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Abstract

We study the problem of the reconstruction of a Gaussian flefthed in[0, 1] using N sensors de-
ployed at regular intervals. The goal is to quantify theltdta rate required for the reconstruction of the
field with a given mean square distortion. We consider a aégw/o-stage mechanisms which a) send
information to allow the reconstruction of the sensor’s gkas within sufficient accuracy, and then b) use
these reconstructions to estimate the entire field. To imet the first stage, the heavy correlation between
the sensor samples suggests the use of distributed codirgss to reduce the total rate. We demonstrate
the existence of a distributed block coding scheme thatesehj for a given fidelity criterion for the re-
construction of the field, a total information rate that isibded by a constant, independent of the number
N of sensors. The constant in general depends on the autlatimmefunction of the field and the desired
distortion criterion for the sensor samples. We then dbscai scheme which can be implemented using
only scalar quantizers at the sensors, without any use witdited source coding, and which also achieves
a total information rate that is a constant, independenh@fiumber of sensors. While this scheme oper-
ates at a rate that is greater than the rate achievable thidistyibuted coding and entails greater delay in
reconstruction, its simplicity makes it attractive for ilamentation in sensor networks.

1 Introduction

In this paper, we consider a sensor network deployed for tinegse of sampling and reconstructing a spa-
tially varying random process. For the sake of concretenesas assume that the area of interest is repre-
sented by the line segmejfit 1], and that the for each € [0, 1], the value of the random processXgs).
For example X (s) may denote the value of some environmental variable, sutdngserature, at point

A sensor network, for the purpose of this paper, is a systesemding devices (sensors) capable of

1. taking measurements from the environment that they grged in, and
2. communicating the sensed data to a fusion center for psotg

The task of the fusion center is to obtain a reconstrucfifiiis), s € [0, 1]} of the spatially varying process,
while meeting some distortion criteria.

There has been great interest recently in performing sucsirsg tasks with small, low power sensing
devices, deployed in large numbers in the region of intdigsf2], [3] [4]. This interest is motivated by the
commercial availability of increasingly small and low-tsgnsors which have a wide array of sensing and
communication functions built in (see, for example, [5Hdayet must operate with small, difficult to replace
batteries.

Compression of the sensed data is of vital importance in sosaretwork. Sensors in a wireless sensor
network operate under severe power constraints, and comatiam is a power intensive operation. The
rate at which sensors must transmit data to the fusion canteder to enable a satisfactory reconstruction
is therefore a key quantity of interest. Further, in any camiwation scheme in which there is an upper
bound (independent of the number of sensors) on the amouwt#tafthat the fusion center can receive per
unit time, there is another obvious reason why the comgiisgiof sensor data is important - the average
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rate that can be guaranteed between any sensor and the fesiter varies inversely with the number of
sensors. Therefore, any scheme in which the per-sensateateases slower than inversely with the number
of sensors will build backlogs of data at sensors for largrigh number of sensors.

Environmental variables typically vary slowly as a funatiof space and it is reasonable to assume that
samples at locations close to each other will be highly dated. The theory of distributed source coding
(6], [7], [8]) shows that if the sensors have knowledge d$ ttorrelation, then it is possible to reduce the
data-rate at which the sensors need to communicate, whiileaintaining the property that the information
conveyed by each sensor depends only on that sensor’s regesus. Research on practical techniques
([}, [@ay], [11), [12], [13]) for implementing distributedource coding typically focuses on two correlated
sources, with good solutions for the many sources problédhtesbe developed. Thus, in our work, we
attack the problem at hand using the available theoreticdd twhich have their origins in[6].

This approach has been taken earlief’in [1] and [2], whiclestigate whether it is possible to use such
distributed coding schemes to reduce ffeg-sensordata rate by deploying a largaumberof sensors at
closely spaced locations in the area of interest. In pdaicit is investigated whether it is possible to
construct coding schemes in which the per-sensor rate aleesanversely with the number of sensors. The
conclusion of [[1], however, is that if the sensors quantte $amples using scalar quantizers, and then
encode them, the sum of the data rates of all sensors insraaske number of sensors increases (even with
distributed coding), and therefore the per-sensor rataadre traded off with the number of sensors in the
manner described above.

Later, though, it was demonstrated [in[14] that there exiddsstributed coding scheme which achieves
a sum rate that is a constant independent of the number ofrsensed (so long as there is a large enough
number of sensors). The per-sensor rate of such a schenefoifgedecreases inversely with the number of
sensors, which is the trade-off of sensor number with pesaerate that was desired, but shown unachievable
with scalar quantization, in_[1]. Results similar to thodd@] for the case when a field of infinite size
is sampled densely have since appearedlin [3]. However, stiqoehat still appears to be unresolved is
whether it is possible to achieve a per-sensor rate thagvamversely with the number of sensors using a
simplesensing (sampling, coding, and reconstruction) scheme.

