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Abstract

Convolutional Neural Networks (CNNs) have achieved
state-of-the-art performance in many computer vision tasks.
However, high computational and storage demands hinder
their deployment into resource-constrained environments,
such as embedded devices. Model pruning helps to meet
these restrictions by reducing the model size, while main-
taining superior performance. Meanwhile, safety-critical
applications pose more than just resource and performance
constraints. In particular, predictions must not be overly
confident, i.e., provide properly calibrated uncertainty es-
timations (proper uncertainty calibration), and CNNs must
be robust against corruptions like naturally occurring input
perturbations (natural corruption robustness). This work in-
vestigates the important trade-off between uncertainty cal-
ibration, natural corruption robustness, and performance
for current state-of-research post-hoc CNN pruning tech-
niques in the context of image classification tasks. Our
study reveals that post-hoc pruning substantially improves
the model’s uncertainty calibration, performance, and nat-
ural corruption robustness, sparking hope for safe and ro-
bust embedded CNNs. Furthermore, uncertainty calibra-
tion and natural corruption robustness are not mutually ex-
clusive targets under pruning, as evidenced by the improved
safety aspects obtained by post-hoc unstructured pruning
with increasing compression.

1. Introduction
In the realm of computer vision, Convolutional Neural
Networks (CNNs) have emerged as a dominant paradigm,
demonstrating remarkable success in diverse applications,
including image classification [58], object detection [61]
and video analysis [51]. However, due to their extensive
parameter count [7], these architectures demand substan-
tial storage and computational resources, posing limitations
on deployment in embedded systems. To address this issue,
pruning methods have been introduced that reduce the num-

ber of parameters, effectively compress the network, and
decrease computational complexity [11, 40]. The primary
strategy involves identifying and eliminating the least im-
portant network components while preserving desired per-
formance measures, such as accuracy. The pruning land-
scape consists of two main categories [34]: unstructured
and structured pruning. Unstructured pruning deals with
the individual weights of a network, resulting in the de-
velopment of sparse models. In contrast, structured prun-
ing typically eliminates complete channels, filters, or lay-
ers. Additionally, concerning the timing of pruning during
the training of a neural network, pruning algorithms can be
categorized into two groups: post-hoc and ante-hoc prun-
ing [60]. Post-hoc pruning algorithms [18, 33, 35] operate
on pre-trained models, utilizing knowledge from the initial
training to selectively remove parameters based on crite-
ria. In contrast, ante-hoc pruning algorithms [9, 32] ex-
plore effective model architectures during the pre-training
phase. Of particular interest for this paper is post-hoc prun-
ing, i.e., pruning of an already trained CNN. In contrast to
ante-hoc pruning algorithms that need intervention during
training, this allows the distribution of training tasks and
integration to different teams or suppliers. Irrespective of
the diverse pruning methodologies, pruning algorithms pri-
marily focus on assessing post-pruning accuracy and infer-
ence time. Nevertheless, these metrics alone do not provide
a comprehensive understanding of other consequences of
pruning, such as the impact on model robustness and relia-
bility [13, 28].

In real-world applications, CNN architectures must be
robust against perturbations of the inputs [46, 56], such as
out-of-distribution data [57]. As of the categorization in
[46, 56], common robustness challenges include adversar-
ial attacks, concept drift, and covariate shift. In the case
of adversarial attacks, intentional manipulations aim to de-
ceive the model [37]. Concept drift refers to a task-specific
output label distribution change due to, e.g., novel objects
[55]. Hence, for assessments of architecture-specific ro-
bustness, task-agnostic covariate shifts are most relevant,
which means changes in the input data distribution over
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time due to perturbations such as sensor noise, varying
weather conditions, and so on [2].

Several studies demonstrate the vulnerability of CNNs
to typical data distortions, compared to human perfor-
mance [10]. For example, in assessments of image recog-
nition models, CNNs were found to be notably suscepti-
ble to covariant shift such as blurring and Gaussian noise
[8]. The absence of invariance to slight translations in
multiple CNNs was also identified by [3]. Even worse,
when it comes to real-world conditions, Von Bernuth et al.
[52] report a significant performance degradation of an ob-
ject detection CNN when evaluated on weather-corrupted
data. Meanwhile, state-of-the-art methods for enhancing
the robustness of CNNs typically rely on large models
[24], impractical for resource-constrained settings. Prun-
ing resolves this issue by reducing memory and compu-
tational demands. There has been extensive research on
the robustness of pruned models against adversarial attacks
[12, 14, 48]; however, adversarial robustness does not nec-
essarily extend to other corruptions like covariate shifts.
Therefore, the trade-offs related to natural corruption ro-
bustness in pruned networks remain undetermined.

