2111.08274v1 [cs.LG] 16 Nov 2021

arxXiv

HADFL: Heterogeneity-aware Decentralized
Federated Learning Framework

Jing Cao!, Zirui Lian', Weihong Liu', Zongwei Zhu"!, Cheng Ji?
I University of Science and Technology of China, China
2 Nanjing University of Science and Technology, China
{congjia, ustclzr, Iwh2017} @mail.ustc.edu.cn, zzw1988 @ustc.edu.cn, cheng.ji@njust.edu.cn

Abstract—Federated learning (FL) supports training models
on geographically distributed devices. However, traditional FL
systems adopt a centralized synchronous strategy, putting high
communication pressure and model generalization challenge.
Existing optimizations on FL either fail to speedup training
on heterogeneous devices or suffer from poor communication
efficiency. In this paper, we propose HADFL, a framework that
supports decentralized asynchronous training on heterogeneous
devices. The devices train model locally with heterogeneity-aware
local steps using local data. In each aggregation cycle, they are
selected based on probability to perform model synchronization
and aggregation. Compared with the traditional FL system,
HADFL can relieve the central server’s communication pres-
sure, efficiently utilize heterogeneous computing power, and can
achieve a maximum speedup of 3.15x than decentralized-FedAvg
and 4.68x than Pytorch distributed training scheme, respectively,
with almost no loss of convergence accuracy.

Index Terms—Distributed Training, Machine Learning, Fed-
erated Learning, Heterogeneous Computing

I. INTRODUCTION

Traditional Artificial Intelligence (AI) applications, for ex-
ample, medical image recognition models, are trained by third-
party organizations using data collected from medical centers,
which requires high computing power. Besides, due to the
privacy characteristics of medical images, the data available
to them is often very limited and outdated.

One alternative method is to leave the privacy-sensitive data
in local devices or data centers, train the model locally, and
then transmit only the privacy-insensitive model parameter to
perform model aggregation. Federated Learning (FL) [[1] can
address the aforementioned communication pressure. In FL
system, selected active devices calculate multiple iterations
(i.e. local steps) locally based on the local data. Then, they
synchronously transmit the model parameters to the central
parameter server to perform model aggregation using Feder-
ated Average (FedAvg) algorithm [?2].

However, there are still three challenges in federated learn-
ing. 1) The system configuration of different devices may
differ due to variability in CPU, GPU, memory, and so on.
The unbalanced computing power of devices can exacerbate
the straggler problems [3]] and cause some nodes to fall
behind seriously. In synchronous parameter iteration strategies
as FedAvg adopts, nodes with slow calculation speed will drag
down the global iteration pace. 2) Although the FL framework

* Corresponding author.

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

reduces communication frequency during training, the com-
munication volume is still very huge. The centralized model
aggregation strategy of FedAvg can put great communication
and computation pressure on the central server, leading to poor
scalability and communicational bottleneck. 3) The geographic
distribution of devices tends to be extensive, which brings high
communication unreliability. If the system cannot handle the
suddenly disconnected device well, its performance will suffer
a great loss.

There are many efforts that seek to optimize the FL system.
In order to solve the impact of inconsistent calculation pace on
synchronous FedAvg, some optimizations aim at asynchronous
model aggregation [4]. However, parameters on laggard nodes
are stale and can bring incorrect convergence or increased
iterations [5]]. Some research [6] [7] conduct weighted model
aggregation to reduce the impact of straggler devices by
assigning lower weight to devices with stale parameters. The
weight of too stale parameters can be too low, resulting in
almost no contribution to the model but the wasted commu-
nication and computation time. What’s more, they all adopt
a centralized model synchronization and aggregation method,
which can put great communication pressure when there are
massive devices. In terms of decentralized FL, gossip com-
munication [8] [9] [[10] can achieve fully decentralized design
with no additional system management overhead. However,
they all assume that the devices are homogeneous, and aggre-
gate model synchronously, which is not suitable for training
model on heterogeneous devices.