This paper is an expanded versionofi[14]. We describe thighilited coding scheme df114] in detail, and
then study another sampling and coding scheme which achibealesired decrease of per-sensor rate with
the number of sensors. The two main properties of this sclaeenthat (1) it does not make use of distributed
coding and therefore does not require the sensors to havkramyledge of the correlation structure of the
spatial variable of interest, and (2) it can in fact be impdeted using only scalar quantizers at the sensors
for the purpose of coding the samples. The scheme utilizetath that the sensors are synchronized, which
is already assumed in the models[df [L], [2], [3], and is gamihievable in practice. Since scalar quantizers
are easily implementable in sensors with very low compjetitis paper shows that it is possible achieve
per-sensor rates that decrease inversely with the numisensbrs with simple, practical schemes.

A brief outline of this paper is as follows: We pose the probfermally and establish notation in Sec-
tion[T.1. We study the achievability of the above tradeoffwa distributed coding scheme in Sectidn 2,
and compare the rate of this coding scheme with that of aeefercentralized coding scheme in Sedfibn 3.
We describe the simple coding scheme mentioned above ilp8BEtSome numerical results are presented
in Sectiorl5. We make some concluding remarks in SeEiion 6.

1.1 Problem statement
1.1.1 Model for the spatial process

We take a discrete time model, and assume that the spatieégs®f interest is modeled by a (spatially)
stationary, real-valued Gaussian random prock$8,(s) at each time, wheres is the space variable. The
focus of this paper is the sampling and reconstruction of itefgection of the process, which we assume
without loss of generality to be the internval, 1]. We follow conventional usage in referring to the spatial
processX () = {X)(s), s € [0,1]} as thefield at timei.

We assume that the fieldf () at timei is independent of the field () for anyj # i, and has identical
statistics at all times. (In what follows, we omit the timel@x when we can do so without any ambiguity.)
For simplicity, we assume tha& is centered£[X (s)] = 0, and that the variance of (s) is unity, for all
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€ [0, 1]. The autocorrelation function of the field is denoted as
p(r) = E[X(s)X(s +7)].

Following common usage, we sometimes refes &s thecorrelation structureof the field. Clearlyp(0) = 1,
andp(r) < 1foranyr. We need only mild assumptions on the fi&ld

1. We assume thaX is mean-square continuous, which is equivalent to the oityi of p at0 (see, for

example,[[15]).

2. We assume that there is a neighborhoo@ iofwhich p is non-increasing.

Note that all results in this paper extend to fields in highieteshsions. We restrict the exposition to
one-dimensional fields for clarity and to avoid the tedioatation required for higher dimensional fields.

1.1.2 Assumptions on the sensor network

We assume thaV sensors are placed at regular intervals in the segffiehit with sensor being placed at
Sk = 2’2“—;,1 fork = 1,2,..., N. Sensors are assumed to be synchronized, and at each Sewsork can
observe the valu& (!)(s;,) of the field at its location, for eadh Sensok encodes a block of: observations,
(XD (s), XP(s1),...,X™)(s;,)] into an index; chosen from the seftl, 2, ..., [e™ |}, whereRy, is
the rate of sensdr, which we state in the units of nats per discrete time unitaggime that the blocklength
m is the same at all sensors. The messages of the sensorsaredss be communicated to the fusion
center over a shared, rate constrained, noiseless chafelfusion center then uses the received data to
produce a reconstructiaki () (s) of the field.

A coding schemés a specification of the sampling and encoding method usetl s¢nsors, as well as
the reconstruction method used at the fusion center.

1.1.3 Error criterion

We refer to€ (X () (s) — X(9)(s))? as the mean square error (MSE) of the reconstruction of thedtepoint
s and time:. We measure the error in the reconstruction as the averageddlocklength) integrated MSE,
which is defined as

Jusp(m) = i /0 e (x0(s) - XO(s)) " ds. (1)

We study coding schemes in which, for all large enough blerogithsmm and a specified positive constant
D,..;, the fusion center is able reconstruct the field with an ireteggl MSE of less thab,,.;, that is, schemes
for which

n}gnoo Jumse(m) < Dpet. (2

1.1.4 Sumrate

In this paper, we describe coding schemes in which for argrgialue ofD,,.; in (2), the sum rateZ]kV:1 Ry,

is bounded above by some consta&inhdependent of the numbar of sensors. The bouni may in general
depend orD,,.;. This allows the per-sensor rate can be traded off with tmelrar of sensors, so that for all
N large enough, the rate of each sensor is no more than a considiple of %

1.2 Contributions

Our main contributions are:

1. We prove the existence of a distributed coding scheme iohybnder the assumption that the correla-
tion structure is known at each sensor, a sum rate that ipemtent of the number of sensdyscan
be achieved.