Moreover, while deep learning research focuses on im-
proving the accuracy of networks, less attention has been
given to the reliability of the networks. Model uncer-
tainty calibration represents the degree of correspondence
between the model output confidences and their actual prob-
ability of correctness [39], ensures well-calibrated confi-
dences as a reliable indicator of output trustworthiness. In
recent years, a growing body of research has highlighted
a respective trend: despite accuracy advancements, mod-
ern neural networks often exhibit poor uncertainty calibra-
tion [15]. However, in real-world safety-relevant applica-
tions, classification networks must be both accurate and
well-calibrated to trigger appropriate safety measures dur-
ing high uncertainty [4, 56]. Pruning introduces structural
changes and weight reductions in neural networks, poten-
tially affecting their predictive capabilities and confidence
estimates [59]. Despite this, the impact of different post-
hoc pruning approaches on uncertainty calibration, includ-
ing the trade-off between compression and calibration, en-
joyed little attention so far.

Since state-of-the-art post-hoc pruning techniques purely
consider CNN accuracy for guiding the compression, it is
not obvious that pruning will preserve any other safety tar-
gets; the structural changes might even result in degradation
thereof, rendering pruning inapplicable to safety-relevant
applications. For this reason, in this paper, we systemati-
cally investigate the uncertainty calibration error and natural
corruption robustness of post-hoc pruned CNNs under in-
creasing compression compared to the original network for
image classification task. To the best of our knowledge, this
is the first research work in the literature benchmarking sev-

eral popular unstructured and structured post-hoc pruning
techniques for image classification while thoroughly and
quantitatively studying their uncertainty calibration and nat-
ural corruption robustness trade-offs. It provides a detailed
understanding of the foremost positive influence of post-hoc
pruning on safety properties. Our key findings are:
1. Post-hoc pruning consistently improves the uncertainty

calibration compared to their unpruned counterparts;
post-hoc unstructured pruned models exhibit substan-
tial improvements in calibration, whereas post-hoc struc-
tured pruned models exhibit improved uncertainty cali-
bration performance up to a specific degree of compres-
sion.

2. Post-hoc pruning has no negative impact on natural cor-
ruption robustness.

3. Post-hoc pruning does not affect uncertainty calibration
in the presence of natural corruption.

2. Related Work
2.1. Safety Metrics

When assessing CNNs, most works concentrate on stan-
dard performance metrics such as accuracy and F1 score
(for classification) or mean average precision (for object de-
tection). To ensure the safety of CNNs, one needs to con-
sider their technology-specific insufficiencies. Sämman et
al. [43] and Schwalbe et al. [46] categorized them into:
lack of generalized performance; incorrect internal logic;
lack of robustness against perturbations that do not change
the semantic content of the input; lack of efficiency for the
respective hardware, usually correlated with the CNN size;
and CNN opaqueness, which, however, is hard to quantify
across use-cases objectively [44, 62]. This catalogue was
extended to consider incorrect uncertainty estimate outputs
separately measured by variants of the calibration error met-
ric - expected, average, and maximum calibration error [15].
Some safety metrics found in the literature are specifically
tailored to the safety needs as well as potential logical is-
sues tied to a use-case [45, 56]. Examples are consistency
with logical constraints [47] or standard detection accuracy
weighted by safety-relevance of objects [6]. However, such
metrics require a concrete reference system and are hardly
generalized across use cases. Robustness against pertur-
bations, however, gives rise to a rich set of application-
agnostic metrics. As of [46] and [56], these are divided into
two classes: adversarial and natural corruption robustness.
The first considers robustness against adversarial attacks,
i.e., targeted and maliciously crafted changes to the input
[5, 37, 54], and sets focus on security. On the other side,
natural corruption robustness considers naturally occurring
non-semantic corruptions of inputs, such as noise and trans-
lations from sensor degradation, adverse weather conditions
like fog and rain [46]. Percentage change in accuracy, the



relative change in failure rate, mean performance under cor-
ruption, and mean corruption error are the most popular
metrics for both robustness against adversarial attacks and
natural corruption robustness [24, 37]. Our work focuses
on expected calibration error and mean performance under
corruption as the safety metrics for uncertainty calibration
and natural corruption robustness, respectively. The afore-
mentioned safety measures are explored mostly for vanilla
networks without considering model compression.

