
HAL Id: hal-00661337
https://hal.science/hal-00661337v1

Submitted on 19 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA Dynamic Reconfiguration using the RVC
Technology: Inverse Quantization Case Study

Manel Hentati, Yassine Aoudni, Jean François Nezan, Mohamed Abid, Olivier
Déforges

To cite this version:
Manel Hentati, Yassine Aoudni, Jean François Nezan, Mohamed Abid, Olivier Déforges. FPGA
Dynamic Reconfiguration using the RVC Technology: Inverse Quantization Case Study. Conference
on Design and Architectures for Signal and Image Processing (DASIP), Nov 2011, Tampere, Finland.
pp.CD. �hal-00661337�

https://hal.science/hal-00661337v1
https://hal.archives-ouvertes.fr

FPGA DYNAMIC RECONFIGURATION USING THE RVC TECHNOLOGY: INVERSE
QUANTIZATION CASE STUDY

Manel Hentati1,2 , Yassine Aoudni 2 , Jean-François Nezan1, Mohamed Abid 2 and Olivier Deforges1

1 INSA/IETR, 20, av des Buttes de coesmes CS 14315 F-35043 RENNES, France
2 ENIS/CES, Route Soukra B.P. 1173, 3038 Sfax, Tunisie

ABSTRACT
With the rapid evolution of technology, the latest FPGA
architectures such as Virtex series of Xilinx introduced a
new feature called Dynamic Partial Reconfiguration (DPR).
This technique allows designer to configure a portion of
the FPGA while other parts continue to run on the same
FPGA. The design of an embedded system based on the DPR
functionality is still complex and tedious. The MPEG con-
sortium proposes the Reconfigurable Video Coding (RVC)
technology. RVC provides a high level description of video
decoders described as a set of interconnected Functional
Units . This paper studies the use of the RVC technology
for the specification of an application and the design of a
system based on the DPR functionality. In this paper, we
study the Inverse Quantization (IQ) algorithm of an MPEG-
4 decoder and how to switch between the MPEG-2 and the
H263 IQ algorithms using RVC and DPR. This simple and
concrete case study highlights the DPR restrictions to take
into account in MPEG RVC description in order to use the
DPR.

Index Terms— MPEG-RVC, Dynamic Partial Reconfig-
uration, Inverse Quantization, RVC-CAL language, FPGA,
RVC framwork.

I. INTRODUCTION
Multimedia processing becomes more and more important

with wide variety of applications. So the video standards
Such as ITU-T H.261, H.263, ISO/IEC MPEG-1, MPEG-
2 and MPEG-4 can’t satisfy the need of the embedded
systems’designers. Indeed, these standards suffer from lack
of re-usability and generality of the code provided by the
standard (usually a C/C++ monolithic specification). Moving
Picture Expert Group (MPEG) proposes a new standard
which is RVC [1]. This standard aims at providing a unified
high-level specification of current and future MPEG video
coding technologies by using dataflow models. This standard
offers the means to overcome the lack of interpretability
between the many video codecs deployed in the market.
RVC is based on a dataflow-oriented language called RVC-
CAL [12] which is a subset of the original CAL ”Caltrop
Actor Language”. This language is a textual and domain
specific language for writing dataflow models. RVC-CAL

is supported by several tools including OpenDF [20] for
the simulation, CAL2HDL [17][18] and ORCC [19] for the
automatic code generation (C, HDL, LLVM ...).

In order to implement an application from a dataflow
description, we use FPGA technology. This later offers a
great balance between performance, parallelism, and cost.
Besides, the last generation of FPGA from Xilinx provides
DPR. This technique has prominent advantages such as the
ability to change hardware,less reconfiguration time and
hardware sharing. DPR of FPGA seem to be a promising
approach in the future, that is why we study this technology.

In this paper, we investigate the use of DPR in the RVC
context. As far as we know, there are not many papers
published concerning the use of this technique in the RVC
technology.

