angle between the projection of the point on the X-Y plane and the positive
half-axis of the X-axis. Based on θ and φ, we could infer the rotation matrix R for each point. The spherical convolution
kernel at any point on the sphere can be obtained through 2.

We calculate the matrix R for rotation around various axes based on the values of θ and φ. As depicted in 4, φ is
partitioned into four distinct categories to accommodate different scenarios. As shown in 3(a),(b), when φ is greater or
less than π, the sphere rotates around fixed axes according to 4. That is, it first rotates around the x-axis by θ, then
around the z-axis, and does not rotate around the y-axis. This allows the proposed pattern to be rotated to the desired
position, while maintaining the relative positions of points on the spherical pattern unchanged. As shown in 3(c),(d),
when φ equals π or 0, the rotation solely occurs around the y-axis. This approach ensures that all points on the spherical
surface rotate according to the same proposed rotation process.{

yaw = φ− π
2

pitch = 0
roll = −θ

, φ < π;

{
yaw = 0

pitch = −θ
roll = 0

, φ = π;

{
yaw = (φ− π)− π

2
pitch = 0
roll = θ

, φ > π;

{
yaw = 0
pitch = θ
roll = 0

, φ = 0;

(4)

where yaw, pitch, and roll denote the rotation angles around the Z-axis, Y-axis, and X-axis respectively. After
obtaining the rotation angles, we can calculate the rotation matrices RX , RY , RZ for each direction, and the final
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Figure 3: Rotation process

rotation matrix R are as shown in 6:

RX =

[
1 0 0
0 cos(roll) −sin(roll)
0 sin(roll) cos(roll)

]
;

RY =

[
cos(pitch) 0 sin(pitch)

0 1 0
−sin(piych) 0 cos(pitch)

]
;

RZ =

[
cos(yaw) −sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1

]
;

(5)
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R = RZ •RY •RX (6)
Utilizing R within the proposed basic spherical pattern enables the derivation of spherical convolution kernels that
correspond to any position on the sphere.

Figure 4: The relative position of the spherical convolution kernel for each pixel in the image is stored in the
corresponding LUTs, which in turn maps the ERP image to nine sub-images. Then, after group convolution and
pixel-wise convolution, an RN1×H×W feature map is obtained.

3.2.3 Separable spherical kernel convolution

For convolution, the network assigns unique weights to each channel’s convolution kernel and accomplishes the
convolution by moving these kernels over the image. However, on the sphere, convolution kernels are not translated
but instead rotated. Previous methods employed grids to implement spherical convolution. While the grid-based
approaches are constrained by the number of grids used, and may fail to achieve per-pixel division, which is detrimental
for pixel-level tasks. To address this issue, we introduce a per-pixel separable spherical kernel convolution method. As
shown in 4, We firstly maps spherical convolution kernels, centered at each pixel on the image, to the same position
in different images. Subsequently, we conduct group convolution with a size of 1, where all pixels comprising the
kernel in the convolution process are grouped together. This operation eliminates the need for additional padding to
understand image boundaries. For the pixel-wise task, we believe that the introduced pixel-wise convolution strengthens
the sensitivity for our network to inter dependencies among neighboring pixels on the sphere, enhancing the capacity of
the network to perceive structural information in panoramic images.

specificly, we propose to use look-up tables(LUTs) to store the respective relative positions of the spherical convolution
kernel at each point. For instance, LUT1 stores the positions of p1 (i.e., the ’Mid’ point) for each pixel of the image,
which is the center of the proposed spherical convolution kernel, and LUT2 stores the relative positions of p2 (i.e., the
’Left’ point) in the spherical convolution kernel for each pixel of the image. With LUT2, we can obtain an image that
is entirely composed of p2 from a given image while maintaining the size of the original image. Similarly, LUT3 to
LUT9 represent the positions of p3 to p9 in the spherical convolution kernel (see 4).

As depicted in 4, once the LUTs are available, a featureRN×H×W can be mapped to RN∗9×H×W sub-features from
IM_1 to IM_9. Based on it, the group convolution with a kernel size of 1 can be employed to equivalently replace
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Figure 5: Results of qualitative comparison on 3D60 (top), Matterport3D (middle) and Stanford2D3D (bottom).

the original kernel convolution. Finally, a pixel-wise convolution is conducted to expand the channels in the spherical
convolution, and a feature∈ RN1×H×W (where N1 can be arbitrarily set) can be obtained.