2.2. Model Compression

In order to leverage the power of large state-of-the-art com-
puter vision CNNs in resource-constrained environments,
compression techniques must be employed to reduce the
number of parameters and, thus, computation operations
and memory of the deployed CNN. As of He et al. [22],
typical and complementary means of compression are quan-
tization, i.e., compression of the weight value representa-
tion [42], and CNN pruning. Pruning started as early as the
1980s [41], and, unlike hardware-dependent quantization,
aims to remove parameters on an architectural level. Fol-
lowing [34]; pruning methods can be differentiated by their
application time (dynamic during operation versus static be-
fore deployment), their pruning criterion, the removed el-
ements, and whether they are structured or unstructured.
Operation-time pruning employs decision logic at runtime
to dynamically remove computational paths [34], but can-
not decrease CNN memory consumption.

Static pruning approaches can be sub-classified accord-
ing to their instance of interference before deployment:
1. Post-hoc: Pruning after training is a three-step pro-
cess: first, train the initial network to convergence; second,
prune redundant parameters based on specific criteria; and
finally, retrain the pruned model (fine-tuning) to recover
any performance loss incurred during the pruning process
[17, 33, 35]. 2. Ante-hoc: (a)Pruning during training:
compared to pruning after training, connections are dynami-
cally deactivated during training based on their importance.
But later weights can adapt and potentially be reactivated
based on gradient updates [64]. (b)Pruning before train-
ing resp. weight rewinding: motivated by the Lottery Ticket
Hypothesis [9] some recent studies aim to identify a sparsity
mask that can be used for weight initialization, e.g., using
information from a previous training run, and subsequently
train the pruned network from scratch while maintaining the
original mask throughout the training process [32, 53]. In
this article, we have adopted approach 1., i.e., pruning after
training or post-hoc pruning, which not only has the largest
body of research [31], but also most practical relevance due
to the separation of concerns of model training and integra-
tion. In post-hoc pruning, the model can be pruned with
different compression ratios without the necessity of initiat-
ing training from its initial state. This affords flexibility in

modifying compression ratios without undertaking a com-
prehensive model retraining. Conversely, when employing
ante-hoc algorithms for model pruning with diverse com-
pression ratios, it is imperative to initiate model retraining
to accommodate the specific compression ratio, contrasting
the more adaptable approach offered by post-hoc pruning.

In our work, we consider two fundamental categories
of static post-hoc pruning: unstructured pruning and struc-
tured pruning. Unstructured pruning involves the removal
of individual weights which are assigned the least impor-
tance for the network functioning, resulting in a sparse net-
work without sacrificing predictive performance [17, 18].
However, since the positions of non-zero weights are irreg-
ular and random, the sparse network pruned by unstructured
pruning cannot be presented in a structured fashion. This
means that it cannot lead to compression and speedup with-
out dedicated hardware or libraries [19]. To address this, so-
called structured pruning typically prunes complete chan-
nels, filters, or layers within the CNN architectural struc-
ture according to an importance criterion [21, 33, 35]. As
a result, the pruned network retains the original convolu-
tional structure without introducing sparsity, and no sparse
libraries or specialized hardware are required to realize the
benefits of pruning. Since both have practical advantages,
we cover and compare these two pruning paradigms in this
study.

For ease of notation, pruning refers to post-hoc pruning
in the remainder of this paper.

2.3. Pruning and Uncertainty Calibration

There is a limited exploration of the impact of pruning on
uncertainty calibration. While a study conducted by Sun et
al. [50] indicates that sparsification is beneficial for enhanc-
ing the calibration of CNNs, their study specifically focused
on various unstructured pruning methods applied to smaller
residual networks (ResNet-20, ResNet-32) with lower spar-
sity levels (up to 20%). Consequently, these investigations
lack a comprehensive analysis of diverse pruning method-
ologies involving larger residual networks and higher spar-
sity levels. This gap in research underscores the fact that the
impact of pruning on uncertainty calibration remains both
active and largely unexplored which we aim to tackle here.