In our work, DPR is applied on the IQ of a MPEG-4
decoder. In fact, this decoder provided by the RVC group
only supports H263 IQ. We first add the MPEG-2 IQ
algorithm in RVC-CAL and we use the CAL2HDL code
generator to transform IQ algorithm from RVC-CAL to
hardware description. After that we implement these two
modules in reconfigurable platform from Xilinx using DRP.

In the remainder of this paper, Section 2 presents the
context, Section 3 describes these two inverse quantization
modules, Section 4 exposes the implementation of our appli-
cation in FPGA using DPR in the RVC framework and the
experimental results, the Section 5 presents the discussion
of our work. Section 6 concludes the paper.

II. CONTEXT

This section presents a study on the MPEG-RVC and DPR
technique.

II-A. MPEG RVC
MPEG RVC aims to provide a framework to define a

multitude different codecs by combining together blocks,
named functional unit (FU) from a standard video tool
library (VTL) [13]. This standard has been standardized by
MPEG as the part of MPEG-B and MPEG-C standards.
But it is still evolving. The MPEG-C standard[10] presents
the library of video coding tools employed in existing
MPEG standards. And the MPEG-B standard [14] presents

the overall framework and the standard languages used to
describe the different components of the framework.

In the RVC framework, a decoder is formed by a set of
FUs and a decoder description. The Figure 1 illustrates the
structure of a RVC decoder

MPEG RVC Decoder

Video Tool
Libraries

MPEG VTL

Coded
video data

Decoder
description Decoded

video data

Fig. 1. Structure of MPEG RVC decoder

FUs define a processing entity of a decoder. It may
be from MPEG VTL or/and other video tools libraries. It
is described in RVC-CAL language. A FU contains some
processing units, control units and input and output ports

in [12] authors define a reconfigurable video with two
types of data. The first one is the bit stream syntax descrip-
tion (BSD), which describes the structure of the bitstream.
The BSD is written in RVC-BSDL. The second one is the FU
network description (FND), which describes the connections
between the FUs. The FND is written in FNL. The RVC
framework is supported by several tools to secure efficient
development, reconfiguration, and implementation processes.
These tools are capable to directly synthesize the RVC
decoder into both Hardware Description Languages (HDL)
and/or software description(e.g., C, C++).

Several works discussed the implementation in RVC
framework using reconfigurable platform.

In [16] the authors present a method to quickly prototype
and generate hardware implementation of a baseline part of
the LAR coder, from an RVC-CAL description.

Co-design approach is used in paper [5] to implement
MPEG-4 decoder SP that is described in RVC-CAL.

In this paper [15] the authors propose a model of imple-
mentation a motion estimation module in the RVC context.

In our work, we propose an optimal implementation of
H263 and MPEG-2 IQ algorithms using DPR.

II-B. FPGA Partial Reconfiguration
The last generation of FPGA from Xilinx adds a new

technique called Dynamic Partial Reconfiguration (DPR).
DPR provides the modification of a portion of the device
while the rest remains unchanged and active. The Figure 2
shows a reconfigurable FPGA structure.

This technique can provide some benefits.
• Increase in functionalities of a single FPGA.

Static
part

Dynamic
part

1

Dynamic
part

2

Dynamic
part

Dynamic
part

3

FPGA

4

Fig. 2. A partially-reconfigurable FPGA

• Improve FPGA area efficiency
• Augment architectures flexibility [3]
• Reduce power consumption [4]

However, it has two drawbacks. The first one is the reconfig-
uration time(latency) and the second one is the lack of design
tools and documentations. The most used partially reconfig-
urable FPGAs are the Xilinx Virtex series devices such as
Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5 and Virtex-6. A
reconfigurable system typically comprises an area for static
system components and one or more partial reconfigurable
region for dynamic reconfigurable modules.

The dynamic partial reconfiguration is used in the different
domains such as security, networks, and image processing.