3.3 Segmentation feature fusion module

The feature fERP obtained through planar convolution exhibits distortion at the poles, while the feature fsph obtained
through the proposed spherical convolution method is distortion-free. The effectiveness and importance of planar
convolution has been demonstrated in this task[12], research on the reliability of spherical convolution in deeper layers
remains limited. To exploit the advantages of both convolutions, we propose to integrate fsph into fERP . Given the
minimal curvature near the equator in panoramic images, the distortion in this region is negligible. Therefore, planar
convolution in this area is reasonable. In the panoramic image domain, researchers typically assume significant distortion
in the upper and lower thirds, with almost no distortion in the central part. Leveraging the well-established method
of planar convolution enables effective feature extraction from panoramic images, we preserve the features extracted
through planar convolution near the equator. This strategy enables us to fully harness the benefits of planar convolution
in extracting rich features from the image while avoiding the potential adverse impact of spherical convolution in deep
layers. As shown in 1, we segment fERP into three equal parts and discard the features at the North and South poles,
retaining the features in the middle part (fERP−mid). To fuse fERP and fsph, we propose an adaptive weight fusion
scheme, where we perform adaptive fusion on the two features to obtain an initial fused feature f :

f = w0 × fERP + w1 × fsph (7)

where w0 and w1 are learnable parameters. Then, we prioritize fERP as the primary carrier and perform a concatenation
operation between f and fERP . Subsequently, a convolution layer is used to achieve fusion and retain the feature
fERP−mid extracted near the equator. Lastly, a simple non-linear activation is applied to obtain the final fused feature
ffused. The fused feature ffused effectively combines the superior features extracted by fERP−mid near the equator
with the distortion-free features fsph.

3.4 teacher network

The proposed teacher-student network, as depicted in 1, aims to incorporate more depth information into the network
by utilizing ground truth depth and compensating for the shortcomings of spherical convolution in deep layers.
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Datasets Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE(log)↓ δ1 ↑ δ2 ↑ δ3 ↑

Standford2D3D

FCRN[41] - / 0.1837 - / - - / 0.5774 - / - - / 0.7230 - / 0.9207 - / 0.9731
BiFuse with fusion[11] - / 0.1209 - / - - / 0.4142 - / - - / 0.8660 - / 0.9580 - / 0.9860

UniFuse with fusion[12] - / 0.1114 - / - - / 0.3691 - / 0.2322 - / 0.8711 - / 0.9664 - / 0.9882
OmniFusion (2-iter)[19] 0.0950 / - 0.0491 / - 0.3474 / - 0.1599 / - 0.8988 / - 0.9769 / - 0.9924 / -

PanoFormer*[21] - / 0.1131 - / 0.0723 - / 0.3557 - / 0.2454 - / 0.8808 - / 0.9623 - / 0.9855
SphereDepth[5] - / - - / - - / 0.4512 - / - - / 0.8666 - / 0.9642 - / 0.9863

PanelNet[20] - / - - / - 0.2933 / - - / - 0.9242 / - 0.9796 / - 0.9915 / -
HRDFuse[14] 0.0935 / - 0.0508 / - 0.3106 / - 0.1422 / - 0.9140 / - 0.9798 / - 0.9927 / -

Ours 0.0926 / 0.0940 0.0487 / 0.0541 0.3058 / 0.3269 0.1396 / 0.1417 0.9188 / 0.9143 0.9804 / 0.9808 0.9931 / 0.9921
Teacher Network 0.0086 / 0.0093 0.0013 / 0.0021 0.0608 / 0.0758 0.0214 / 0.0270 0.9983 / 0.9971 0.9997 / 0.9994 0.9999 / 0.9998

3D60

FCRN[41] - / 0.0699 - / 0.2833 - / - - / - - / 0.9532 - / 0.9905 - / 0.9966
BiFuse with fusionp[11] - / 0.0615 - / - - / 0.2440 - / - - / 0.9699 - / 0.9927 - / 0.9969
UniFuse with fusion[12] - / 0.0466 - / - - / 0.1968 - / 0.0725 - / 0.9835 - / 0.9965 - / 0.9987
OmniFusion (2-iter)[19] 0.0430 / - 0.0114 / - 0.1808 / - 0.0735 / - 0.9859 / - 0.9969 / - 0.9989 / -

ODE-CNN[23] - / 0.0467 - / 0.0124 - / 0.1728 - / 0.0793 - / 0.9814 - / 0.9967 - / 0.9889
SphereDepth[5] - / 0.0550 - / 0.1145 - / 0.2364 - / - - / 0.9743 - / 0.9944 - / 0.9978
HRDFuse[14] 0.0358 / - 0.0100 / - 0.1555 / - 0.0592 / - 0.9894 / - 0.9973 / - 0.9990 / -