In this paper, we focus on solving the impact of the het-
erogeneous device computing power on traditional centralized
FL systems and propose a heterogeneity-aware decentralized
federated learning framework (HADFL). HADFL supports
running different local steps asynchronously according to
devices’ computing power. It adopts a version-sensitive proba-
bilistic partial model aggregation scheme to reduce the impacts
of straggler devices on model convergence. What’s more, it
adopts a decentralized point-to-point communication method,
which can eliminate the communication pressure of the central
server without increasing the overall communication volume.
To the best of our knowledge, this study is the first that
fully considers gossip-based decentralized federated learning
on heterogeneous devices. Our experiments show that it can
achieve a maximum speedup of 3.15x than decentralized-
FedAvg [11] and 4.68x than Pytorch distributed training

» » »

FedAvg |

»

» »
= =
= =

Distributed :l
training :l

»
=
=

HADFL D

=) : Communication and model aggregation

: Time required for taining one local step.

Fig. 1. The comparison of distributed training, FedAvg and HADFL. There
are three devices, and their computing power ratio is 4:2:1.

scheme [[12]], respectively, with almost no loss of convergence
accuracy. The main contributions of this paper are as follows:

« We propose a heterogeneity-aware asynchronous local
training algorithm, which allows heterogeneous devices to
run different local steps before model aggregation. A dy-
namic prediction function is used to predict the parameter
versions according to historical operating information, to
have good guidance during long-term operation.

o A decentralized model aggregation strategy is adopted.
Devices communicate with each other to transfer model
parameters. During model aggregation, to reduce the
negative impacts of straggler devices, we propose a
probability-based selection method, which not only does
not waste the efforts of straggler devices but also can
utilize the noise brought by them for faster training.

o The HADFL framework fully considers the unreliability
of the network connection during operation and adopts a
fault-tolerant parameter synchronization scheme.

II. BACKGROUND AND MOTIVATION
A. Model Training

The model training process can be divided into three phases:

1. Forward propagation. Calculate output according to the
current model parameters using a batch of data.

2. Backward propagation. Calculate the loss between the
calculated output and the expected output, and calculate
gradients of the loss to each model parameter.

3. Model update. Update model parameters using the gradi-
ents, fetch another batch of data, and repeat the above steps.

We define it an iteration to process a batch_size of data,
and an epoch to process all samples in the training data set
once, which typically contains several iterations. What’s more,
the training typically requires multiple epochs.

The training purpose is to minimize the loss, i.e.
min%Zf\;l f(x;,w), where w is the model parameters,
f(x,w) is the loss function, x; is the i-th train sample, and
N is the total number of samples in the training set. If there
are K > 1 devices training cooperatively, the model update
process can be expressed as

W1y = W) — I 7y Sohet Somep, V(@i wiy) (D)

where lr(t) > 0 is the learning rate, Pk is the mini-batch of
training data of device k, and B is the batch_size. For sim-
plicity, we assume that each device has the same batch_size.

Algorithm 1 Heterogeneity-aware Local Training.

Input: the initial model w gy, the batch_size B, Ir(), training data
on k-th device P¥, Tsyne, local step Ej, available devices
{Naui}, Flag®, total epochs Tiotas

Output: the trained model.

1: synchronize the initial models wfo) = w for k € {Ngwi}

2t toyn =0

3: for t =1 to Tio1q; do

4: for all k£ € { N, } do in parallel

5: for e, =0 to Ej do

6: if t > Tosynctsyn then

7: er =0

8: tsyn = tsyn +1

9: /I partial synchronization

10: Wit = Soiey Flag® x wéct)ﬂg,c

11: /I global synchronization

12: send w;41) to devices whose Flagk =0
13: else

14: t=t+1

15: sample a mini-batch from Pf’t)

16: compute thc;, gradient:

17: géct)_g_ek =B xiEP‘("t)_'_% Vf(:cz, w(t>+ek)
18: update the local model:

19: wéct)+ek+1 = wé“tHEk - lr(t)gé“tHEk,l

B. Federated Learning

In FL, devices transmit model parameters to the server every
FE local steps. Then, the server executes model aggregation.
The local steps of different devices are the same.

