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Abstract

Massive amounts of sequencing data are being generated thanks to advances in sequencing 

technology and a dramatic drop in the sequencing cost. Storing and sharing this large data has 

become a major bottleneck in the discovery and analysis of genetic variants that are used for 

medical inference. As such, lossless compression of this data has been proposed. Of the 

compressed data, more than 70% correspond to quality scores, which indicate the sequencing 

machine reliability when calling a particular basepair. Thus, to further improve the compression 

performance, lossy compression of quality scores is emerging as the natural candidate. Since the 

data is used for genetic variants discovery, lossy compressors for quality scores are analyzed in 

terms of their rate-distortion performance, as well as their effect on the variant callers. Previously 

proposed algorithms do not do well under all performance metrics, and are hence unsuitable for 

certain applications.

In this work we propose a new lossy compressor that first performs a clustering step, by assuming 

all the quality scores sequences come from a mixture of Markov models. Then, it performs 

quantization of the quality scores based on the Markov models. Each quantizer targets a specific 

distortion to optimize for the overall rate-distortion performance. Finally, the quantized values are 

compressed by an entropy encoder. We demonstrate that the proposed lossy compressor 

outperforms the previously proposed methods under all analyzed distortion metrics. This suggests 

that the effect that the proposed algorithm will have on any downstream application will likely be 

less noticeable than that of previously proposed lossy compressors. Moreover, we analyze how the 

proposed lossy compressor affects Single Nucleotide Polymorphism (SNP) calling, and show that 

the variability introduced on the calls is considerably smaller than the variability that exists 

between different methodologies for SNP calling.1

1 Introduction

Recent advancements in Next Generation high-throughput Sequencing (NGS) have led to a 

drastic reduction in the cost of sequencing a genome (http://goo.gl/kKvmDl). This has 

generated an unprecedented amount of genomic data that must be stored, processed, and 

transmitted. To facilitate this effort, data compression techniques that allow for more 

efficient storage as well as fast exchange and dissemination of these data have been 

proposed in the literature.

1The code used in this work is available at https://github.com/mikelhernaez/qvz2
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The raw genomic data is mainly comprised of the reads (fragments of the genome) and the 

sequence of quality scores2. The quality scores are generally stored using the Phred scale, 

which corresponds to the particular number Q = ⌈10 log10 P⌉, where P is an estimate 

(calculated by the base calling software running on the sequencing machine) of the 

probability that the corresponding nucleotide in the read is in error. These scores are 

commonly represented with the ASCII alphabet [33 : 73], where the value corresponds to Q 

+ 33.

When losslessly compressed, quality scores comprise more than 70% of the compressed file 

[1]. In addition, it has been shown that the quality scores are inherently noisy [2], and 

downstream applications that use them do so in varaying heuristic manners. For these 

reasons, lossy compression of quality scores has been proposed to further reduce the storage 

requirements at the cost of introducing a distortion (i.e., the reconstructed quality scores may 

differ from the original ones).

The data under consideration is used for biological inference, and thus it is important to 

analyze how lossy compression affects this inference. Since different downstream 

applications exist that use the data for different purposes, it is not feasible to analyze the 

effect in all of them. As a result, the effort has been focused on analyzing the effect on SNP 

calling, as it is one of the most widely used downstream applications in practice. 

Additionally, it is standard practice to perform a rate-distortion analysis independent of 

downstream applications, but from which insight can be gained into the effect that a lossy 

compressor will have on a downstream application.

Among the several lossy compressors proposed in the recent literature (see [3, 4, 5] and 

references therein), none excel under in all metrics. In this work we propose a new lossy 

compressor for quality scores and show that it improves upon the previously proposed lossy 

compressors for quality scores in rate-distortion. Moreover, this improvement is consistent 

across all chosen distortion criteria, in contrast to previously proposed methods that perform 

poorly under a subset of distortion criteria [3, 4]. We further analyze the effect that the 

proposed lossy compressor has on SNP calling, and show that the variability introduced in 

the calls is smaller than the variability observed between the most common SNP callers used 

in practice. This suggests that lossy compression could be used to boost compression 

performance without compromising the discovery of genetic variants.