2. We design a simple coding scheme which can be implemersied scalar quantization at sensors,
which does not require the sensors to have any informationtahe correlation structure, and which
makes use of the fact that the sensors are synchronizedigvaehsum rate that is a constant indepen-
dent of V.

The latter scheme has the advantage of being simple enoughitoplementable even with extremely
resource-constrained sensors. However, the sum-ratevatie through this scheme is in general greater
than the sum-rate achievable through distributed codirtgp,Ainlike distributed coding, this scheme entails
a delay that increases with the number of sensors in the nletwo

2 Distributed coding

In this section we describe a distributed coding schemewddhieves the desired scaling.

2.1 Encoding and decoding

The scheme consists 6f encoders{ fx}_,, wheref; is the encoder at sensbrandN decoders{gy }1_,
at the fusion center. For eaéhthe rate off;, is assumed to b&;, and f;, maps the block

(XD (s1), XP(sp), ..., XM (s3)]

of samples to an indek, chosen from{1,2, ..., [e™f* |}, which is then communicated to the fusion center.
While the output of encodér may not depend on theealizationsof the observations at any other sensor
i # k, it is assumed that all sensors have knowledge of the gtatistthe field (in particular, the function

is assumed known at each seﬂ$amd utilize this information to compress their samplese @iacoders may
use the messages received from all encoders to producedheirstruction:

XWm () = gr(fr(X D™ (51)), o, (X7 (sn))),

whereX (™) (s, ) is shorthand fof X (1) (s;,), X ) (s), ..., X™(s;,)], for k = 1,..., N and similarly
for X.

2.2 Reconstructing the continuous field

The reconstruction of the field for those values:af [0, 1] where there are no sensors is done in a two-step
fashion as follows. In the first step, the estimaf’e(&;c) of sensor samples are obtained as described above.
Then, the value of the field between sensor locations is fényridterpolation.

The interpolationX (s) for s ¢ {sx|k = 1,..., N} is based on the minimum MSE estimator f&is)
given the value of the sample closeststoFormally, for anys, definen(s) = % if s e [%, %) as the
location of the sample closest o Then, givenX (n(s)), the minimum MSE estimate foX (s) is given by
E[X(s)|X(n(s))] = p(s —n(s))X (n(s)). The reconstruction of the field at the fusion center is igtdiby

replacingX (n(s)) in this estimate with the quantized versiat{n(s)),

X(s) = p(s —n(s))X (n(s)): 3)

While this two-step reconstruction procedure is not optimgeneral, it suffices for our purposes.

2.3 Error analysis

Define v
1 1 & ; i 2
Thase(m) = 5 30— 3 (X0 (s) = X0 (s)) (4)
k=1""1i=1
1in practice, the sensors need only know the ve%ﬁo(%) p(F). - p (%)]
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Using the upper bound found in equatiénl(21) (Apperdix A) loa ¢rror of the coding scheme described
above, we see théitn,,, Jarsg(m) < Dye is metiflim, Jy,q5(m) < D'(N), where

D'(N) = \/Dnet—<1—p<%>2) P | ©)

given that\ is large enough so that— p? (55 ) < Dye:. Itis easy to see thdd' (V) approache®,,.; from
below asN — ~c.

2.4 Sum rate

We now study the sum rate of the distributed coding schenmusii®ed above. We begin with finding the
encoding rates required for achieving
lim Jj;gp(m) < D, (6)

for some constanb.

The rate regiorR(D) is defined as the set of aN —tuples of rate§ Ry, Ra, ..., Ry) for which there
exist encoderg;, and decodersy, fork = 1,..., N, such that[(b) can be met. If a rate vector belongs to the
rate region, we say that the corresponding set of rates is\adfie.

The rate-distortion problem ii](6) is a Gaussian versionhef $lepian-Wolf distributed coding prob-
lem [6]. Until recently, the rate region for this problem wast known for ever2 sources. An achievable
region for two discrete sources first appeared_in [16], ansl @dended to continuous sources(ih [7]. The
extension to a general number of Gaussian sources appefrg]inThe two-source Gaussian distributed
source coding problem was recently solved_in [8], where théewable region of [16] was found to be tight.
The rate region is still not known for more tharsources. We use the achievable region foundinh [17].