Ours 0.0394 / 0.0379 0.0101 / 0.0105 0.1560 / 0.1687 0.0604 / 0.0602 0.9897 / 0.9901 0.9975 / 0.9975 0.9990 / 0.9991
Teacher Network 0.0081 / 0.0051 0.0005 / 0.0004 0.0401 / 0.0380 0.0143 / 0.0054 0.9996 / 0.9996 0.9999 / 0.9999 0.9999 / 0.9999

Matterport3D

FCRN[41] 0.2409 - 0.6704 - 0.7703 0.9174 0.9617
BiFuse with fusion[11] 0.2048 - 0.6259 - 0.8452 0.9319 0.9632

UniFuse with fusion[12] 0.1063 - 0.4941 0.1613 0.8897 0.9623 0.9831
OmniFusion (2-iter)*[19] 0.1007 0.0969 0.4435 0.1664 0.9143 0.9666 0.9844

PanoFormer*[21] 0.0904 0.0764 0.4470 0.1650 0.8816 0.9661 0.9878
SphereDepth[5] - - 0.5922 - 0.8620 0.9519 0.9770

PanelNet[20] - - 0.4528 - 0.9123 0.9703 0.9856
HRDFuse[14] 0.0967 0.0936 0.4433 0.1642 0.9162 0.9669 0.9844

Ours 0.0941 0.0723 0.4396 0.1402 0.9110 0.9712 0.9904
Teacher Network 0.0186 0.0049 0.1262 0.0162 0.9954 0.9991 0.9997

Table 1: Quantitative comparison with other methods. Bold indicates that our method performs the best. -/-: On the left
side of /, it indicates that the dataset processing estimates a depth of 8 meters, while on the right side of /, it indicates
that the dataset processing estimates a depth of 10 meters. *:It indicates that due to the absence of a pre-trained model,
its metrics are derived from the latest SOTA model, [14].

The teacher network takes the ground truth depth as input, generating the latent features in the deepest layer, which acts
as guidance for the student model. By leveraging the inherent characteristics of the teacher model, we can enrich the
depth information contained in the latent features of the student model, thereby improving the network’s performance
in depth estimation. It is important to note that the teacher network is discarded during the final inference. During the
training of the teacher model, we employ the commonly used Burhu loss[41] as the loss function for depth estimation
tasks.

4 Experiments

4.1 Datesets, Metrics and Implimentation details

Datesets: In this paper, We conducted experiments on three benchmark datasets that are widely used for this tasks:
3D60[15], Matterport3D[16], and Stanford2D3D[17] datasets. Stanford2D3D and Matterport3Dare real-world datasets.
While 3D60[15] is composed of two synthetic datasets: SUNCG[42] and SceneNet[43] and two real-world datasets:
Stanford2D3D and Matterport3D. Note that there are some rendering issues[12] with the 3D60, and some anomalies
may occur in this task.
Metrics: Following previous work[12, 14], we adopt standard evaluation metrics for evaluation: Absolute Relative
Error (Abs Rel), Squared Relative Error (Sq Rel), Root Mean Squared Error (RMSE), Root Mean Squared Error in
logarithmic space (RMSE(log)) and accuracy with a threshold δt, where t ∈ {1.25,1.252,1.253}.
Implimentation details: Our network was trained using the Adam optimizer, a batch size of 1, and a learning rate of
1× 10−4 on a TITAN RTX 24G. We trained our model for only 30 epochs for Matterport3D, 3D60 and 20 epochs for
Stanford2D3D. Moreover, we adopt augmentation techniques, random color adjustment, and left-right-flipping, random
yaw rotation in the training phase.

4.2 comparision with state of the art

1 presents a comparative analysis between our method and existing methods for depth estimation. Notably, Some
methods like [14] and [19] differ from conventional depth estimation methods in terms of data processing for the
Stanford2D3D and 3D60 datasets. Specifically, the training data and testing data have a maximum depth of 8 meters for
these two datasets, while traditional methods like [12] [41] and [5] have a maximum depth of 10 meters. In order to
analyze the results more comprehensively and to adequately compare our method with other methods, we evaluated the
two different depth estimation results(8m and 10m) for our method. For the Matterport3D dataset, all existing methods

10



arXiv Template A PREPRINT

Base S-Conv Teacher SFF Abs Rel↓ Sq Rel↓ RMSE↓ δ1 ↑
✓ 0.1125 0.0599 0.3434 0.8870

✓ ✓ 0.1050 0.0564 0.3239 0.9066

✓ ✓ ✓ 0.0968 0.0546 0.3124 0.9084

✓ ✓ ✓ 0.0986 0.0507 0.3131 0.9156

✓ ✓ ✓ ✓ 0.0926 0.0487 0.3058 0.9188
Table 2: Ablation study for different combinations of independent components.

have the same maximum depth value of 10. Here we clarify that due to the unavailability of pre-trained models for
some methods (e.g., Omnifuse does not provide a pre-trained model for the Matterport3D dataset, and Panoformer,
PanelNet and HRDFuse does not provide any pre-trained models), for fair comparisons, we collected publicly available
experimental data of competitors from the comparisons made by the latest SOTA depth estimation model HRDfuse.