In [6] authors presents hardware/software implementation
of AES (Advanced Encryption Standard) cryptography algo-
rithm using partial dynamic reconfiguration technique. The
proposed architecture is based on a Microblaze processor
that manages the reconfigurable module. It allows to modify
or/and change the size of the key without stopping the
normal operation of the system. The experimental results
show performance of the AES algorithm in terms of security
and safety.

The paper [7] proposes a methodology and modular
architecture to implement situation-based reconfiguration in
Wireless Network using partial reconfiguration technique.
This main advantage of this work appears in the reduction
of power consumption and saving cost.

In the reference [8], the authors present the implemen-
tation for a scalable H.264/AVC deblocking filter using
partial reconfiguration System. The adopted architecture is
based on Xilinx Virtex-4 ML410 FPGA board. The results
show performance in terms of maximum frequency and
throughput.

We notice that DPR is more and more used, so this
technique is a promise solution to design a preferment
embedded system. But, there is not much research on how
efficiently use DPR to implement an algorithm which is
described in a high-level specification language such as
RVC-CAL.

III. INVERSE QUANTIZATION
Inverse quantization is an important step in the video

decoding process. Essentially, the inverse quantization al-
gorithm reproduces the DCT coefficients computed by the
encoder. There are two inverse quantization methods spec-
ified for MPEG4 video. The first one uses matrix called
MPEG-2 inverse quantization and the second one is based
on scalar coefficient named H263 inverse quantization.

MPEG-2 inverse quantization method [9] (shown in Fig-
ure 3) introduces matrix as a weighting factor in the process.
In fact, different matrix for intra and inter blocks are used.
The purpose of this method is to exploit properties of the
human visual system. When human eyes are less sensitive
to low frequencies, which can be quantized with a coarser
step-size compared to important frequency. The result of
quantization method gives a coded bit-stream more compact
with minimal distortion to the picture.

 Matrix

Data

MPEG2_Quant

DC

AC

QP

Fig. 3. Inverse quantization MPEG-2 diagram

H263 inverse quantization method [9] is based on the
calculation of scalar. Figure 4 shows the H263 inverse
quantization diagram. The scalar is delivered by the standard
H263. This method is easy and simple.

H263_Quant

Data

DC

AC

QP

Fig. 4. Inverse quantization H263 diagram

We note that these methods of inverse quantization have
the same structure except the first one that has an input
”Matrix” in extra.

In our work, we adopted the default quantization matrix
defined in [2].

IV. IMPLEMENTATION & RESULTS
In this section, we present a design method for implemen-

tation of two IQ algorithms using DPR.
To implement two reconfigurable modules on the same

place, they must have the same inputs / outputs. According

22212019

21201918

20191817

19181716

27262423

25242322

24232221

23222120

27252423

26242322

24232221

23222120

33313028

31302827

30282726

28272625

24232221

23222120

21191817

2118178

32302826

30282624

28272523

27252321

32302827

30282625

28262423

26242322

45413835

41383532

38353230

35323028

to the study on these IQ algorithms, MPEG-2 IQ and H263
IQ haven’t the same number of inputs. Therefore, we must
add an interface and encapsulate the IQ algorithm in this
interface. the number of interface inputs should be equal
to the maximum of MPEG-2 IQ inputs number and H263
IQ inputs number. The general structure of the inverse
quantization is shown in Figure 5.

Inverse

Quantization

AC

DC

QP

DATA

Quant_

Matrix

Fig. 5. The general structure of the inverse quantization

In our design method, we first add the MPEG-2 IQ
algorithm to MPEG-4 decoder. Than we modify the H263 IQ
algorithm. Finally we implement these two modules using
DPR.

In order to add the inverse quantization MPEG2 to MPEG-
4 decoder we follow three steps:

1) The description of MPEG-2 IQ as a dataflow program
with the RVC-CAL language.

2) The generation the code in C language with an open
source tool named ORCC ”Open RVC-CAL Com-
piler”.