Assuming that P* contains nj, samples, the training purpose
becomes

K oy,
mind g R s, ept n*lkf(wu w) 2)

The training process becomes [13]:

1
w?t)+e+1 = wégt)Jre —lrys EzieP" V (@i, wiype) ()

(e
K
W(t+1) = % pIy w?t)+E 4)

where wé“t) 4 denotes the parameter on device k after ¢ com-

munication rounds and e local steps. Formula represents
the local update on local devices and formula (4)) represents the
global model aggregation on central server. Since the gradient
size equals to model parameter size, the server needs to
communicate data of 2 x M x K x epoch_num/E size during
training, where M is the model size. The total communication
volume of devices is 2 x K x M.

C. Heterogeneity-aware Asynchronous Federated Learning

FL assumes that the devices are homogeneous. When ap-
plied to heterogeneous devices, fast devices need to wait for
slow devices, causing wasted computing power of fast devices.

To solve this problem, in this paper, we propose a
heterogeneity-aware asynchronous federated learning mech-
anism. Take an example, as shown in Figll] the devices
compute different steps locally during the hyperperiod (the
least common multiple of the training time each epoch of the
devices), and only aggregate model every Tsy,., which is a
positive integer, multiples of the hyperperiod.

t t,

Coordinator
Runtime Model
Supervisor Manager

Model Library

Cloud

mo
Local Data i

Dy
Disconnect

Liveness Strategy
Monitor Generator
Smart End /\
\
.

device 2

t]@ device 1 H a [|

o [d] [ara]e o [a
T

mu!tzd device 2 |—|32|b2|c2|111| [Jb Jo e

A
(s Halolole] & [» o4

1) 2) Scatter. device3 detects the
exception and issues a warning

3) Exception recovery

X
-

a

[borbitb, | o

[dtd, agtacta | botbiths | e, | dords agtagtas | bybitbs [rerres | drdied |

3

ata | b

Crreites | dyrditds atatas | bobtbs | reres | dyrdyrds |

devicen | 'group,

% b o 4

|
|
[Te
|

agtarta; | bith,

[ata | butbutb, [corerre | dordords |

| |

| el
= =] [T o D
o [| [aatarta; |b+b+b [cotertes [dgrdutas |

agtagtas | biby | corcyre; | dyrdieds

(a) Overall design of the HADFL framework.

4) Scatter

5) Gather 6) Gather

(b) Walkthrough example. Device 2 falls disconnected during work.

Fig. 2. The HADFL framework.

As shown in Algorithm [T} the training process and the local
update on local devices are the same as FL, but the global
model aggregation becomes:

W) = 5 Yooy Flagh x wly (5)

where E}, is the number of local steps of k-th device. Flagk =
1 if the k-th device is selected for model aggregation, and
Flagk = 0 if not.

III. HADFL FRAMEWORK

This section introduces HADFL, a framework that supports
decentralized model training on heterogeneous devices. It is
organized as follows: Section shows the overall design
of HADFL and the function of each component. Section
introduces the runtime parameter version prediction module.
Section[[II-C|shows how the heterogeneity-aware local training
strategy is generated. Section [[II-D] introduces the partial
model aggregation scheme and fault-tolerant strategy.

A. Overall Design

As shown in Fng (a), the HADFL framework consists of a
cloud coordinator and several devices. The cloud coordinator
performs initial model dispatch, training strategy generation,
runtime management, and model backup. It consists of four
components: runtime supervisor, liveness monitor, strategy
generator, and model manager. The devices are responsible
for training the model locally, reporting runtime information
to the coordinator, and updating the model.

The system workflow is as follows:

1. Before the start of each round, the liveness monitor module
of cloud coordinator first monitors the status of each device
and adds the available devices to this round of training.

2. After determining all available devices, strategy generator
sends training configuration (i.e. the initial model parame-
ters and training hyper-parameters) to devices.

3. Then, each device i enters the mutual-negotiation phase and
sends its calculation time T; in this phase to the coordinator,
which can reflect its computing power.

4. The strategy generator determines the training configu-
ration, including the local step E;, the synchronization
period Ty, and partial synchronization topology using
the distribution of 7}, expected parameter version and the
probability-based selection function. The design details of
strategy generator will be introduced in section [[II-C}

5. Each device conducts local training asynchronously accord-
ing to the training configuration information.

6. Model synchronization. After reaching Ty, devices con-
duct partial model synchronization according to the topol-
ogy given by the coordinator and broadcast the synchro-
nized model to the other devices in a non-blocking way.