2.4. Pruning and Robustness

There is a growing body of literature on the robustness
of pruning methods against adversarial attacks, focusing
mainly on the improvement of the adversarial robustness of
pruned models even without adversarial training [16, 27].
According to these results, pruned models typically do not
inherit the susceptibility to adversarial attacks observed in
the original models. The previously cited studies demon-
strate the positive effect of pruning concerning robustness
against adversarial attacks. However, this is limited to



adversarial robustness, not taking into account robustness
against naturally occurring corruptions like fog or random
noise from sensor degradation.

Compared to research on adversarial robustness, there is
a limited exploration of the impact of pruning on natural
corruption robustness. Regarding the relationship between
pruning and natural corruption robustness, the study con-
ducted by Hooker et al. [26] revealed that the corruption
performance significantly deteriorates when higher prun-
ing ratios are applied for the magnitude pruning method.
According to Hoffmann et al. [25], unstructured (global
weight) pruning preserves more robustness regarding per-
formance under corruption than the structured (L1-norm
filter) pruning counterparts. However, such studies lack a
comprehensive examination of diverse pruning methodolo-
gies, leaving the influence of pruning on natural corruption
robustness an active and unexplored research area.

3. Methods
3.1. Pruning

All static pruning methods commonly consist of a step 1,
in which they determine an importance score for candidate
network units, step 2, in which this is used to select and re-
move items with a low score, and an optional last step of
fine-tuning the newly obtained pruned network. The deci-
sion threshold in the second step influences the final pruning
ratio, i.e., the percentage of removed parameters, which can
serve as a measure for the achieved compression.

As outlined in Section 2.2, static pruning approaches that
apply after model training can be divided into unstructured
pruning of weights, and structured pruning of filters or
channels in case of CNNs [34]. To evaluate pruning with
respect to uncertainty calibration and natural corruption ro-
bustness and to compare different pruning paradigms with
respect to these aspects, we consider the following three
pruning methods, which are commonly used and chosen to
cover a broad range of static pruning approaches [30].

3.1.1 Unstructured Weight Pruning

We consider the unstructured pruning strategy from Han
et al. [18] for magnitude-based weight pruning, compris-
ing two steps. Step 1: globally sort the weights according
to their relative importance based on the magnitude of the
weights calculated by L1-norm. Step 2: prune k% of the
weights with the lowest importance, where k% is the prun-
ing ratio.

3.1.2 Structured Filter Pruning

We adopt the L1-norm-based filter pruning technique by
Li et al. [33] as a filter-level structured pruning method.

Step 1: rank the filters by their L1-norm value in each con-
volutional layer. Step 2: remove the k% lowest ranking
filters, where k% approximates the pruning ratio.

3.1.3 Structured Channel Pruning

Additionally, we employ network slimming introduced by
Liu et al. [35] as another structured pruning method tar-
geting channel-level sparsity. Step 1: During training, im-
pose L1 sparsity regularization on the channel-wise scaling
factors for each channel from batch normalization layers.
Step 2: Remove those channels with near-zero scaling fac-
tors afterwards.

3.2. Safety Metrics

Besides efficiency, the two main application-agnostic safety
targets for computer vision CNNs are correct uncertainty
calibration and robustness against naturally occurring cor-
ruptions [37, 46, 62]. These are quantified by means of ex-
pected calibration error and mean performance under cor-
ruption on a benchmark corruption dataset, respectively.

3.2.1 Uncertainty Calibration

In the context of employing pruned models in safety-critical
applications, ensuring good uncertainty calibration is of
high importance, in addition to achieving the desired levels
of sharpness of uncertainty. In this paper, we want to inves-
tigate whether pruning has an adverse effect on CNN uncer-
tainty calibration. Therefore, the calibration error concept is
employed to re-assess the uncertainty calibration properties
of the pruned models with respect to the original unpruned
model.