Though the result is stated in[17] for individual distorticonstraints on the sources, the extension
to a more general distortion constraint is straightforwavtle state the achievable region for distributed
source coding in the form most useful to us in Theofédm 1 belbwthe statement of the theorem, we
useA < B « C to denote a Markov-chain relationship between random blasad, B andC, that is,
conditioned onB, A is independent of’. Also, for anyS C {1,..., N}, Xg denotes the vector of those
sources the indexes of which lie in the $eand.S© denotes the complement of the $et

Theorem 1 R(D) D Rin(D), whereR,, (D) is the set ofV—tuples of rates for which there exists a vector
U < RY of random variables that satisfies the following conditions

1.VSC{Ll,2,...,N}, Ug<+ Xg <+ Xge ¢ Uge.
2. VSQ{LZ...,N}, ZieSRiZI(XS;US|USC)'
3. 3 X(U) such that

1 & . 2
= ;6 {(X(sn - X(s)(U)) ] <D. (7)

Note that each of the rate-constraints in Thedrém 1 formssmant of the boundary of the achievable region
Rin (see, for example[ [17]). In particular, the constraintlo@ $um rate is not implied by any other set of
constraints.

Constructing a vectod satisfying the conditions of Theordrh 1 corresponds to thialusonstruction of
a forward channel for proving achievability in a rate-disittn problem. For each U; can be thought of as
the encoding ofX (s;).

We now construct &J that would suffice for our purposes. Consider a random veétter RV that is
independent oX, and has a Gaussian distribution with mé&aand covariance matrix/, wherel is the
identity matrix. ThelU = X + Z satisfies the Markov chain constraints of Theokém 1. To findaddpound
on the sum rate, we now find a lower bound on the variarfce which there exists an estimat®i(X + Z)



which satisfies conditioi{7). Siné€ + Z is jointly Gaussian withX, the estimator which minimizes the
MSE in (@) is the linear estimator,

X(X+Z) =Exx12)5x 1z (X +2Z), (8)

whereYx x1z) = EX(X + Z)T] andEx = E[XX"]. Let pmax(N, D, p) be the largest value of for
which the MSE achieved by this estimator satisfiés (7). Weehbzlow that for large enough, py,ax grows
faster than linearly withv.

Lemma 1 Let p(7) be a symmetric autocorrelation function such thiat; .o p(¢) = 1 and a threshold
6 > 0 exists for which

1.1> p(r) > p() >0if 7 € (0,0) and
2. the inequalityt — p?(#)/(1 + 6) < D holds.
Then

lim inf %pmax(N ,D, p) > 6%
Note: The second condition can be met for B> 0 sincel — p?(0)/(1 + ) — 0 as — 0.

Proof: We call a value of allowable if the expected reconstruction error[ih (7), With= X + Z, is less
thanD. We find the largesp for the error criterion:£[(X (s;) — X (s;))?] < D for eachi € {1,...,N},
which is more stringent than the average error requirentfefo

Let us consider the estimation df (s;). SinceX(s;) is the best linear estimate df (s;) from the
dataX + Z, any other linear estimator cannot result in a smaller etgquelISE. We take advantage of this
observation and choose a linear estimator that althougbypginbal, is simple to analyze and yet suffices to
establish the lemma.

Our estimator forX (s; ) shall be the scaled avera@® _, _, - vy X (si) + Z;, wherea is a parameter to be
optimized shortly. To estimat& (s;) for i # 0, simply substitute the samples used with those whose irsdexe
lieinthe set{i + 1,--- ,i+4 NO} (or, for samples at the right edge of the interjall], {: — NO,--- ;i —1};
this does not lead to any change in what follows because dtétenarity of the field).

Itis not difficult to see that

5<X(81)—a Z X(Si)+Zi)

1<i<NO
2 2
= E£[X(51)’] —2a Z p(i/N) + a*E Z X(si) | +a%*¢ Z Z;
1<i<NO 1<i<NO 1<i<NO
< 1-2a(N6O —1)p(0) + a*N?6? + o> Nbp
[1—2aN6p(0) + o’ N2 + asz’p} + 2ap(0), 9)

where we have used the inequality> p(7) > p(9) for 7 € (0, 0) and the fact that the greatest integer not
greater tharV@ is at leastVd — 1. The value ofx that makes the bracketed expressioifiin (9) smallest is equal
toa* = 200 (we do not optimize the entire expression for simplicityybStitution of this value yields

NO+p
PO (2
1+p/(NO) NO )
Now lete > 0 be sufficiently small so tha® — ¢0(1+6) > 0, and letN be sufficiently large so the;% < €.

We can always do this sindeonly depends oD and on the autocorrelation function. Now suppose that
p/N = 02 — (1 + 0), then

p*(0) 2 p* (0
RS0 (1 B m) = T

|
+
~
—
2 ~—
>
~—
—
—_
|
)
~—




The above implies that faN sufficiently large 5 pmax(N, D, p) > 6% — €6(1 + 6). Taking the liminf, we
obtain that for all sufficiently smaH > 0,

1
im inf —pe. > 02 .
lim inf Npmdx(N,D,p) > 0" —ef(1+0)

Sincee > 0 can be arbitrarily small, we obtain the desired conclusion. o

The purpose of this Lemma is only to establish that. (N, D, p) grows at least linearly wittv. The
constants presented were chosen for simplicity of preenta
The following is our main result on the rate of distributedlicm:

Proposition 1 The sum rate of the distributed coding scheme describedeailsdwounded above by a con-
stant, independent ¥

Proof: Consider a vector Gaussian channel with inptc RV and outputy € RY,Y = W + Z, whereZ
is as above, and where the power constraint on the inputéndiye (W7 W] < N. SinceZ is distributed
N (0, pI), the capacity of this channel,

max [(W; W + Z) subject to EWTW] < N,

is equal to% log (1 + 1—17 (see, for examplel [1.8]).