3) The test C code with Microsoft visual C++ using a
test video sequence.

After testing the decoder and verifying that is running
correctly for both inverse quantization methods, we can au-
tomatically transform the code in hardware description using
CAL2HDL. The code generated is formed by VERILOG
files that present the actors and a VHDL file for top. The
top file defines the highest hierarchical representation of
the design connections. The connection between the FUs
is insured by synchronous or asynchronous FIFO buffers.

IV-A. Target platform
Our application has been tested and implemented in the

architecture which is defined in [21]. Figure 6 illustrates our
target architecture

Clock

Generator

DLMB

MB LMB

Compact

Flash

HWICAP
Module

Reconfigurable

System

ACE
UART

MB_PLB

Proc_

system_reset
MDM ILMB

Fig. 6. Target architecture

The main parts of this architecture are:
• The processor Microblaze (MB) manages the imple-

mentation of reconfigurable modules.
• The Flash memory stores bitstreams partially reconfig-

urable.
• HWICAP (Hardware Internal Configuration Access

Port) loads partial bitstream from flash memory . this
component is provided by Xilinx. It has 32-bits data
port and operating at 100 MHz.

• The bus PLB (Processor Local Bus) transfers data
between peripherals.

• UART provides serial communication between PC and
FPGA.

• The LMB is a fast local bus for connecting MicroBlaze
instruction and data ports to high-speed peripherals. It
is the standard communication bus for Xilinx systems.

• The reconfigurable module is inverse quantization.

IV-B. The implementation of two inverse quantization
modules

Applying the flow of partial reconfiguration to Xilinx
FPGAs requires design tools and methodologies that exploit
the partial reconfiguration capabilities. Xilinx proposes this
set of tools: synthesis tool like Xilinx ISE (Integrated Syn-
thesis Environment), PlanAhead provides friendly graphical
interface for placement/routing jobs, EDK (embedded devel-
opment kit) helps to build an on-chip system.

We verify the functionality of our design using the Xilinx
Virtex-5 development board. This board has several pe-
ripheral devices and connectors such as FLASH, DDRAM,
UART, JTAG, VGA and other peripherals which allow
implementation of complex FPGA applications. The core of
the board is Xilinx virtex-5 lx110tff1136 FPGA in which
the Microblaze soft-core processor is implemented. The
Microblaze is a 32-bit RISC embedded [22] processor. In
this approach, to commute from one reconfigurable module
to another, we need a unit of control to manage efficiently
the partial reconfiguration. And to define the reconfigurable

partition region in the FPGA, we should know the occupied
area by each IQ module. To validate the efficiency of
partial reconfiguration technique in the RVC technology,
we compare the area occupied, maximun frequency, power
consumption and design time of an architecture with DPR
and anothor one without DPR . In the first time, we have
implemented the inverse quantization algorithm in the virtex-
5 (XC5LX110T) board and virtex-4 (XC4VFX12) board of
Xilinx The synthesis results are summarized in the Table I.
this results, we allow to know the value of the area required
for each module reconfigurable. The IQ H263 module and
QI-MPEG-2 the module correspond at inverse quantization
H263 and MPEG-2 algorithms, respectively. IQ MPEG2-
H263 module contains two types of inverse quantization
H263 and MPEG-2. To switch between these two modules
we add a loop ”if” in the CAL file

Table I. On-chip area results

FPGA Resource XC5LX110T XC4VFX12

IQ H263 Slices 83\69120 83\69120

Flip Flop 19\140 83\69120

DSP 1\64 1\32

LUTs 76\69120 96\69120

IQ MPEG2 Slices 122\69120 99\69120

Flip Flop 57\140 123\69120

DSP 2\64 2\32

LUTs 133\69120 123\69120

IQ MPEG2- Slices 152\69120 123\69120
H263

Flip Flop 87\140 143\69120

DSP 2\64 2\32

LUTs 182\69120 202\69120

We note that MPEG-2 IQ uses more area than H263 IQ.
Because the computation of MPEG-2 IQ is more complex.