Good uncertainty calibration aims to ensure that the pre-
dicted confidences correctly represent the actual probabil-
ity of the correctness of the prediction. Miscalibration is
commonly quantified in terms of Expected Calibration Er-
ror (ECE) [15]. This is measured by first binning samples
of the test set according to their predicted confidence value;
then measuring the accuracy for each bin; and lastly, de-
termining the weighted average of the difference between
bins’ accuracy and mean predicted confidence. This for-
malizes to

ECE =

M∑
m=1

Bm

n
|acc(Bm)− conf (Bm)| , (1)

where M is the total number of bins into which the pre-
dictions are equally grouped, Bm is the number of samples
whose prediction confidence falls into the interval Im =(
m−1
M , m

M

]
and n is the total number of samples. The accu-

racy of Bm is defined as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

I(ŷi = yi), (2)



where ŷi and yi are the predicted and true class labels for
sample i, and I(·) is the indicator function. Finally, the
average confidence within bin Bm is defined as:

conf (Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (3)

where p̂i is the confidence for sample i.

3.2.2 Natural Corruption Robustness

Robustness to distribution shift is an important feature of
CNNs for real-world applications, where the environmen-
tal conditions may vary substantially. Among many forms
of distribution shift, one particularly relevant category for
computer vision is covariate shift, i.e., input image cor-
ruption [2, 46, 56]. Therefore, natural corruption robust-
ness is important when deploying pruned models in safety-
critical applications. This paper investigates how pruning
influences natural corruption robustness compared to the
original unpruned model. This inquiry aims to provide in-
sights into the potential trade-offs and implications of prun-
ing methodologies concerning the network’s ability to with-
stand natural corruption in safety-critical applications.

The natural corruption robustness of a (pruned or un-
pruned) model is evaluated in terms of mean performance
under corruption(mPC ) [38], which is defined as

mPC =
1

Nc

Nc∑
c=1

1

Ns

Ns∑
s=1

Pc,s, (4)

where Pc,s represents the performance computed on test
data corrupted with corruption type c under severity lev-
els s. Ns and Nc denote the number of severity levels and
corruptions respectively.

4. Experimental Setup
The experimental setup for benchmarking the pruning
methods from Section 3.1 against the safety metrics from
Section 3.2 and accuracy is detailed below.

Concretely, the investigated research questions are:
(i) Do increasing pruning ratios affect any of

a. uncertainty calibration (see Section 5.1);
b. natural corruption robustness (see Section 5.2); or
c. uncertainty calibration when challenged with nat-

ural corruptions (see Section 5.3);
(ii) Is there a difference between structured and unstruc-

tured pruning in any of the above cases?

4.1. Datasets & Models

Within the network pruning literature, CIFAR-10 stands as
the established benchmark dataset, and VGG, ResNet serve
as the prevalent network architectures. Our assessment of

the three pruning methods aligns with the target models and
dataset pairs presented in the original paper, ensuring the
comparability of our results.
CIFAR-10: A common benchmark dataset for image clas-
sification is CIFAR-10 [29]. It contains 60,000 (50,000
training and 10,000 test images) colour images of 32 × 32
resolution in 10 classes, with an equal distribution of 6,000
images per class. We use the CIFAR-10 training data as
in-distribution data (clean data) to train the CNNs and to
fine-tune the pruned models. The test split is used to deter-
mine the safety metrics of unpruned and pruned models on
clean data.
CIFAR-10-C: This dataset is constructed by synthetically
corrupting the original CIFAR test sets [23]. It consists of
15 types of corruption, each further categorized into five
distinct severity levels, containing 50,000 images for each
type of corruption. The corruptions cover four categories:
noise, blur, weather effects, and digital transforms. In this
paper, CIFAR-10-C is used as naturally corrupted data dur-
ing testing to check the natural corruption robustness of
original and pruned CNN models [39].
Models: VGG networks, introduced by Simonyan and Zis-
serman [49], leverage a deep architecture with small con-
volutional filters, showcasing robust performance in image
classification task [1]. Residual network backbones, pio-
neered by He et al. [20], prove highly effective in mitigating
the vanishing gradient problem, enabling the training of ex-
tremely deep networks and achieving state-of-the-art results
in image classification tasks [1].

To ensure comparability between unstructured and struc-
tured pruning, we choose VGG-19 and PreResNet-110 for
weight pruning, VGG-16 and ResNet-110 for filter pruning
and VGG-19 and ResNet-164 for the more rigorous chan-
nel pruning. This setup is able to reproduce accuracy com-
parable to the reported results of the baseline models from
the original works (for accuracy on clean test data, see Fig-
ure 1).