Lete > 0 be any number smaller thdn,,.;. We know from Sectioh 213 that there is Al such that for
N > Ny, D'(N) > Dyt —e¢. Further, from Lemmall, we know that there exists sdvpe> 0 and a constant
6 > 0 such that forN > Na, pmax(N, Dper — €,p) > 02N. Clearly, pmax(N, D, p) is a non-decreasing
function of D, and therefore folV > max{N1, Nao}, pmax(N, D' (N), p) > Pmax(N, Dpet — €, p). It then
follows that forN > max{Ny, N2},

N 1
: < — — .
IX;X+Z) < 5 log <1+ 92N)

Then, using the inequalitivg(1 + z) < z, and using the result of Theordth 1 to substitgté\]:1 Ry, for
I(X; X + Z), we see that

al 1

> =g

k=1

is achievable. o

The constants in Propositibh 1 have been chosen for siryplici general, the rates achievable by dis-
tributed coding are smaller than the bound found in Projowsi.

3 Comparison with a reference scheme

In this section, we compare the rate of the distributed apdaheme discussed in Sectidn 2 with a reference
scheme, which for reasons that will become apparent belevgall ascentralizedcoding.

The scheme consists ohecentralized encodef, which has access to samples taken at all sensors at
times{1,...,m}, and N decoders{g;}._, at the fusion center. The encoder maps the samples of the
sensorsX (1~™) (s ... sy), into an index chosen from the sfit, 2, .. ., ™~ |}, whereRY; is the rate
of the centralized scheme, and communicates this indexetéutsion center. The decodet at the fusion
center reconstructs the samples from seksoom the messages received from the centralized encoder,

X (s) = g (FXE™ (51, 58)),

fork=1,...,N.

At the fusion center, the reconstruction of the fieélds) is obtained in the same two-step manner de-
scribed in Sectioh 21 2: the fusion center constructs estisda(s;, ) of the samples((sy), fork =1,..., N
from the messages received from the sensors, and thendtetrp between samples usiny (3).
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Let R% (D) be the smallest rate for which there exists an encgderd decoderggy, } 7, such that the
integrated MSE{1) achieved by the above scheme satisfiesttstraint[(R). Then, itis clear th&y (D)
is a lower bound on the rates of all schemes which use the tegrsconstruction procedure of Section 2.2.
In this section we bound the excess rate of the distributdihgscheme of Sectidn 2 over the r@g (D,,.;)
of the centralized scheme.

3.1 Error analysis

Using the lower bound in AppendiX]A, equatidni22), on theoefd) in terms ofJ}, s, (m) of @) we
conclude that forV large enough, it73/s£(m) < Dyet, thenJy, g (m) < D”(N), where

2(1- 72 (ah)) +2y/(1 = 72 (3k)) (1= # (k) + D) + D
P* (sw)

Note thatD” (N) approache®,,.; from above asV — occ.

D// (N) —

3.2 Bounding the rate loss

Now, consider

1
V* = arg min I(X;V),subject to —& [||X — V||2| < D”(N). 10
g min I(X;V),subject to & [IX — Vi3] < D"(N) (10)

From Sectio 311, it is clear that the rate of the centralz@ding schemek?, (D,,.;) satisfies, for anyv,
Ry (Dpet) > I(X;VF).

We now use techniques similar to those[inl[19] to bound themddncy of distributed coding over the
rate of joint coding. Le be as in Propositidd 1. Expandid¢X; X + Z, V) in two ways, we gef (X; X +
Z)+I(X;VIX+2Z)=I(X;V)+ I[(X;X + Z]V), so that

I(X;X+2Z)-I(X;V) < I(X;X+Z[V) (11)
I(X=V);(X—V)+Z[V).
SinceV « (X — V) & (X — V) +Z,we havel (X - V) ; (X = V) + Z[V) < I(X = V); (X - V) +

Z). Subject to the constraint il (LOJ((X — V) ; (X — V) + Z) is upper bounded by the capacity of a
parallel Gaussian channel, with noiZeand inputW = X — V, the power constraint on which is given

by +£[|W|[?] < D”(N). The capacity of this channel is 18] = & log (1 + D,,,SN)), and therefore

from (I1) and the definitiod (10) &¥ as the rate-distortion achieving random vector, we get

N D"(N
I(X,X—FZ)—R}FV(Dnet) < ?log <1+#> .