The proposed lossy compressor for quality scores performs a clustering step prior to 

compression. The clustering method is based on assuming that the set of quality score 

sequences come from a Markov mixture model. After the clustering step, the algorithm 

quantizes the quality scores based on the Markov models. The distortion at each quantizer is 

chosen to maximize the overall rate-distortion performance. Finally, the quantized values are 

compressed with an adaptive arithmetic encoder. Next we describe the proposed method in 

detail.

2Also referred to as quality values.
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2 Clustering based on Markov Mixture Model

We denote by  the set of all quality value sequences found in a genomic data file. 

For simplicity, we assume that all the sequences are of the same length T, thus, 

. Without loss of generality we assume Qi,t ∈  = {1, . . . , | |}.

Let us first consider the case where the sequences are generated by an order-1 Markov 

source. That is, the probability of each sequence Qi is given by

(1)

where the last equality comes from the Markov assumption.

A discrete Markov source can be fully determined by its transition matrix A, where Amn = 

P(Qi,t = m|Qi,t−1 = n) is the probability of going from state n to state m, ∀t, and the prior 

state probability πn = P(Qi,1 = n), which is the probability of starting at state n. We further 

denote the model parameters as θ = {A, π}. With this notation we can rewrite (1) as

(2)

The States Space of the Markov Models

Previously, we have assumed that the stochastic process that generates the quality value 

sequences is time invariant, i.e., that the value of Amn is independent of the time t. However, 

strong correlations exist between adjacent quality scores, as well as a trend that the quality 

scores degrade as a read progresses.

In order to take into consideration the temporal behavior of the quality value sequences, we 

increase the number of states from  to | |×T, one for each possible value of Q and t. Fig. 

1 shows the diagram of the state space and the allowed transitions between states. To 

represent the temporal dimension, we redefine the transition matrix as a three dimensional 

matrix, where the first dimension represents the previous value of the quality score, the 

second one the current value of the quality score and the third one the time t within the 

sequence. That is, Amnt = P(Qi,t = m|Qi,t−1 = n) is the probability of transitioning from state 

n to state m at time t.

Markov Mixture Models

In this work we further assume that the quality value sequences have been generated 

independently by one of K underlying Markov models, such that the whole set of quality 

value sequences are generated by a mixture of Markov models. With some abuse of notation 
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we now define  to be the parameters of the K Markov models, and θk = 

{π(k),A(k)} to be the parameters of the kth Markov model. We further define Zi to be the 

latent random variable that specifies the identity of the mixture component for the ith 

sequence. Thus, the set of quality value sequences that has been generated by the sequencing 

machine is distributed as:

(3)

where μk ≜ P(Zi = k), and P(Qi|Zi = k; θ) is the probability that the sequence Qi has been 

generated by the kth Markov model. Substituting (2) in (3) we get that the likelihood of the 

data is given by

(4)

The goal of the clustering step is to assign each sequence to the most probable model that 

has generated it. However, since the parameters of the models are unknown, the clustering 

step first computes the maximum likelihood estimation of the parameters {A(k), π(k), μk} of 

each of the Markov models. Since the log likelihood ℓ(θ) ≜ log P( ; θ) is intractable due to 

the summand appearing in (4), this operation is done by using the well known Expectation-

Maximitation (EM) algorithm [6]. The EM algorithm iteratively maximizes the function

which is the expectation of the complete log likelihood with respect to the conditional 

distribution of Z given Q and the current estimated parameters. It can be shown [6] that for 

any mixture model this function is given by

(5)

where rik ≜ P(Zi = k|Qi, θ(l−1)) is the responsibility that cluster k takes for the quality 

sequence i. In particular, for the case of a mixture of Markov models, the previous equation 

is given by
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(6)

where the expansion of log P(Qi; θk) is obtained by taking the log of (2).