According to these results we can define the reconfig-
urable partition region. This region should be at least equal
to the greater value of the area required for each module
reconfigurable.

The performance implementation of IQ modules is
grouped in the Table II

Table III gives the experimental results in term of power
consumption. The results are obtained via XPower which is
the power estimation tool of Xilinx.

We find that the saving area on chip indicates directly the
optimized power consumption.

After checking of different hardware implementation of

Table II. Performance implementation for IQ

FPGA Resource XC5LX110T XC4VFX12

IQ H263 Minimum 9.85 7.869
Period (ns)

Maximum 110.072 127.08
Frequency(MHZ)

IQ MPEG-2 Minimum 10.882 10.258
Period (ns)

Maximum 91.455 97.481
Frequency(MHZ)

IQ MPEG-2-H263 Minimum 11.919 11.120
Period (ns)

Maximum 83.895 90.770
Frequency(MHZ)

Table III. Power consumption estimation of IQ modules

Total power (mw)

IQ MPEG-2 859

IQ H263 845

IQ MPEG-2-H263 872

IQ algorithms, we continue with the implementation of the
application using DPR.

In our method design, first we have created a processor
system using EDK. Than, we have added a user peripheral
which included a place holder for the reconfigurable parti-
tion, and we have generated netlist files. After that, we have
created an software application (code C) using SDK. This
code is executed by the Microblaze processor, to switch a
configuration to another. Finally, full bitstreams as well as
partial reconfiguration bitstreams have been generated using
the PlanAhead software. Also, we have generated an ACE
file for Compact Flash memory. With ACE file we can au-
tomatically program the FPGA because this file contain the
bitstreams and other information for programming FPGA.

In our experimentation, we use virtex-5 board and the
HWICAP from Xilinx which has 32-bits data port and
operating at 100 MHz.

Table IV shows the synthesis results of the static and
reconfigurable regions, and their device utilization.

Table IV. Performance implementation for IQ

Register LUTs slices DSP48E

IQ MPEG-2 6537 6743 3769 5

IQ H263 6498 6686 3708 4

Table V presents the partial bitstream size and the configu-
ration time. The configuration time is obtained by a hardware
timer implemented in FPGA. This time is dependent on the
size of the configuration file and on the way to download it
into FPGA.

Table V. bitstream information

bitstreams Size per Configuration
bitstream time per

(Bytes) bitstream (us)

IQ MPEG-2 61440 157,6

IQ H263 61440 155,8

Table IV illustrates the design time for an architecture
with DPR and another one without this technique. This
time presents the time required to develop an application
on FPGA.

Table VI. Design time

Design time

architecture with DPR 2 mouths

architecture without DPR 2 weeks

The experimental results show the efficiency of the RDP
approach in reducing the occupied area and the consumption
power. However, the design time is still high. This is mainly
due to the lack of a well-adapted design process methodol-
ogy and tools supporting DPR. The results presented in this
paper where our first experience using the DPR technology.
The time spent for the proposed experiments can thus be
decreased but the process still long, tedious and error-prone.

V. DISCUSSION
Based on the research presented on this paper, it is clear

that the MPEG RVC standard should evolve in order to really
complete the functionality defined in its requirements.

To dynamically replace any algorithm part (FU) with
another one in a FPGA, you should know from the synthesis
phase the Inputs /Outputs (I/O) and area required of each of
the reconfigurable part .

The reconfiguration times for the inverse quantization are
very short (about 157 us) compared to the time of an image
decoding (typically 40ms). This shows that, the DPR may be
used between two images of a video sequence to reconfigure
the system. We can consider a reconfiguration depending on
the type of decoded images (I for Intra, P for Predictive or
B for bi-Directional)

These results were obtained with a Virtex-5 ICAP. The
later operating at 100 MHZ and has 32-bits data port. But,
if we use a Virtex-II ICAP, (operating at 50 MHz and has
8-bits data port), we will not achieve sufficient performance

(reconfiguration time is about 1228.2 us). So the PRD
technique is not interesting in this case (reconfiguration
between two images of a video sequence).