N D"(N)

2 p

where the second inequality follows becauigg1 + z) < x. From Sectiof 311, we know that for any> 0,
there is alV; large enough so that for aN > Ny, D”(N) < D, + ¢, and we can choose the variance
p of the entries ofZ to be at leastVd?, wheref is as in Lemma]l, while still ensuring that 4 Z meets
the requirements on the auxiliary random variableof Theoren{lL. Therefore, substitutirﬁf.\[:1 R; for
I(X;X +Z), and using Lemmia 1 and the result of Secfion 3.1 we get thaifps > 0, there is anV; large
enough so that for alv > Ny,

<

N
* Dnet+€
;Ri—RN(Dnet) < a (12)

We conclude that the rate of the distributed coding schem8eation[2 is no more than a constant
(independentoiV) more than the rate of a centralized coding scheme with time saconstruction procedure.
Again, the constant i (12) has been chosen for simplicifgrefentation and is in general much larger than
the actual excess of the rate of the distributed coding sel{see Sectidnl 5).
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4 Point-to-point coding

The distributed coding scheme studied in Seckibn 2 showisthieatradeoff of sensor numbers to sensor
accuracy is achievable. However, it may not be feasible fieément complicated distributed coding schemes
in simple sensors. In this section we show that if the seram@synchronized and if a delay that increases
linearly with the number of sensors is tolerable, then therdd tradeoff can be achieved by a simple scheme
in which encoding can be performed at sensors without anylatge of the correlation structure of the
field.

Inthis scheme, we partition the intery@l 1] into K equal sized sub-interval§, =], (&, 2],....(52, 1].
We specifyK later, but assume thaf > K sensors are placed uniformly|iin 1]. We assume that” divides
N for simplicity (so that there are an integer numk%[,of samples in each interval).

Since the somewhat involved notation may obscure the sindgle behind the scheme, we explain it
before describing the scheme in detail. We consider timddokis of duration— units each. The scheme
operates overall with a blocklength of = m’=, that is,m’ blocks, for some mtegen Each sensor is
active exactly once in any time interval that% units in duration. A sensor samples the field at its location
only at those times when it is active. Each sensor uses a-fjmint code of blocklengtiw’ and rateR,,
nats peractivetime unit. The code is chosen appropriately S0 as to meetishartion constraint. However,
since the sensor is active onlyin’ out of m’ % lime units, the rate of the cogeer time-steps only % KR,
nats. We show below that the desired distortion can be agetiieith a rateR?,, that is independent dW and
therefore the desired scaling can be achieved by the abbees:

We now describe the scheme in detail. Consider the timeritss{d, 2,...,m/ £ }. Each sensor uses
a code of blocklengthn = m’ ?, which is constructed from a code of bIockIength as follows. For
eachjin {1,2,..., %} and eact in {0,1,..., K — 1}, sensorfl + j (which is thej-th sensor from the

left in the sub-interva( L, L], and is at Iocat|0n;Nl+ ) samples the field only at timeg ; = {4,/ +
%,j + %, I W%)N}. It uses a code of rat®,, to be specified below, to map the’ samples
{X(i)(s%lﬂ-),i € 7i,} to an element of the sétl, 2, ..., [¢™ F»|}. The rate per-time unit of each sensor
is thereforem,L%m’Rp = LR, nats.

The fusion center consists &f decoders, one for each sensor. Decddepnstructs estimates of the
samples encoded by sengousing only messages received from serisorhen, for each time = %l +7
in {1,...,m'&}, the fusion center has reconstructions

that is, one reconstruction for each sub-interval.
For anys € [0, 1], we denote the location of the (unique) sensor active withéninterval(
which s belongs by-() (s). For each time instarit the fusion center reconstructs the field fo¢

XO(s) = pls = 19 () KO0 (9))

whereX () (r() (s)) is the decoded sample at the fusion center of the senst? &) at times.
We show in AppendikB that

—z/s X0 (s) - XO(s))?)ds
< -+ ﬁZ{ > El(x s ﬂ”<W@ (13)

k=1 i, €Tk

L] to

K
(s) as

L
K
r

where, with some abuse of notation, we ggeto denote the set of time steps in which sensis active.
Note that the cardinality of, is m’ for eachk.
We now choosé large enough so thét — pg(%)) < D, and choose

Dy = Dyet — (1 —pQ(?)). (14)
9
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Figure 1: Linear increase @f,,.. forlarge N: p(7) = sinc(7) (left) andp(7) = exp{—|7|} (right). D,,c; =
0.1.