4.2. Training Configuration

We adopt the implementation and hyperparameters for
weight pruning, filter pruning, and channel pruning from
the publicly available codebase by Liu et al. [36], demon-
strating comparable results to the original works. Using a
stochastic gradient descent optimizer, the original models
are trained for 160 epochs with a batch size of 64. An expo-
nentially decreasing learning rate is applied, starting at 0.1
for epochs [1, 80), 0.01 for epochs [80, 120), and finally
0.001 until epoch 160. Simple data augmentation involving
random crop and random horizontal flip is used on training
images as a standard means to foster natural corruption ro-
bustness in the original models. For fine-tuning the pruned
models, we use a constant learning rate set to the last one
used for training the original model (0.001) and apply this



for 40 epochs.

4.3. Pruning Ratio Selection

The pruning ratios vary among the selected pruning meth-
ods, each characterized as follows:
Magnitude-based weight pruning: The pruning ratio,
defined as the percentage of parameters pruned within the
convolutional weights of convolution layers, establishes the
pruning threshold. It determines which weights are set
to zero based on their magnitudes relative to the specified
threshold value.
Filter Pruning: VGG-16 on CIFAR-10 comprises 13 con-
volutional layers and 2 fully connected layers. Pruning 512-
feature map layers, as reported in [33], maintain accuracy
due to filters’ limited spatial connections on small feature
maps. Despite extensive pruning in the first layer, the re-
maining filters outnumber input channels. However, exces-
sive pruning in the second layer risks losing vital informa-
tion. To maintain compatibility with the original implemen-
tation, our approach selectively prunes layers 1 and 8 to 13.

ResNets designed for CIFAR-10 comprise three stages
of residual blocks, handling feature maps of sizes 32 × 32,
16× 16, and 8× 8. Each stage maintains an identical num-
ber of residual blocks. Deeper layers exhibit increased sen-
sitivity to pruning compared to earlier stages, as noted in
[33]. Specifically targeting the first layer of the residual
block, our approach ensures compatibility with the origi-
nal implementation by exclusively pruning the first layer of
each residual block within the first stage of the network.
The pruning ratio reflects the percentage of filters pruned
for all first layers in the first stage.
Channel Pruning: We adopt the approach outlined in [35]
by utilizing a universal pruning threshold applied consis-
tently across all layers. This threshold is established based
on a percentile value among all scaling factors. For in-
stance, we prune channels by selecting those with lower
scaling factors, which is achieved by setting the percentile
threshold accordingly.

4.4. Evaluation Metrics

Performance: We use classification accuracy to measure
the performance of original and pruned models on the clean
dataset.
Natural Corruption Robustness: We report mean accu-
racy under corruption as a performance metric (mPC, see
Section 3.2.2) overall corruption types for each severity
level.
Uncertainty Calibration: To estimate the miscalibration of
the original and pruned model on the clean and corrupted
datasets, we use ECE (see Section 3.2.1) using equal-mass
binning with ten bins.
Compression: To examine the impact of pruning on the
other safety targets, we benchmark the three different prun-

ing methods from Section 3.1. The resulting compression is
measured in terms of their respective pruning ratio (Sec-
tion 4.3), which is sampled at a rate of 10% from val-
ues 0-70%, where 0% indicates the original network (un-
pruned).

5. Results
5.1. Does pruning affect uncertainty calibration?

To examine the impact of pruning on network uncertainty
calibration, we compared ECE and accuracy under differ-
ent pruning ratios for the three selected pruning techniques.
The results are shown in Figure 1 for weight, filter, and
channel pruning, respectively (we conduct each experiment
three times and report mean ± std).

The results suggest that even high pruning ratios do not
impact the uncertainty calibration compared to that of the
original unpruned model. In unstructured (weight) pruning,
the calibration error for all pruning ratios is less than the
calibration error of the original unpruned model. Hence,
unstructured pruning can even enhance the uncertainty cali-
bration of the VGG-19 and ResNet-110 model. Whereas, in
filter and channel pruning, the calibration error for pruned
models up to a certain pruning ratio (filter pruning: 50% on
VGG-16 and 50% on ResNet-110, channel pruning: 40%
on VGG-19 and 50% on ResNet-164) is less than or simi-
lar to the calibration error of the original unpruned model.
After that, the calibration errors of pruned models do not in-
crease substantially with respect to the calibration error of
the unpruned model.