The initialization of the EM algorithm is performed by randomly selecting the parameters 

{Â(k), π̂(k), μ̂k}. Then, the algorithm iteratively performs as follows. In the E-step it 

computes rik, which for the case of Markov mixture models is given by

(7)

where

In the M-step it computes the parameters θ̂ that maximize Q(θ, θ(l−1)). In the case of a 

mixture of Markov models, these parameters can be computed using the Lagrange 

multipliers method on Q(θ, θ(l−1)), where the constrains are that all the rows of A(k) and the 

vectors π(k) and μ must sum to one. For the case under consideration, it can be shown that 

the maximizing parameters computed in the M-step are given by

(8)

(9)

(10)
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with t = 2, . . . , T, n = 1, . . . , | | and m = 1, . . . , | |.

Furthermore, the EM algorithm guarantees that choosing θ to improve Q(θ, θ(l−1)) beyond 

Q(θ(l−1), θ(l−1)) will improve ℓ(θ) beyond ℓ(θ(l−1)), which yields a decreasing value of 

Q(θ(l−1), θ(l−1)) per iteration. We stop the algorithm once the change on the value of 

Q(θ(l−1)|θ(l−1)) is small enough, or after a fixed number of iterations.

Once the EM algorithm terminates, the value of rik tells us the responsibility of each mixture 

component k over the sequence i. The clustering step uses this information to perform the 

clustering. Specifically, each sequence is assigned to the cluster k with k such that rik ≥ rik′, 

∀k′ ≠ k.

3 Quantization Step

As described previously, we have modeled the data using a mixture of Markov models. This 

mixture has generated an underlying probability model that will be used to design a 

codebook for the compression of the quality scores. The codebook is a set of quantizers 

indexed by the cluster id k, the position t within the read and the previously quantized value 

(the context). These quantizers are constructed using a tailored version of the discrete 

Lloyd’s algorithm [7]. After quantization, a lossless, adaptive arithmetic encoder is applied 

to achieve entropy-rate compression. Next we describe the quantizer in detail.

Given a random variable X governed by the probability mass function P(·) over the alphabet 

 of size K, let D ∈ ℝK×K be a distortion matrix where each entry Dx,y = d(x, y) is the 

penalty for reconstructing symbol x as y. We further define  ⊆  to be the alphabet of the 

quantized values of size M ≤ K.

The quantizer, denoted hereafter as LM(·), is a mapping  →  that minimizes the 

expected distortion. Specifically, the quantizer seeks to find a collection of boundary points 

bk ∈  and reconstruction points yk ∈ , where k ∈ {1, 2, . . . , M}, such that the quantized 

value of symbols x ∈  is given by the reconstruction point of the region to which it 

belongs. That is, the quantizer aims to minimize

(11)

In order to solve this problem we perform a one-dimensional weighted k-means algorithm, 

where after initializing the boundary points bk, the algorithm iteratively performs as follows: 

i) for each region k choose the yk ∈ {bk−1, . . . , bk − 1} that minimizes 

, and ii) assign each point x to the closest reconstructed point yk, where 

the distance is measured as d(x, y), yielding new boundary points bk. The algorithm stops if 

no further change is obtained in the bk or after a fixed number of iterations.
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Given a distortion matrix D, the defined quantizer depends on the number of regions M and 

the input probability mass function P(·). Thus we denote the quantizer with M regions as 

, and the quantized value of a symbol x ∈  as . Note that a reconstructed 

point y has probability of occurrence . Thus, each generated 

quantizer  defines a rate-distortion pair, where the rate and distortion are given by

respectively. Furthermore, for a fixed probability mass function P(·), the only varying 

parameter is the number of regions M. Since M needs to be an integer, not all rate-distortion 

pairs are achievable. Thus, as done in QVZ [3], we define an extended version of the LM 
quantizer, which consists of two LM quantizers with the number of regions given by ρ and ρ
+1, each of them used with probability 1−r and r, respectively (where 0 ≤ r ≤ 1). In contrast 

to QVZ, in this work we are interested in achieving an arbitrary distortion D; therefore, ρ is 

given by the maximum number of regions such that  (which implies 

). Then, the probability r is chosen such that the average distortion is 

equal to D.