The m/-blocklength code used at sendoffor the times that it is active is a code that achieves the rate
distortion bound for the distortion constraint

1 ) . 2
— Z 5[(X('Lk)(8k) —X(“C)(sk)) < Dg,
i, €Tk

asm’ — oo. Itis well known that the rate of this code I8, = %1og Dl—K nats per time step. It is clear
from (I3) and[(IK) that this scheme achieves the requirgdrten. Since the rate of each sensor in the
overall scheme i{%Rp nats per time step we have therefore constructed a schemigi¢h the bit rate of
each sensor is

— R 3108 Do~ (1= () 15)

nats per time step. We can now chods¢o minimize the sum-rate 5 log [Dye; — (1 — p*(+))].

Further, it is well known (seé [20, Section 5.1]) that usicglar quantization, each sensor can achieve
distortion D at rate% log ﬁ + 4, wheref is a small constant. For example, for Max-Lloyd quantizers
(seel[20, Section 5.1]9,is less than bit.

Therefore, we conclude that it is indeed possible to achieselesired tradeoff between sensor numbers
and the per-sensor rate even when the sensors encode thasunaments using appropriate scalar quantizers,
given that we also make use of the synchronization betwagsosgto activate sensors appropriately. This is
in contrast to the conclusions 6f [1], where full use of symoctization is not made, and therefore it is found

that the above tradeoff is not achievable with scalar qaatitin.

5 Numerical examples

In this section we give numerical examples of the rates oftliing schemes discussed in Sedfibn 2, Sektion 3
and Sectiol4. The two fields we consider as examples are &patidlly) band-limited Gaussian field, for
whichp(7) = sinc(7), wheresine(7) = w and (2) a Gauss-Markov field, for whiglir) = exp{—|7|}.

For these fields, we numerically find the largest valyig, of the variance of Z for which the error for
the estimator in[{8) is no more than the distortibh V) of (B), with D,,.; = 0.1. The resulting values are
shown in Figuréll. We see that for large valued\gfp...« is indeed approximately linear iN.

We compute the achievable sum rate of the distributed s@modieg scheme, which is equal £6X; X +
Z) from TheoreniIl, with the,,., found above as the variance of the entrieZofThese rates are shown
in Figure[2. For reference, we also show the lower bound orrdtee of the centralized coding scheme
computed in Sectidnl 3.

In comparison, on minimizing the rate {15) of the point-wifg coding scheme of Secti¢n 4, we find
that best sum rate fos(7) = sinc(r) is 11.77 nats forK' = 7 intervals, and that the best sum rate for
p(T) = exp(—|7]) is46.92 nats withK' = 24 intervals, which is significantly greater than the sum-cdtthe

10
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Figure 2: Rates of joint and distributed coding (in nats pepshot) vs. number of sensa¥s p(7) =
sine(7) (left) andp(7) = exp{—|7|} (right). D+ = 0.1.

distributed coding scheme found above. However, part of¢hson for the large sum-rate of the point-to-
point coding scheme is that our analysis exaggerates anedtigs: for the sake of simplicity: In Sectibh 4 we
estimated the value of the field at poinat timei using the sample that the fusion center has at tifinem

the sub-interval thai lies in. We could instead have used the sancfilsesto s that is available at the fusion
center at time, similar to what is done in Sectidh 2 and Secfidbn 3. Howewis,would have meant dealing
with the first and the last sub-interval differently, andrfere we did not follow the analysis outlined above.
Without this edge effect, the rates of the point-to-poirdiog scheme are approximately half the rates found
above, which are still considerably larger than the surasraf the distributed coding scheme.

6 Conclusions

We have studied the sum rate of distributed coding for themnrsituction of a random field using a dense
sensor network. We have shown the existence of a distrileadihg scheme which achieves a sum rate
that is a constant independent of the number of sensors. &acheme is interesting because it allows us
to achieve a per-sensor rate that decreases inversely asrifiger of sensors, and therefore to achieve small
per-sensor rates using a large number of sensors.

In obtaining bounds on the sum rate of distributed codingmesle full use to the heavy correlation
between samples of the field taken at positions that are tdgether. When the number of sensors is large,
the redundancy in their data can be utilized by coding morkraare coarsely: this corresponds to more
noisy samples, and is manifested in the growth of the npisg in the forward channel in Secti¢d 2. We
believe that this technique of bounding the sum rate is o rthdent interest.