7. Dynamic configuration update. The runtime supervisor
collects devices’ parameter version in each communication
round, predicts the parameter version distribution in the
next round (the design details will be introduced in section
I1I-B), and sends it to the strategy generator to generate
the new training configuration.

8. Repeat the step (4) to (7) until the model converges.

9. Model backup. The model manager regularly fetches the
latest model and puts it in the database for backup.

B. Runtime information prediction

During the mutual-negotiation phase, the device 1) trains
Eyarm_up €pochs using a small learning rate, which can
alleviate the severe fluctuations caused by large loss of the
model prediction at the early stage of training and help to
maintain the stability of the model [14] [15]], and 2) sends its
calculation time in this phase to the coordinator.

Since the model calculated by each device and the
batch_size used are the same, the calculation time 7j is
inversely proportional to the i-th device’s computing power.
The coordinator then calculates the expected model version

ﬁi = dsync * Ti/Ewarm_up (6)

However, the system may be disturbed during training,
causing varying training time. As a result, the expected model

version should be updated using historical data dynamically.
The runtime supervisor collects devices’ actual parameter
version in each model synchronization round, and predicts the
expected model version in the next round using:

v;]]_m =a;; +bi;m where:
a; i = 211(1) — v(z)
7 i,j
by = 2 (o) Z o), @
”z(_]) =aw;; + (1 - O‘)Uz(,lj)—lﬁ
P) 1 2
vl(J) = ow(j) +(1- oz)vl(’j)fl

in which v; ; is the actual parameter version of the device i in
the j-th round, v; j4,, is the predicted version in the (j+m)-th
round, v,ﬁ? is the k-th order exponent of v; ;. 0 < o < 1 is
the smoothing factor, which indicates the weight of v; during

prediction. The larger «, the closer the predicted value to v;.

C. Heterogeneity-aware training strategy generation

Define the hyperperiod Hg as the least common multiple
of the one epoch training time of the devices, i.e. Hgp =
LCMZZ ' (T;/ Ewarm_up)- Nauvi 18 the total number of devices
available. Then, partial aggregation takes place every Ty, p.
multiples of Hp.

The strategy generator uses (§)), the probability-based se-
lection function, to determine the probability of each device
being selected. 1 is the 3rd quartile of all v; ;. Then, it selects
N,, devices to perform partial synchronization.

,3) = f(vag))/Z @' f(v(n,j)) where:
{f@:): f s p (~22) ®

The probability-based selection function can ensure that the
devices with newer parameters (i.e. larger v; ;) has a higher
probability of being selected, thereby reducing the influence of
straggler device’s parameters on model convergence. However,
the straggler devices should not be completely discarded,
otherwise, their computing power will be wasted. What’s
more, their parameters can bring some noise, thereby helping
the model to jump out of the local minimum and converges
more quickly. In addition, to balance the version differences of
all running devices, the devices owning medial versions have
a greater probability of being selected, rather than the devices
that have the latest parameters. After determining the selected
device, the strategy generator randomly determines a directed
ring as the partial synchronization topology.

If there are too many devices available, in order to facilitate
management and avoid possible system errors, the devices
can be divided into multiple groups, as shown in Fig[2] (a).
The inter-group synchronization period can be an integer
multiple of the intra-group synchronization period. They are
performed separately during the training process. The strategy
of inter-group synchronization is similar to that of intra-group
synchronization, as shown in Fig. 2] (b).

D. Model aggregation and fault-tolerant

The devices compute gradients and update model parameter
asynchronously during their local steps. After reaching the
synchronization time Ty, as shown in Fig@] (b), the selected
devices transfer parameters to each other in a gossip-based
scatter-gather manner (similar to [[12]), and perform partial
model aggregation and synchronization. Then, a random de-
vice in the partial synchronization topology, e.g. device 0
in Fig] (b), transmits the latest model parameters to the
unselected K — Np (typically < K/2) devices in a non-
blocking manner, which will integrate the received model
parameters with local parameters and conduct the next round
of local training. The total communication volume of devices
is 2 x K x M, which is the same as FL.