As 1 shows, Our method performs well compared to SOTA methods[11, 12, 19, 14, 5, 21, 20] on several benchmark
datasets. On the Stanford2D3D dataset, our method outperforms Unifuse by 17.5% (Abs Rel) and 12.91% (RMSE),
outperforms Omnifuse by 2.59%(Abs Rel) and 13.6%(RMSE),our method outperforms Panlenet by 0.082% (δ1) and
0.16% (δ3), and outperforms HRDfuse by 0.972%(abs rel), 1.57% (RMSE) and 0.525% (δ1). On the 3D60 dataset,
our method outperforms Unifuse by 22.96% (abs rel) and 16.66% (RMSE), outperforms Omnifuse by 9.14% (abs rel),
outperforms ODE-CNN by 23.22%(Abs Rel) and 2.43%(RMSE), and outperforms HRDfuse with 0.03% (δ1), while
also demonstrating competitive results on other metrics with HRDFuse. Furthermore, it is observed that the method
introduced in this paper achieves a slightly superior of accuracy in comparison to HRDFuse. On the Matterport3D
dataset, our method outperforms Unifuse by 18.38% (Abs Rel) and 12.37% (RMSE), outperforms Omnifuse by 7%
(Abs Rel), outperforms PanelNet by 0.485% (δ3) and over 3% (RMSE), and outperforms HRDfuse by 2.76% (Abs Rel),
29.46% (Sq Rel), 0.841% (RMSE) and 0.61%(δ3). In 5, since HRDFuse does not provide any pre-trained models, we
retrained the model to the official Settings for visualization, and we qualitatively compare our method with UniFuse
and HRDFuse, and our method outperforms them.

4.3 ablation study

4.3.1 ablation study of each component

We conducted a series of incremental experiments to assess the effectiveness of each component, as illustrated in 2. The
ablation experiment was performed with maximum depth of 8 meters on the Stanford2D3D. We used only the planar
convolution method for depth estimation as the baseline. Subsequently, we added the proposed spherical convolution
method, teacher network, and SFF module sequentially. As shown in 2, the performance of the planar convolution
model was adversely affected by distortion. With the introducing of proposed the spherical convolution method, the
performance improved by 6.21% (Sq Rel). However, we only used a simple concatenation method for fusion, which
significantly reduced fusion effectiveness, while the performance has greatly improved by 11.24% (Sq Rel) since we
utilized the SFF module. Moreover, we assessed the effectiveness of the teacher network by incorporating it into the
network without the SFF module, resulting in a 3.3% (Sq Rel) improvement. Finally, when all components were used,
the performance achieved the maximum improvement of 23.00%(Sq Rel). The experimental results illustrate that each
proposed component plays a pivotal role in this task, notably elevating the overall performance of the network.

4.3.2 weight of fusion

We performed ablation experiments on the weights of SFF module, as presented in 3. We assigned fixed weight ratios
of 1:0, 0:1, and 0.5:0.5, in addition to using adaptive weights. The experimental results demonstrate that the adaptive
weights outperform the other three fixed weight ratios. Overall, the results provide further evidence of the effectiveness
and reliability of the proposed SFF module.
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ERP feature Spherical feature Abs Rel↓ Sq Rel↓ RMSE↓ δ3 ↑
0.5 0.5 0.1045 0.0535 0.3112 0.9930
0 1 0.0928 0.0510 0.3059 0.9927
1 0 0.1011 0.0533 0.3139 0.9929

Adaptive weighting 0.0926 0.0487 0.3058 0.9931
Table 3: The Ablation study on the weight of SFF module.

5 Conclusions and future work

In this paper, we propose a method of depth estimation of a monocular panoramic image. To the best of our knowledge,
it is the first of fusing equirectangular and spherical representations so as to mitigate the effect of the disconnectivity and
distortion of ERP images, and supervise the student network to learn the inherent cues of depth images of training set
via a teacher-student model. The experiments shows the effectiveness of the proposed method. Since depth estimation
is a basic technique for image understanding, we believe the proposed method can find a lot of applications, such as
visual surveillance, robot navigation and so on. It is also our future work to do.
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