We have also shown that contrary to what has been suggedfdimd [3], it is indeed possible to design
a scheme that achieves a constant sum rate with sensorsehsatadar quantizers, evavithoutthe use of
distributed coding. This scheme, however, requires thatnake appropriate use of the synchronization
between the sensors, results in a delay in reconstructiachvificreases linearly with the number of sensors,
and achieves rates that may be significantly higher thareties achieved by distributed coding. The scheme
is nevertheless interesting because its low complexityanitleasy to implement.
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A Bounds onJ5g(m) for the schemes in Sectionl2 and Sectidn 3

We can write the error in reconstruction at ang [0, 1] as

X(5)= X(s) = X(s) = pls = n(s) X (n(s))
= [X(s) = pls = n() X (n(s))] + | pls = n(s)) (X (n(s)) = X (n(s)))]
= Es(s) + Eq(s), (16)

whereFs(s) = X (s) — p(s —n(s)) X (n(s)) andEq(s) = p(s —n(s)) (X (n(s)) ~ X(n(s)) ). Note thatin
the schemes described in Secfidbn 2 and SeCtion 3, the egsaafiall samples are used to obtain the estimate
X (n(s)), and thereforeX (n(s)) is in general not independent &f(sy,), for s, # n(s). As a result,Es(s)
andEq(s) are in general not independent. In this appendix, we find ugpe lower bounds ody;s g (m)
that hold for the schemes of Sectldn 2 and Sedtlon 3.

Using the Cauchy-Schwarz inequality (for any two apprdphjeintegrable random variables and B,

E[AB]| < \/E[A%)E[B?)), itis easy to see that

E(Bs(s) + Eols)® < E(Bs(s)® +& (Bqls)® + 2\/€ (Es(s)* € (Eo(s)® (A7)

€ (Es(s) + Eq(s))” = E(EQ(S))2—2\/5 (Es(s))* € (Eq(s))”. (18)

Now, note that (Es(s))” = (1 — p%(s — n(s)). Therefore,

£ (Bs(s)*E (Ba(s)* = (s —n(s)) (- p(s — n(s) € (X(n(s) ~ X(n(s)))

For NV large enough so that bot (5%) > 3 andl/(QN) lies in the interval around in which p is non-

increasing (so that for € (£, 21) p2(s — n(s))(1 — p(s — n(s)) < p*(55)(1 — p*(5%)), Which holds
because the functioh(z) = 2:(1 — «) is decreasing ||{12, 1]), we get that

e B e Eo) < () (17 (5y) ) € (Ko - X)), 9
From [1) and[(1k), we have

Juse(m Z / & (EQ(s) + B (s )) ds. (20)

Therefore, integratind (17) and (18) ovér 1], using [I9) and Jensen’s inequality (and the concavity ef th
functiony(x) = /), and averaging over the time index, we get

suseim) < {107 (5 )} hesstm) + 2GR0~ 2GR sem). (2D
Tss(m) 2 (k) s (m) — 2/ (G~ 2 D) (22)

whereJ}, s (m) is as in [4).

B Error analysis for the point-to-point coding scheme
With some abuse of notation, we can still write the error gorestruction as
X(s) — X(s) = Es(s) + Eq(s),

12



where now
Es(s) = X(s)— p(s —(s))X(r(s)), and
Eq(s) = pls—r(s) (X(r(s)) = X(r(s)))
In the point-to-point coding scheme, the fusion centemestiés the samples of each sensor using only the

messages that it receives from that particular sensor. tﬂlaneEg) (s) is the error in the optimal MSE
estimate ofX (s) given X () (r(s)). Itis well known thatif{ X (s), s € [0, 1]} is a Gaussian process, the error

EY(s) in is independent of () () (s)). Further, due to the independence of the fi&lt) and the field
X foranyj # i, EY(s) is independent of ) (r(9) (s)) for all §, and hence also of the reconstructions
X (r0)(s)) and the error termEg)(s). Therefore, for any,

E[XD(s) — XD(s))2] = E(BS ()% + ENES (5)))-

Now, for K large enoughg[(EY (s))2] = 1 — p2(s — () (s)) < 1 — p*(&) for everys € [0, 1]. Also, since
p*(s) < 1forall s €[0,1],

EEY P = E(XOOE) - X)) .

So, we get
1 1 L
/ E(XD(s) — XD(5))?]ds = / ENXD(s) — XD (5))2]ds
0 =0 V%
K—1 ,l+1
< / j( ) +E((XOE0 () = X)) Jds
=0 " K

K-1

L (x000 ) —xopo )
=0

Il
—~
=

|

where we note that by our notatiort?) (%) is the location of the (unique) sensor active at time steghe
I+1
interval (%, 4 _]. o
Now summing over the time index we get,

IS e s) - 5O (01218
w2 [ €0 - X0
(1- 2(i))+LiK_lg[<X( (z)(H'_l))_X(T(z)(l—i-l)))Q]
= B A K K
Rearranging the sum on the right and substituting= >~ we get
1N [ e - $0(6)121ds
w2 ) €0 - X0
1 1 N - 2
< (=P + e D0 D El(X ) (s1) = XKW (s1)) ),
k=1iETk
ST SSEES 3 ) R TCTAEE LU
K Nk:l m' i, €Tk

whereTy is the set of time steps in which sengois active.
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