5.2. Does pruning affect natural corruption robust-
ness?

To answer this question, the choice of pruning methods and
ratio are kept similar, as mentioned in Section 5.1, but natu-
rally corrupted data is considered as test data. Here, mPC is
measured for unpruned and pruned models for the selected
pruning methods from Section 3.1. mPC is calculated sep-
arately for each of the five corruption severity levels from
CIFAR-10-C, each pruning ratio step, and each pruning
method. Figure 2 illustrates how natural corruption robust-
ness is influenced by pruning for different severity levels for
weight, filter, and channel pruning, respectively.

The observation implies that the natural corruption ro-
bustness of weight pruned and filter pruned models, as as-
sessed through mPC , is better or similar compared to the
original unpruned model. Notably, the robustness against
natural input corruption remains unaffected by the weight
pruning of VGG-19, ResNet-110, filter pruning of VGG-
16, ResNet-110, and channel pruning of VGG-19 across all
severity levels. In contrast, for channel pruning, the mPC
of ResNet-164 starts to degrade from ca. 60% pruning ratio
for all corruption levels. Consequently, the robustness expe-



Figure 1. Comparing development of ECE (↓) (blue lines, left y-axis scaling) and accuracy (↑) (orange lines, right y-axis scaling) under
increasing pruning ratios

Figure 2. Development of mPC (↑) for increasing pruning ratios for five severity levels of corruption

riences deterioration with higher pruning rates for channel
pruning in the ResNet-164 model across all severity lev-
els. This suggests that information needed to compensate
for corruption is highly distributed over channels, i.e., wider
networks (in terms of the number of channels) might have
better chances of achieving zero-shot natural corruption ro-
bustness than narrow ones.

While the pruning ratio seems to play a negligible role
in accuracy in the presence of corruption, one should, how-
ever, note the severe drop in accuracy for increasing corrup-
tion severity levels (from more than 90% without corruption
in Figure 1 down to less than 55%). This attests to the gener-
ally weak overall robustness of CNNs against strong natural
corruption.



Figure 3. Development of ECE (↓) for increasing pruning ratio for five severity levels of corruption

5.3. Does pruning impact uncertainty calibration in
the presence of natural corruption?

Here, ECE is measured for unpruned and pruned mod-
els using the different pruning methods from above in the
presence of natural corruption of different severity levels.
Figure 3 illustrates how the uncertainty calibration is influ-
enced by pruning in the presence of natural corruption for
weight, filter, and channel pruning, respectively.

The results demonstrate that pruning does not nega-
tively impact the model uncertainty calibration compared to
the original unpruned model, even when additionally con-
fronted with natural corruptions. In weight, filter, and chan-
nel pruning, the measured calibration error for all pruned
models at different pruning ratios is similar to or less than
the calibration error of the original unpruned VGG-19,
VGG-16, ResNet-110 and ResNet-164 models for all five
severity levels of corruption. Nevertheless, as for mPC ,
ECE increases rapidly with increasing severity levels and
worse mPC , reaching more than 400% increase of ECE
for the highest level. Hence, natural corruptions seem not
only to pose a challenge to robust accuracy but also to trust-
worthiness in terms of uncertainty calibration.

6. Conclusion
For safety-critical computer vision applications, model ef-
ficiency, proper uncertainty calibration, and natural corrup-
tion robustness are—and will be—the key desirables. This
work, for the first time, investigated whether popular post-
hoc pruning as a means for model compression conflicts
with the other two safety targets. Our benchmark with
a standard setup of model, dataset, and post-hoc pruning

methods provided promising insights into this: we could
not find a negative effect of pruning on natural corruption
robustness and uncertainty calibration; calibration was not
even affected by pruning when challenged with naturally
corrupted inputs. Our considered post-hoc unstructured
pruning method showed a consistently positive effect on un-
certainty calibration even when pruning up to 70%. While
our results on typical image classification backends do not
yet cover the whole spectrum of computer vision tasks and
architectures, they raise hope that accuracy-driven pruning
does not contradict but even enhances other safety targets.
Future work includes extending our investigation to costly
experimental setup tasks like object detection and semantic
segmentation.

Further research in the realm of safe pruning could
explore tailored safety objectives, such as the impact
or chances of pruning for interpretability and out-of-
distribution generalization and detection capabilities [63].
Such endeavours hold promise for advancing safety metrics
in pruning practices.

We aim to raise awareness of cross-discipline safety
challenges in model compression, uncertainty calibration,
and robustness, serving as an initial step towards exploring
common solutions.
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