In the RVC framework, the modified FU should be a part
of the VTL. Indeed, if two FUs of the VTL are defined for
the same algorithm (MPEG-2 and H263 FUs for IQ is an
example) these two FUs must have the same I/O to apply
the DPR, even if these I/O are not used during the execution
of this algorithm. Moreover, it is necessary that the area
allocated for these FUs is at least equal to the greater of two
area needed for each of two FUs.

Actually, the main objective of MPEG RVC standard is
to describe the algorithms in the VTL as they exist in
previous standards. This is against the use of DPR for
existing algorithms and it must be taken into account to
future algorithms in which it is difficult to know a priori
the I/O. It is even more difficult to predict the surface
required of algorithms without knowing the details of their
programming. So a new research is needed to define a
”generic codec” in which these parameters (I/O and area)
are defined. These parameters should adopt the worst case.
The final implementation will not be fully optimized in terms
of area and latency.

A second solution is to consider all of the decoder as
a single zone for the DPR. This technique is certainly
less interesting in the context of the DPR (reconfiguration
time is longer). But the final solution will be optimized
in terms of area and latency. This solution can use the
standard MPEG RVC without modification . However the
generation of bitstreams must be done on the FPGA when a
new RVC codec must be instantiated (Online Generation).
This approach is already used in some works such as the
generation of LLVM code from RVC-CAL [11]. DPR seems
to be able to give good results. Therefore, in our future
work, we will adopt this approach. As we notice, partial
reconfiguration is one of the useful solutions to reduce on
chip area an increase performance, we use this technique to
design an optimal implementation of RVC application.

VI. CONCLUSION

This paper introduces DPR technique and proposes to
use it in a RVC technology. Since, the RVC framework
is still under development at MPEG. There is not much
research on how efficiently use DPR in the RVC framework.
Based on our study, DPR approach should satisfy these three
constraints:
• Reconfigurable modules implemented on the same

place, must have the same inputs / outputs.
• A unit of control is required to manage efficiently

the partial reconfiguration. This unit control is a code
written in C and executed by a Microblaze processor.

• The area of the reconfigurable partition region is at least
equal to the greater of two area needed for each of two
reconfigurable modules.

The proposed architecture is feasible for implementation
an IQ algorithm of MPEG-4 decoder using DPR and the
experimental results show that dynamic reconfiguration of
FPGAs is a promising approach for saving resources and
increasing performance.

As perspectives, we propose to continue the use DPR in
the RVC technology by applying this technique between two
different RVC decoders. These two decoders will be placed
in same reconfigurable partition regions in FPGA. We plan
also to improve the tools which automatically implement the
decoder by integrating DPR functionality.

VII. REFERENCES

[1] Matthieu Wipliez, Ghislain Roquier, Jean-Franois Nezan
Software code generation for the RVC-CAL language ,
Springer link ,Journal of signal processing systems June
2009

[2] ISO/IEC 14496-2: 2004, Information technology -
Coding of audio-visual objects - Part 2: Visual, 2004.

[3] Cindy Kao Benefits of Partial Reconfiguration Take
advantage of even more capabilities in your FPGA,
Xcell Journal Xilinx,, vol. I, pp. 65-67, 2005.

[4] Michael G. Lorenz, Luis Mengibar, Mario G. Valderas,
and Luis Entrena Power Consumption Reduction
Through Dynamic Reconfiguration, Springer-Verlag
Berlin Heidelberg, pp. 751-760,2004 .

[5] Nicolas Siret, Ismail Sabry, Jean Franois Nezan and
Mickael Raulet A codesign synthesis from an MPEG-4
decoder dataflow description,IEEE international Sympo-
sium Circuit and Systems ISCAS,2010 .