In order to avoid system errors caused by unstable network
connections, we propose a fault-tolerant mechanism. As shown
in Fig[)] (b), for example, device 2 falls disconnected during
work, causing its downstream device, device 3, cannot receive
parameters in model synchronization. After the pre-specified
waiting time, device 3 sends a handshake message to device 2
to confirm its status. After confirmation, it issues a warning to
device 1, the upstream of device 2. Then, device 1 will bypass
device 2 and communicate directly with device 3.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

Testing Platform Setting: We deploy HADFL framework
on four Nvidia Tesla V100 GPUs, which communicate with
each other using PCIE Express 3.0 x8. The CUDA version
is 10.0.130. We use the sleep() function to simulate different
degrees of heterogeneity and use an array to represent the
computing power ratio. For example, [2,1] means that the
computing power of GPU 0 is twice that of GPU 1.

Model and Dataset: Two CNN model are used as our
testing targets, namely, ResNet-18 [15] and vgg-16 [16].
The dataset is CIFAR-10 [17], which contains 60K 32 x
32 color images. The learning rate is as [15] adopts in
mutual-negotiation phase and 0.01 in other phase. The global
batch_size is 256, i.e. the batch_size on each GPU is 256/4 =
64.

Comparison benchmark: To exhibit the effectiveness and
superiority of our proposed HADFL framework, we adopt
two training schemes for comparison: (1) Distributed training
[12]. We choose the Pytorch distributed training scheme. It
uses a decentralized ring all reduce algorithm, and is widely
used in distributed training. (2) Decentralized Federated Av-
erage (Decentralized-FedAvg) [[11]. In Decentralized-FedAvg,
devices use a gossip-based method to transmit gradients to
peers and merge gradients from peers synchronously.

B. Results

We run comparative experiments on system with two kind
of heterogeneity distribution, [3,3,1,1] and [4,2,2,1]. The
training data is spilt on four GPUs. We choose two GPUs to
perform partial synchronization each time. The experiments
are repeated three times. The experimental results are shown

CIFAR-10 Resnet_18
0.0200

0.0175 |,

0.0150 | %,

0.0125

[3.3,1,1] HADFL, T_sync=8
[4.2,2,1] HADFL, T_sync=8

o o

Bo.0100
2

accuracy

0.0075

°

0.0050

0.0025

0.0000

20 20

a0 60
epoch

(a) Loss vs. epoch on Resnet-18.

CIFAR-10 Vgg_16

-~ [3,3,1,1] HADFL Worst Case, T_sync=8

0.030
0.025

0.020

o

0.015

loss
accuracy

°

0.010

0.005

0.000

(d) Loss vs. epoch on vgg-16.

Fig. 3.

CIFAR-10 Resnet_18

(b) Test accuracy vs. epoch on Resnet-18.

CIFAR-10 Vgg_16

—- [3.3,1,1] HADFL Worst Case, T_sync=8

(e) Test accuracy vs. epoch on vgg-16.

CIFAR-10 Resnet_18

accuracy

[4.2,2,1] HADFL, T.

500 1000 1500 2000 2500 3000 3500 4000
epoch time(s)

(c) Test accuracy vs. time on Resnet-18.

CIFAR-10 Vgg_16

°
@

accuracy
o

o

[3,3,1,1] Distri

ized-FedAvg, E=8
ized-FedAvg, E=8
c=8

[4,2,2,1] HADFL, T_sync=8

£ 100

560

1000 1500 2000 2500 3000 3500 4000

o £
epoch time(s)

(f) Test accuracy vs. time on vgg-16.

The experimental results.

TABLE I
TIME REQUIRED TO REACH THE MAXIMUM TEST ACCURACY

ResNet-18 [3,3,1,1] ResNet-18 [4,2,2,1] vgg-16 [3,3,1,1] vgg-16 [4,2,2,1]

accuracy time accuracy time accuracy time accuracy time
Distributed training 91% 2431.38 s 91% 4076.28 s 87% 1349.73 s 87% 1791.36 s
Decentralized-FedAvg 91% 1699.05 s 91% 2747.12 s 86% 1952.01 s 86% 2424.12 s
HADFL 90% 805.00 s 91% 871.50 s 86% 794.02 s 86% 1324.04 s

in Fig. 3] In addition, we record the average time required to
reach the maximum test accuracy, as shown in Table