The reason for setting all quantizers to the same distortion D is the following. Given that 

there are a maximum of quantizers | | × T × K (indexed by previously quantized value, 

position and cluster id), the final rate R is given by the convex combination of the individual 

rates Ri of all the quantizers. Thus, one can pose the following optimization problem:

where we have assumed that the rate-distortion function generated by each of the quantizers 

is of the form Di(Ri) = Ki exp(−hiRi) [8]. Solving this problem using the Lagrange 

multipliers method, we obtain that the optimal distortion at which each quantizer must 

operate is given by

For the case under consideration, hi may not be computable in some cases. Moreover, we 

expect all quantizers to exhibit a similar behavior. Thus, we assume hi = h ∀i, which 

translates into all quantizers targeting the same distortion D.
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Finally, due to the space constraint, we refer the reader to [3] for a detailed explanation of 

the computation of the quantizer input probability P(·) and the codebook generation.

4 Results

To assess the performance of the proposed algorithm, we use data from the individual 

NA12878. Specifically, we extracted the chromosome 20 of two Illumina pair-end, whole 

genome sequencing datasets, one with 15× coverage (composed of almost 9 million lines 

with 101 quality scores per line) and the other with 30× coverage (composed of more than 

20 million lines with 101 quality scores per line).

We carry out two analyses. First, we compare the performance of the proposed algorithm to 

the state-of-the-art lossy compressors for quality scores in terms of rate-distortion 

performance, for several distortion metrics. The reason for performing the rate-distortion 

analysis over different metrics is that there is a wide variety of downstream applications that 

use the quality scores in widely varying heuristic manners. Thus, an algorithm that performs 

well in terms of rate-distortion under different distortion metrics is more likely to perform 

well in most downstream applications.

Second, we asses the effect that the proposed lossy compressor has in SNP calling, as it is 

one of the most used downstream applications. We use several SNP calling pipelines in our 

analysis. Furthermore, for the selected individual a consensus set of SNPs exists, which 

allows us to analyze how accurate the output of the different SNP callers is when the quality 

scores are replaced by the reconstructed ones.

For the simulations, we set the number of clusters to 3 and 10, and the maximum number of 

iterations to 50.

4.1 Rate-Distortion results

We analyze the rate-distortion performance of the proposed algorighm and compare it to the 

following state-of-the-art lossy compressors: PBlock [9], RBlock [9], QVZ [3] and the 

Illumina binning as performed by DSRC2 [10]. These we chosen based on the results 

reported in [3]. Moreover, we choose to analyze the performance in term of the six distortion 

metrics shown in Table 1, as suggested in [3, 9]. Note that while the metrics MSE, L1, 

Lorentzian are computed on average among all quality scores, the Chebyshev and Max-Min 
are metrics that analyze the behavior of the maximum and minimum distortions within a 

read. The last one, the Soergel distortion, is a mixture of the previous two.

Fig. 2 shows the rate-distortion performance with the 30× coverage dataset, for all 

considered metrics. As can be observed, QVZ is clearly outperformed by RBlock and 

PBlock under all metrics that analyze the maximum distortion within a read (that is, 

Chebysev and Max-Min). However, RBlock and PBlock perform poorly unde the remaining 

metrics. This can be explained by the way in which each of the algorithms operate. Illumina 

binning generally achieves an intermediate point between them. Thus none of the state-of-

the-art algorithms outperforms the rest under all metrics. On the other hand, the proposed 

algorithm exhibits superior performance under all considered metrics, that is, both those that 
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compute the average distortion across all reads, and those that compute it within a read (with 

the exception of the Max-Min distortion at low rates, where PBlock slightly outperforms the 

proposed method). For example, for a rate of 1 bit per quality score, the proposed algorithm 

achieves half the MSE distortion incurred by QVZ. And while QVZ is clearly outperformed 

under the Max-Min metric, the proposed method performs better than RBlock and similar to 

PBlock. This is achieved by an effective clustering step and a careful selection of the 

distortions levels targeted at each quantizer. Similar results have been observed for the 15× 

dataset. We have omitted them due to the space constraint.