[6] Zine El Abidine ALAOUI ISMAILI and Ahmed
MOUSSASelf-Partial and Dynamic Reconfiguration Im-
plementation for AES using FPGA, IJCSI International
Journal of Computer Science Issues, Vol. 2, 2009.

[7] Rafael Garcia, Ann Gordon-Ross, and Alan D.
George Exploiting Partially Reconfigurable FPGAs for
Situation-Based Reconfiguration in Wireless Sensor Net-
works, FPCCM ,IEEE International Symposium Field-
Programmable Custom Computing Machines, April
2009.

[8] Rakan Khraisha and Jooheung Lee A scalable
H.264/AVC deblocking filter architecture using dynamic
Partial reconfiguration, ICASSP International Confer-
ence on Acoustics, Speech, and Signal Processing , pp.
1566-1569, Mars 2010 .

[9] M. Closson, B. Blodget, J. Mason, B. Bridgford, and
J. Young MPEG-4 Natural Video Codings,book ,April
2002

[10] MPEG Video TechnologiesPart 4: Video Tool Library,
ISO/IEC FDIS 23002-4, 2009

[11] Jerome Gorin, Matthieu Wipliez Franoise Prteux ,
Mickael Raulet LLVM-based and scalable MPEG-RVC
decoder,Journal of Real Time Image Processing ,2010.

[12] Mattavelli, M., Amer, I., Raulet, M The reconfigurable

video coding, Signal Processing Magazine, IEEE 27(3),
pp159 -167, 2010.

[13] Ihab Amer, Christophe Lucarz, Ghislain Roquier,Marco
Mattavelli, Mickal Raulet, Jean-Franois Nezan, and
Olivier Dforges Reconfigurable Video Coding on Multi-
core, IEEE Signal Processing magazine, 2009.

[14] MPEG Systems TechnologiesPart 4: Codec Configura-
tion Representation, ISO/IEC FDIS 23001-4, 2009

[15] Julien Dubois, Richard Thavot ,Romuald Mosqueron
,Johel Miteran and Christophe Lucarz Motion Estimation
Accelerator with User Search Strategy in an RVC Con-
text ,IEEE ICIP Journal of Real Time Image Processing
,2009.

[16] Khaled Jerbi, Matthieu Wipliez, Mickael Raulet,
Olivier Dforges, Marie Babel and Mohamed Abid Au-
tomatic Method For Efficient Hardware Implementation
From RVC-CAL Dataflow: A LAR Coder baseline Case
Study,Journal of Convergence , 2010.

[17] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet,
M. Wipliez, and W. Plishker, Exploring the concurrency
of an MPEG RVC decoder based on dataflow program
analysis,IEEE Transactions on Circuits and Systems for
Video Technology, vol. 19, no. 11, pp. 16461657, 2009.

[18] Cal2HDL-openforge source Available from:
http://openforge.sourceforge.net. [Accessed: December
2010]

[19] J. W. Janneck, M. Mattavelli, M. Raulet, and
M. Wipliez, Reconfigurable video coding: a stream
programming approach to the specification of new video
coding standards,in MMSys 10: Proceedings of the
first annual ACM SIGMM conference on Multimedia
systems. New York, USA: ACM, pp. 223234, 2010.

[20] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck,
M. Mattavelli, C. von Platen, and M. Raulet, OpenDF -
A Dataflow Toolset for Reconfigurable Hardware and
Multicore Systems,First Swedish Workshop on Multi-
Core Computing, MCC , Ronneby, Sweden, November
27-28, 2008.

[21] PlanAhead Software Tutorial Partial Reconfiguration of
a Processor Peripheral,UG744, 21 September 2010.

[22] MicroBlaze Processor Reference Guide Embedded De-
velopment Kit EDK 10.1i, UG081 (v9.0), 2008.