The convergence speed: As shown in Fig. 3] (c), (f)
and Table [} thanks to the heterogeneity-aware asynchronous
strategy, HADFL converges faster than the other two schemes.
When training ResNet-18, it achieves 3.02x speedup over
distributed training and 2.11x speedup over decentralized-
FedAvg in heterogeneous distribution of [3,3,1,1], as well
as 4.68x speedup over distributed training and 3.15x speedup
over decentralized-FedAvg in heterogeneous distribution of
[4,2,2,1], respectively. When training vgg-16, it achieves
1.70x speedup over distributed training and 2.46x speedup
over decentralized-FedAvg in heterogeneous distribution of
[3,3,1,1], as well as 1.35x speedup over distributed training
and 1.83x speedup over decentralized-FedAvg in heteroge-
neous distribution of [4, 2, 2, 1], respectively. It’s worth noting
that when training vgg-16 on decentralized-FedAvg, it needs
more time to converge than distributed training. This is be-
cause the local update is conducted on the local model, which
is slightly outdated and can bring loss of accuracy. As a result,
it requires more epochs to converge. HADFL also suffers this
accuracy loss.

The accuracy loss: As shown in Fig. 3] (a), (b), (d) and
(e), under the same epoch number, the loss of HADFL is a
little bit larger than the other schemes, which is caused by our
partial synchronization and local update strategy. In [4, 2, 2, 1]
heterogeneity distribution, HADFL suffers a slight drop in
accuracy every epoch. However, it can also reach almost the
same converge test accuracy as the other two schemes. By
allowing more GPUs to participate in partial synchronization,

the training effect can be better, which is because the waste
of efforts on unselected devices is less. What’s more, the
mutual-negotiation phase can make HADFL more stable at
the beginning of training, as shown in Fig. 3] (e) and (f).

Upper bound of accuracy loss: The accuracy loss caused
by HADFL has an upper bound. To prove this, we manually
specify that during local synchronization, only the two GPUs
with the worst computing power are selected each time,
and run experiments on GPUs of [3,3,1,1] heterogeneity
distribution. As shown in Fig. EL in the worst case, the loss
and accuracy fluctuate greatly during the training process,
achieving 86% accuracy on ResNet-18 and 76% accuracy
on vgg-16. This is because only the local data on GPU 2
and GPU 3 are available for model update, and the data on
GPU 0 and GPU 1 is wasted for they cannot participate in
model aggregation. However, the theoretically probability of
this taking place is only (% x &)Pochtoral/Teune (epcohyopa i
the total number of epochs during training), which infinitely
approaches 0.

V. RELATED WORK
A. Decentralized Federated Learning

There is some work using blockchain to design decentral-
ized FL systems [18] [19], however, the management of the
blockchain can bring additional delays. One alternative design
is to use gossip communication. A. Lalitha et al. [[10] and I.
Hegedds et al. [11]] propose a fully decentralized FL scheme in
which devices communicate with their neighbours to perform
model synchronization. However, this scheme assumes the net-
work is strongly connected, which is not applicable in actual

application scenarios with the unstable network connection.
To solve this problem, [8] and [9] adopt a segmented gossip
approach. The model is split into S’ segmentations, each device
is responsible for one segmentation, and sends it to the other
R devices.

Unfortunately, the above work all adopt a synchronized
parameter synchronization and aggregation strategy. If applied
to heterogeneous systems, devices with slow calculation speed
will slow down the training.

B. Federated Learning on Heterogeneous Devices

M. R. Sprague et al. [4] propose to let devices pass the
parameters to the server for model aggregation immediately
after completing the calculation without waiting for slow
devices [5]. However, parameters on straggler devices may
be too stale and can bring incorrect convergence or increased
iterations. W. Wu et al. [20] divide devices into three states:
latest, deprecated and tolerable according to their model ver-
sion, and only the latest and deprecated devices are allowed
to read new global model from the server. In [[6] and [7],
weighted model aggregation is proposed. Devices with stale
parameters are assigned lower weight. However, the weight
of too stale parameters can be too low, resulting in almost no
contribution to the model but the wasted communication and
computation time. Y. Chen et al. [21] and E. Diao et al. [22]]
put different layer structures on heterogeneous devices. This
approach relies on communication robustness and can perform
poorly in systems with a large amount of devices. T. Nishio
et al. [23]] consider using device selection to meet the stale
bound, which can cause devices with poor computing power
to never be selected.