4.2 SNP calling resuts

Next we analyze how the proposed lossy compressor affects SNP calling. For the analysis, 

we followed the methodology proposed in [2], which includes the use of the best practices 

pipelines GATK, Samtools and Platypus (see [2] for details). In brief, we run the 

aforementioned pipelines with the original data and with that where the quality scores are 

swapped with the reconstructed ones after lossy compression. Then, the obtained set of 

SNPs for each case is compared against existing golden standards (specifically, the NIST 

standard and the one proposed by Illumina [2]) in order to compute the true positives, false 

positives and false negatives. Finally, the specificity, precision and f-score are used for the 

evaluation criteria.

We emphasize that we are not interested in analyzing how well the different pipelines 

perform, but in how the proposed lossy compression affects SNP calling. To that end, we 

define the variability in the output of different SNP calling pipelines as methodological bias, 

and the variability introduced by the lossy compressor within a pipeline as lossy bias. 

Ideally, we would like to show that the lossy bias is orders of magnitude smaller than the 

methodological bias, as that would indicate that the changes in calling accuracy introduced 

by the lossy compressor are negligible.

Fig. 3 shows the sensitivity, precision and f-score for the tree pipelines when the golden 

standard is that of Illumina and NIST. As can be observed, the performance of the different 

pipelines differs significantly (large methodological bias). Moreover, the performance gets 

highly affected by the selection of the golden standard. This agrees with the common 

knowledge that we are far from perfectly calling variants [11]. Most importantly, we see that 

the variability introduced by the lossy compressor (lossy bias), particularly with GATK and 

Samtools, is negligible when compared to the methodological bias. For example, the 

maximum variance within GATK is three orders of magnitude smaller than the difference 

between the performance of GATK and the other pipelines. Finally, note that even with a 

very small number of bits/quality score, the performance is in general very similar to that 

obtained with the original data. These findings suggests that the lossy bias is essentially non-

existent relative to the methodological bias, and thus that lossy compression could be used 

without harming the SNP calling performance.

5 Conclusion

We have proposed a new lossy compressor for quality scores that assumes the sequences are 

generated by a mixture of time-varying Markov models. Based on this assumption, the 
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algorithm first performs a clustering step, followed by a quantization of the quality scores. 

The distortion level chosen at each quantizer is chosen to improve the overall rate-distortion 

performance. Finally, an entropy encoder is applied to the quantized values.

To our knowledge, the proposed lossy compressor is the first to outperform the previously 

proposed lossy compressors in rate-distortion performance for all considered distortions. 

Moreover, we analyze how the proposed algorithm affects SNP calling, one of the most used 

downstream applications for biological inference. We find that the variability introduced by 

the proposed method is orders of magnitude smaller than the inherent variability that exists 

across SNP callers. Moreover, for small distortions, the proposed lossy compressor produces 

more accurate SNP calls than the original dataset. These results are consistent with others in 

the recent literature suggesting that lossy compression, done judiciously, can be used to 

boost compression performance without harming and sometimes even boosting the accuracy 

of the calls. However, we acknowledge the need for performing more extensive studies for 

substantiating the universality of this phenomenon and consolidating our understanding of it.
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Figure 1. 
Our temporal Markov model.
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Figure 2. 
Rate-Distortion results for the 30× coverage dataset. P.A. stands for Proposed Algorithm.
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Figure 3. 
The effect of the proposed lossy compression on Sensitivity, Precision and F-score when 

performing SNP calling. G.S. stands for Golden Standard. The points with higher bits/

quality score correspond to the original data.
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Table 1

Distortion metrics used for assessment of the lossy compressors in terms of rate-distortion performance. Q is 

the original quality score and Q ̂ is the reconstructed one after lossy compression.

MSE

L1

Lorentzian

Chebyshev

Max-Min

Soergel
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