However, the above work all adopt a centralized model
synchronization and aggregation method, which can put great
communication pressure when there are massive devices. In
this paper, we combine the design ideas of decentralization
and asynchronous training and propose a version-based prob-
abilistic device selection scheme. Our framework can alleviate
the straggler problem without discarding the efforts of slow
devices as well as reduce communication.

VI. CONCLUSION AND FUTURE WORK

The HADFL framework we propose can support decen-
tralized training on heterogeneous devices efficiently. Our
experiments show that it can achieve a maximum speedup
of 3.15x than decentralized-FedAvg and 4.68x than Pytorch
distributed training scheme, respectively, with almost no loss
of convergence accuracy.

In the future, we will deploy the HADFL framework on
larger-scale systems, and optimize it by taking into account
heterogeneous network bandwidth and data distribution.

ACKNOWLEDGMENT

This work was supported by the China Postdoctoral
Science Foundation (No. 2020M671637), National Science
Youth Fund of Jiangsu Province (No. BK20190224, No.
BK?20200462), and the Jiangsu Postdoctoral Science Founda-
tion (No. 2019K224).

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273—
1282.

J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74-80, 2013.

M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2018, pp. 21-28.

H. Yu, Z. Zhu, X. Chen, Y. Cheng, Y. Hu, and X. Li, “Accelerating
distributed training in heterogeneous clusters via a straggler-aware
parameter server,” in 2019 IEEE 21st International Conference on High
Performance Computing and Communications (HPCC). 1EEE, 2019,
pp. 200-207.

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

X. Lu, Y. Liao, P. Lio, and P. Hui, “Privacy-preserving asynchronous
federated learning mechanism for edge network computing,” [EEE
Access, vol. 8, pp. 4897048981, 2020.

C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.
J. Jiang and L. Hu, “Decentralised federated learning with adaptive
partial gradient aggregation,” CAAI Transactions on Intelligence Tech-
nology, vol. 5, no. 3, pp. 230-236, 2020.

A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized
federated learning,” in Third workshop on Bayesian Deep Learning
(NeurIPS), 2018.

I. Hegedds, G. Danner, and M. Jelasity, “Decentralized recommendation
based on matrix factorization: A comparison of gossip and federated
learning,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2019, pp. 317-332.

A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large
mini-batches, use local sgd,” in International Conference on Learning
Representations, 2019.

A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher, “A closer look at
deep learning heuristics: Learning rate restarts, warmup and distillation,”
in International Conference on Learning Representations, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 and cifar-100 datasets,”
[EB/OL], http://www.cs.toronto.edu/~kriz/cifar.html| Accessed Novem-
ber 11, 2020.

S. R. Pokhrel and J. Choi, “A decentralized federated learning approach
for connected autonomous vehicles,” in 2020 IEEE Wireless Commu-
nications and Networking Conference Workshops (WCNCW). IEEE,
2020, pp. 1-6.

Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and Y. Liu,
“Privacy-preserving blockchain-based federated learning for iot devices,”
IEEE Internet of Things Journal, 2020.

W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “Safa: a semi-
asynchronous protocol for fast federated learning with low overhead,”
arXiv preprint arXiv:1910.01355, 2019.

Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE Transactions on Neural Networks and
Learning Systems, 2019.

E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and commu-
nication efficient federated learning for heterogeneous clients,” arXiv
preprint arXiv:2010.01264, 2020.

T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). 1EEE, 2019, pp.
1-7.

http://www.cs.toronto.edu/~kriz/cifar.html

	I Introduction
	II Background and Motivation
	II-A Model Training
	II-B Federated Learning
	II-C Heterogeneity-aware Asynchronous Federated Learning

	III HADFL Framework
	III-A Overall Design
	III-B Runtime information prediction
	III-C Heterogeneity-aware training strategy generation
	III-D Model aggregation and fault-tolerant

	IV Experimental Evaluation
	IV-A Experimental Setup
	IV-B Results

	V Related Work
	V-A Decentralized Federated Learning
	V-B Federated Learning on Heterogeneous Devices

	VI Conclusion and future work
	References

